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Original Preface

The following preface is from the original work by Langtangen and Linge.

There are so many excellent books on finite difference methods for ordinary and partial differential
equations that writing yet another one requires a different view on the topic. The present book is
not so concerned with the traditional academic presentation of the topic, but is focused at teaching
the practitioner how to obtain reliable computations involving finite difference methods. This focus
is based on a set of learning outcomes:

understanding of the ideas behind finite difference methods,

understanding how to transform an algorithm to a well-designed computer code,
understanding how to test (verify) the code,

understanding potential artifacts in simulation results.

o=

Compared to other textbooks, the present one has a particularly strong emphasis on computer
implementation and verification. It also has a strong emphasis on an intuitive understanding of
constructing finite difference methods. To learn about the potential non-physical artifacts of various
methods, we study exact solutions of finite difference schemes as these give deeper insight into the
physical behavior of the numerical methods than the traditional (and more general) asymptotic
error analysis. However, asymptotic results regarding convergence rates, typically truncation errors,
are crucial for testing implementations, so an extensive appendix is devoted to the computation of
truncation errors.

Why finite differences?

One may ask why we do finite differences when finite element and finite volume methods have
been developed to greater generality and sophistication than finite differences and can cover more
problems. The finite element and finite volume methods are also the industry standard nowadays.
Why not just those methods? The reason for finite differences is the method’s simplicity, both from
a mathematical and coding perspective. Especially in academia, where simple model problems are
used a lot for teaching and in research (e.g., for verification of advanced implementations), there
is a constant need to solve the model problems from scratch with easy-to-verify computer codes.
Here, finite differences are ideal. A simple 1D heat equation can of course be solved by a finite
element package, but a 20-line code with a difference scheme is just right to the point and provides
an understanding of all details involved in the model and the solution method. Everybody nowadays
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has a laptop and the natural method to attack a 1D heat equation is a simple Python or Matlab
program with a difference scheme. The conclusion goes for other fundamental PDEs like the wave
equation and Poisson equation as long as the geometry of the domain is a hypercube. The present
book contains all the practical information needed to use the finite difference tool in a safe way.

Various pedagogical elements are utilized to reach the learning outcomes, and these are commented
upon next.

Simplify, understand, generalize

The book’s overall pedagogical philosophy is the three-step process of first simplifying the problem to
something we can understand in detail, and when that understanding is in place, we can generalize
and hopefully address real-world applications with a sound scientific problem-solving approach.
For example, in the chapter on a particular family of equations we first simplify the problem in
question to a 1D, constant-coefficient equation with simple boundary conditions. We learn how to
construct a finite difference method, how to implement it, and how to understand the behavior of
the numerical solution. Then we can generalize to higher dimensions, variable coefficients, a source
term, and more complicated boundary conditions. The solution of a compound problem is in this
way an assembly of elements that are well understood in simpler settings.

Constructive mathematics

This text favors a constructive approach to mathematics. Instead of a set of definitions followed by
popping up a method, we emphasize how to think about the construction of a method. The aim is
to obtain a good intuitive understanding of the mathematical methods.

The text is written in an easy-to-read style much inspired by the following quote.

Some people think that stiff challenges are the best device to induce learning, but I am
not one of them. The natural way to learn something is by spending vast amounts of
easy, enjoyable time at it. This goes whether you want to speak German, sight-read at
the piano, type, or do mathematics. Give me the German storybook for fifth graders
that I feel like reading in bed, not Goethe and a dictionary. The latter will bring rapid
progress at first, then exhaustion and failure to resolve.

The main thing to be said for stiff challenges is that inevitably we will encounter them,
so we had better learn to face them boldly. Putting them in the curriculum can help teach
us to do so. But for teaching the skill or subject matter itself, they are overrated.

— Lloyd N. Trefethen, Applied Mathematician, 1955-.

This book assumes some basic knowledge of finite difference approximations, differential equations,
and scientific Python or MATLAB programming, as often met in an introductory numerical methods
course. Readers without this background may start with the light companion book “Finite Difference
Computing with Exponential Decay Models” (Langtangen 2016b). That book will in particular be
a useful resource for the programming parts of the present book. Since the present book deals with
partial differential equations, the reader is assumed to master multi-variable calculus and linear
algebra.
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Fundamental ideas and their associated scientific details are first introduced in the simplest possible
differential equation setting, often an ordinary differential equation, but in a way that easily allows
reuse in more complex settings with partial differential equations. With this approach, new concepts
are introduced with a minimum of mathematical details. The text should therefore have a potential
for use early in undergraduate student programs.

All nuts and bolts

Many have experienced that “vast amounts of easy, enjoyable time”, as stated in the quote above,
arises when mathematics is implemented on a computer. The implementation process triggers
understanding, creativity, and curiosity, but many students find the transition from a mathematical
algorithm to a working code difficult and spend a lot of time on”programming issues”.

Most books on numerical methods concentrate on the mathematics of the subject while details on
going from the mathematics to a computer implementation are less in focus. A major purpose of
this text is therefore to help the practitioner by providing all nuts and bolts necessary for safely
going from the mathematics to a well-designed and well-tested computer code. A significant portion
of the text is consequently devoted to programming details.

Python as programming language

While MATLAB enjoys widespread popularity in books on numerical methods, we have chosen to
use the Python programming language. Python is very similar to MATLAB, but contains a lot of
modern software engineering tools that have become standard in the software industry and that
should be adopted also for numerical computing projects. Python is at present also experiencing an
exponential growth in popularity within the scientific computing community. One of the book’s
goals is to present an up-to-date Python eco system for implementing finite difference methods.

Program verification

Program testing, called wverification, is a key topic of the book. Good verification techniques
are indispensable when debugging computer code, but also fundamental for achieving reliable
simulations. Two verification techniques saturate the book: exact solution of discrete equations
(where the approximation error vanishes) and empirical estimation of convergence rates in problems
with exact (analytical or manufactured) solutions of the differential equation(s).

Vectorized code

Finite difference methods lead to code with loops over large arrays. Such code in plain Python is
known to run slowly. We demonstrate, especially in Appendix Chapter 8, how to port loops to
fast, compiled code in C or Fortran. However, an alternative is to vectorize the code to get rid
of explicit Python loops, and this technique is met throughout the book. Vectorization becomes
closely connected to the underlying array library, here numpy, and is often thought of as a difficult
subject by students. Through numerous examples in different contexts, we hope that the present
book provides a substantial contribution to explaining how algorithms can be vectorized. Not
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only will this speed up serial code, but with a library that can produce parallel code from numpy
commands (such as Numba), vectorized code can be automatically turned into parallel code and
utilize multi-core processors and GPUs. Also when creating tailored parallel code for today’s
supercomputers, vectorization is useful as it emphasizes splitting up an algorithm into plain and
simple array operations, where each operation is trivial to parallelize efficiently, rather than trying
to develop a “smart” overall parallelization strategy.

Analysis via exact solutions of discrete equations

Traditional asymptotic analysis of errors is important for verification of code using convergence
rates, but gives a limited understanding of how and why a correctly implemented numerical method
may give non-physical results. By developing exact solutions, usually based on Fourier methods,
of the discrete equations, one can obtain a physical understanding of the behavior of a numerical
method. This approach is favored for analysis of methods in this book.

Code-inspired mathematical notation

Our primary aim is to have a clean and easy-to-read computer code, and we want a close one-to-one
relationship between the computer code and mathematical description of the algorithm. This
principle calls for a mathematical notation that is governed by the natural notation in the computer
code. The unknown is mostly called u, but the meaning of the symbol u in the mathematical
description changes as we go from the exact solution fulfilling the differential equation to the symbol
u that is naturally used for the associated data structure in the code.

Limited scope

The aim of this book is not to give an overview of a lot of methods for a wide range of mathematical
models. Such information can be found in numerous existing, more advanced books. The aim is
rather to introduce basic concepts and a thorough understanding of how to think about computing
with finite difference methods. We therefore go in depth with only the most fundamental methods
and equations. However, we have a multi-disciplinary scope and address the interplay of mathematics,
numerics, computer science, and physics.

Focus on wave phenomena

Most books on finite difference methods, or books on theory with computer examples, have their
emphasis on diffusion phenomena. Half of this book (Chapters Chapter 1, Chapter 2, and Appendix
Chapter 8) is devoted to wave phenomena. Extended material on this topic is not so easy find in the
literature, so the book should be a valuable contribution in this respect. Wave phenomena is also a
good topic in general for choosing the finite difference method over other discretization methods
since one quickly needs fine resolution over the entire mesh and uniform meshes are most natural.

Instead of introducing the finite difference method for diffusion problems, where one soon ends up
with matrix systems, we do the introduction in a wave phenomena setting where explicit schemes
are most relevant. This slows down the learning curve since we can introduce a lot of theory for
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differences and for software aspects in a context with simple, explicit stencils for updating the
solution.

Independent chapters

Most book authors are careful with avoiding repetitions of material. The chapters in this book,
however, contain some overlap, because we want the chapters to appear meaningful on their own.
Modern publishing technology makes it easy to take selected chapters from different books to make
a new book tailored to a specific course. The more a chapter builds on details in other chapters, the
more difficult it is to reuse chapters in new contexts. Also, most readers find it convenient that
important information is explicitly stated, even if it was already met in another chapter.

Supplementary materials

All program and data files referred to in this book are available from the book’s primary web site:
URL: https://github.com/devitocodes/devito_ book/.
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1. Introduction to Devito

This chapter introduces Devito, a domain-specific language (DSL) for solving partial differential
equations using finite differences. We begin with the motivation for symbolic PDE specification,
then work through a complete example using the 1D wave equation.

1.1. What is Devito?

Devito is a Python-based domain-specific language (DSL) for expressing and solving partial differ-
ential equations using finite difference methods. Rather than writing low-level loops that update
arrays at each time step, you write the mathematical equations symbolically and let Devito generate
optimized code automatically.

1.1.1. The Traditional Approach

Consider solving the 1D diffusion equation:

o o
8t_a8x2

A traditional NumPy implementation might look like:
import numpy as np

# Parameters

Nx, Nt = 100, 1000

dx, dt = 0.01, 0.0001

alpha = 1.0

F = alpha * dt / dx**2 # Fourier number

# Initialize

u = np.zeros(Nx + 1)

u_new = np.zeros(Nx + 1)

ulNx//2] = 1.0 # Initial impulse

# Time stepping loop
for n in range(Nt):
for i in range(1, Nx):
u_newl[i] = uli] + F * (ul[i+1] - 2*ul[i] + uli-1])
u, u_new = u_new, u # Swap arrays

10



1. Introduction to Devito

This approach has several limitations:

1. Error-prone: Manual index arithmetic is easy to get wrong

2. Hard to optimize: Achieving good performance requires expertise in vectorization, paral-
lelization, and cache optimization

3. Dimension-specific: The code must be rewritten for 2D or 3D problems

4. Not portable: Optimizations for one architecture don’t transfer to others

1.1.2. The Devito Approach

With Devito, the same problem becomes:
from devito import Grid, TimeFunction, Eq, Operator, solve, Constant

# Problem parameters

Nx = 100

L = 1,0

alpha = 1.0 # diffusion coefficient

F=0.5 # Fourier number (for stability, F <= 0.5)

# Compute dt from stability condition: F = alpha * dt / dx"2
dx = L / Nx
dt = F * dx**2 / alpha

# Create computational grid
grid = Grid(shape=(Nx + 1,), extent=(L,))

# Define the unknown field
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

+*

Set initial condition
.datal[0, Nx // 2] = 1.0

o]

# Define the PDE symbolically and solve for u.forward
a = Constant(name='a')

pde = u.dt - a * u.dx2

update = Eq(u.forward, solve(pde, u.forward))

# Create and run the operator

op = Operator ([updatel])
op(time=1000, dt=dt, a=alpha)

This approach offers significant advantages:

1. Mathematical clarity: The PDE u.dt - a * u.dx2 = 0 is written symbolically, and
Devito derives the update formula automatically using solve ()

11
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. Automatic optimization: Devito generates C code with loop tiling, SIMD vectorization,

and OpenMP parallelization

. Dimension-agnostic: The same code structure works for 1D, 2D, or 3D
. Portable performance: Generated code adapts to the target architecture

1.1.3. How Devito Works

Devito’s workflow consists of three stages:

Python DSL -+ Symbolic Processing -+ C Code Generation -+ Compilation -+ Execution

1.

Symbolic representation: Your Python code creates SymPy expressions that represent the
PDE and its discretization

. Code generation: Devito analyzes the expressions and generates optimized C code with

appropriate loop structures

. Just-in-time compilation: The C code is compiled (and cached) the first time the operator

runs

. Execution: Subsequent runs use the cached compiled code for maximum performance

1.1.4. When to Use Devito

Devito excels at:

Explicit time-stepping schemes: Forward Euler, leapfrog, Runge-Kutta
Structured grids: Regular Cartesian meshes in 1D, 2D, or 3D

Stencil computations: Any PDE discretized with finite differences
Large-scale problems: Where performance optimization matters

Common applications include:

Wave propagation (acoustic, elastic, electromagnetic)

Heat conduction and diffusion

Computational fluid dynamics

Seismic imaging (reverse time migration, full waveform inversion)

1.1.5. Installation

Devito can be installed via pip:

pip install devito

For this book, we recommend installing the optional dependencies as well:

12
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pip install devito[extras]

This includes visualization tools and additional solvers that we’ll use in later chapters.

1.1.6. What You’ll Learn

In this chapter, you will:

. Solve your first PDE (the 1D wave equation) using Devito

. Understand the core abstractions: Grid, Function, TimeFunction, Eq, and Operator
. Implement boundary conditions in Devito

. Verify your numerical solutions using convergence testing

B~ W N

1.2. Your First PDE: The 1D Wave Equation

We begin our exploration of Devito with the one-dimensional wave equation, a fundamental PDE
that describes vibrations in strings, sound waves in tubes, and many other physical phenomena.

1.2.1. The Mathematical Model

The 1D wave equation is:
Pu  ,0%u
a2 = ¢ oz (1.1)

where:

o u(x,t) is the displacement at position x and time ¢
o cis the wave speed (a constant)

We solve this on a domain x € [0, L] for ¢ € [0, 7] with:

« Initial conditions: u(x,0) = I(x) and %(x,()) =0
o Boundary conditions: u(0,¢) = u(L,t) = 0 (fixed ends)

1.2.2. Finite Difference Discretization

Using central differences in both space and time, we approximate:

Pu w2l !

~

o2 At2
OPu _ufy —2ul +u
0z2 Ax?

n+1,

Substituting into 1.1 and solving for ;™"

u;H‘l = 2ul" — u?_l + C’Q(u?_H —2ul +uf ) (1.2)

where C' = ¢At/Ax is the Courant number. The scheme is stable for C' < 1.

13
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1.2.3. The Devito Implementation

Let’s implement this step by step:

from devito import Grid, TimeFunction, Eq, Operator
import numpy as np

# Problem parameters

L=1.0 # Domain length

¢ = 1,0 # Wave speed

T=1.0 # Final time

Nx = 100 # Number of grid points

C=20.5 # Courant number (for stability)

# Derived parameters

dx = L / Nx
dt = C *xdx / c
Nt = int(T / dt)

# Create the computational grid
grid = Grid(shape=(Nx + 1,), extent=(L,))

Create a time-varying field

time_order=2 because we have second derivative in time
space_order=2 for standard second-order accuracy

= TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

e H# H #®

# Set initial condition: a Gaussian pulse

x = grid.dimensions[0]

x_coord = 0.5 *x L. # Center of domain

sigma = 0.1 # Width of pulse

u.datal0, :] = np.exp(-((np.linspace(0, L, Nx+1) - x_coord)**2) / (2+sigmax*2))
u.datal[l, :] = u.datal0, :] # Zero initial velocity

# Define the update equation

# u.forward is u at time n+l, u is at time n, u.backward is at time n-1
# u.dx2 is the second spatial derivative

eq = Eq(u.forward, 2+u - u.backward + (c*dt)#**2 * u.dx2)

# Create the operator
op = Operator([eq])

# Run the simulation
op(time=Nt, dt=dt)

# The solution is now in u.data

print(f"Simulation complete: {Nt} time steps")
print(f"Max amplitude at t={T}: {np.max(np.abs(u.datal[0, :]1)):.6f}")

14
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1.2.4. Understanding the Code

Let’s examine each component:

Grid creation:

grid = Grid(shape=(Nx + 1,), extent=(L,))

This creates a 1D grid with Nx + 1 points spanning a domain of length L. The grid spacing is
automatically computed as dx = L / Nx.

TimeFunction:
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

e name='u': The symbolic name for this field

o time_order=2: We need values at three time levels (n — 1, n, n + 1) for the second time
derivative

o space_order=2: Use second-order accurate spatial stencils

Initial conditions:

u.datal0, :]
u.datal1, :]

# u at t=0
# u at t=dt (for zero initial velocity, same as t=0)

The data attribute provides direct access to the underlying NumPy arrays. Index 0 and 1 represent
the two most recent time levels.

Update equation:

eq = Eq(u.forward, 2*u - u.backward + (c*dt)**2 * u.dx2)

.forward: The solution at the next time step (u"*1)

: The solution at the current time step (u™)

.backward: The solution at the previous time step (u" ')

.dx2: The second spatial derivative, computed using finite differences

e e e &

Operator and execution:

op = Operator([eq])
op(time=Nt, dt=dt)

The Operator compiles the equations into optimized C code. Calling it runs the time-stepping loop
for Nt steps with time increment dt.

15
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1.2.5. Visualizing the Solution

import matplotlib.pyplot as plt

# Get spatial coordinates
x_vals = np.linspace(0, L, Nx + 1)

# Plot the solution at the final time
plt.figure(figsize=(10, 4))

plt.plot(x_vals, u.datal[0, :], 'b-', linewidth=2)
plt.xlabel('x")

plt.ylabel('u')

plt.title(f'Wave equation solution at t = {T}')
plt.grid(True)

plt.show()

1.2.6. The CFL Condition

The Courant-Friedrichs-Lewy (CFL) condition states that for stability:

cAt
= —<1
¢ Ax —

Physically, this means information cannot travel more than one grid cell per time step. If C > 1,
the numerical solution will grow without bound.

Exercise: Try running the code with C = 1.5 and observe what happens.

1.2.7. What Devito Does Behind the Scenes

When you create the Operator, Devito:

1. Analyzes the symbolic equations
2. Determines the stencil pattern and data dependencies
3. Generates optimized C code with:

e Proper loop ordering for cache efficiency
e SIMD vectorization where possible
e OpenMP parallelization for multi-core execution

4. Compiles the code and caches the result

You can inspect the generated code:

print (op.ccode)

This reveals the low-level implementation that Devito creates automatically.

16
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1.3. Core Devito Abstractions

Devito provides a small set of powerful abstractions for expressing PDEs. Understanding these
building blocks is essential for writing effective Devito code.

1.3.1. Grid: The Computational Domain

The Grid defines the discrete domain on which we solve our PDE:
from devito import Grid

# 1D grid: 101 points over [0, 1]
grid_1d = Grid(shape=(101,), extent=(1.0,))

# 2D grid: 101x101 points over [0, 1] x [0, 1]
grid_2d = Grid(shape=(101, 101), extent=(1.0, 1.0))

# 3D grid: 51x51x51 points over [0, 2] x [0, 2] x [0, 2]
grid_3d = Grid(shape=(51, 51, 51), extent=(2.0, 2.0, 2.0))

Key properties:

e shape: Number of grid points in each dimension

e extent: Physical size of the domain

o dimensions: Symbolic dimension objects (x, y, z)

» spacing: Grid spacing in each dimension (computed automatically)

grid = Grid(shape=(101, 101), extent=(1.0, 1.0))
X, y = grid.dimensions # Symbolic dimensions
dx, dy = grid.spacing # Symbolic spacing (h_x, h_y)

print (£"Grid spacing: dx={float(dx)}, dy={float(dy)}")

1.3.2. Function: Static Fields

A Function represents a field that does not change during time-stepping. Use it for material
properties, source terms, or any spatially-varying coefficient:

from devito import Function
grid = Grid(shape=(101,), extent=(1.0,))
# Wave velocity field

¢ = Function(name='c', grid=grid)
c.datal[:] = 1600.0 # Constant velocity (m/s)
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# Spatially varying velocity

import numpy as np

x_vals = np.linspace(0, 1, 101)

c.datal[:] = 1500 + 500 * x_vals # Linear velocity gradient

The space_order parameter controls the stencil width for derivatives:
# Higher-order derivatives need wider stencils

¢ = Function(name='c', grid=grid, space_order=4)

1.3.3. TimeFunction: Time-Varying Fields

A TimeFunction represents the solution field that evolves in time:
from devito import TimeFunction

grid = Grid(shape=(101,), extent=(1.0,))

# For first-order time derivatives (diffusion equation)
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

# For second-order time derivatives (wave equation)
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)
Key parameters:

o time_order: Number of time levels needed (1 for first derivative, 2 for second)
o space_order: Accuracy order for spatial derivatives

Time indexing shortcuts:

Syntax Meaning Mathematical notation
u Current time level u”

u.forward  Next time level untl

u.backward Previous time level un!

u.dt First time derivative Ou/ot

u.dt2 Second time derivative 9%u/0t?

1.3.4. Derivative Notation

Devito provides intuitive notation for spatial derivatives:
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Syntax Meaning  Stencil

u.dx ou/0x Centered difference

u.dy ou/0y Centered difference

u.dx2 0?u/0z% Second derivative

u.dy?2 0%u/0y?  Second derivative

u.laplace VZu Laplacian (dimension-agnostic)

The laplace operator is particularly useful because it works in any number of dimensions:
# These are equivalent for 2D:
laplacian_explicit = u.dx2 + u.dy2

laplacian_auto = u.laplace

# In 3D, u.laplace automatically becomes u.dx2 + u.dy2 + u.dz2

1.3.5. Eq: Defining Equations
The Eq class creates symbolic equations:
from devito import Eq

# Explicit update: u”{n+1} = expression
update = Eq(u.forward, 2*u - u.backward + dt**2 * c**2 * u.laplace)

# Using the solve() helper for implicit forms
from devito import solve

pde = u.dt2 - c**2 * u.laplace # The PDE residual
update = Eq(u.forward, solve(pde, u.forward))

The solve () function is useful when the update formula is complex. It symbolically solves for the
target variable.

1.3.6. Operator: Compilation and Execution
The Operator takes a list of equations and generates executable code:
from devito import Operator

# Single equation
op = Operator([update])

# Multiple equations (e.g., with boundary conditions)
op = Operator([update, bc_left, bc_right])
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# Run for Nt time steps
op(time=Nt, dt=dt)

The operator compiles the equations into optimized C code on first execution. Subsequent calls
reuse the cached compiled code.

1.3.7. Complete Example: 2D Diffusion
Let’s put these abstractions together for a 2D diffusion problem:

from devito import Grid, TimeFunction, Eq, Operator
import numpy as np

# Create a 2D grid
grid = Grid(shape=(101, 101), extent=(1.0, 1.0))

# Time-varying field (first-order in time for diffusion)
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

# Parameters

alpha = 0.1 # Diffusion coefficient

dx = 1.0 / 100

F=0.25 # Fourier number (for stability)
dt = F * dx**2 / alpha

# Initial condition: hot spot in the center
u.datal[0, 45:55, 45:55] = 1.0

# The diffusion equation: u_t = alpha * (u_xx + u_yy)
# Using .laplace for dimension-agnostic code
eq = Eq(u.forward, u + alpha * dt * u.laplace)

# Create and run
op = Operator([eq])
op(time=500, dt=dt)

# Visualize

import matplotlib.pyplot as plt

plt.imshow(u.datal[0O, :, :], origin='lower', cmap='hot')
plt.colorbar(label='Temperature')

plt.title('2D Diffusion')

plt.show()

1.3.8. Summary of Core Abstractions
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Abstraction Purpose Key Parameters
Grid Define computational shape, extent
domain
Function Static fields name, grid, space_order
(coefficients)
TimeFunction Time-varying fields name, grid, time_order, space_order
Eq Define equations LHS, RHS
Operator Compile and execute  List of equations

These five abstractions form the foundation of all Devito programs. In the following sections, we’ll
see how to handle boundary conditions and verify our numerical solutions.

1.4. Boundary Conditions in Devito

Properly implementing boundary conditions is crucial for accurate PDE solutions. Devito provides
several approaches, each suited to different situations.

1.4.1. Dirichlet Boundary Conditions

Dirichlet conditions specify the solution value at the boundary:
u(0,t) = go(t), w(L,t)=gr(t)

Method 1: Explicit equations

The most direct approach adds equations that set boundary values:

from devito import Grid, TimeFunction, Eq, Operator

grid = Grid(shape=(101,), extent=(1.0,))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

# Get the time dimension for indexing
t = grid.stepping_dim

# Interior update (wave equation)
update = Eq(u.forward, 2+u - u.backward + dt**2 * c**2 * u.dx2)

# Boundary conditions: u = 0 at both ends
bc_left = Eq(ult+1, 0], 0)
bc_right = Eq(ult+1, 100], 0)

# Include all equations in the operator
op = Operator([update, bc_left, bc_right])
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Method 2: Using subdomain

For interior-only updates, use subdomain=grid.interior:

# Update only interior points (automatically excludes boundaries)
update = Eq(u.forward, 2%u - u.backward + dt**2 * c**2 * u.dx2,
subdomain=grid.interior)

# Set boundaries explicitly
bc_left = Eq(ult+1, 0], 0)
bc_right = Eq(ult+1, 100], 0)

op = Operator([update, bc_left, bc_right])

The subdomain=grid.interior approach is often cleaner because it explicitly separates the physics
(interior PDE) from the boundary treatment.

1.4.2. Neumann Boundary Conditions

Neumann conditions specify the derivative at the boundary:

ou ou

7(0715) = hO(t)v %

o (L) = hu (0

For a zero-flux condition (Qu/0x = 0), we use the ghost point method. The central difference at the
boundary requires a point outside the domain:

ou Ul — U_q

o ~ -0
oz |,_, 2Ax

This gives u_1 = u1, which we substitute into the interior equation:

grid = Grid(shape=(101,), extent=(1.0,))

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)
x = grid.dimensions[0]
t = grid.stepping_dim

# Interior update (diffusion equation)
update = Eq(u.forward, u + alpha * dt * u.dx2, subdomain=grid.interior)

# Neumann BC at left (du/dx = 0): use one-sided update

# u_new[0] = ul[0] + alpha*dt * 2*x(u[1] - ul[0])/dx"2

dx = grid.spacing[0]

bc_left = Eq(ult+1l, 0], ult, 0] + alpha * dt * 2 *x (ult, 1] - ult, 0]) / dx**2)

# Neumann BC at right (du/dx = 0)
bc_right = Eq(ult+1, 100], ult, 100] + alpha * dt * 2 * (ult, 99] - ult, 100]) / dx**2)

op = Operator([update, bc_left, bc_right])
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1.4.3. Mixed Boundary Conditions

Often we have different conditions on different boundaries:

# Dirichlet on left, Neumann on right
bc_left = Eq(ult+1, 0], 0) # u(0,t) =0
bc_right = Eq(ult+1, 100], ult+1, 99]) # du/dx(L,t) = O (copy from interior)

op = Operator([update, bc_left, bc_right])

1.4.4. 2D Boundary Conditions

For 2D problems, boundary conditions apply to all four edges:

grid = Grid(shape=(101, 101), extent=(1.0, 1.0))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

X, y = grid.dimensions
t = grid.stepping_dim
Nx, Ny = 100, 100

# Interior update
update = Eq(u.forward, 2+u - u.backward + dt**2 * c**2 * u.laplace,
subdomain=grid.interior)

# Dirichlet BCs on all four edges
bc_left = Eq(ult+1, 0, yl, 0)
bc_right = Eq(ult+1l, Nx, y], 0)
bc_bottom = Eq(ult+l, x, 0], 0)
bc_top = Eq(ult+1l, x, Nyl, 0)

op = Operator([update, bc_left, bc_right, bc_bottom, bc_topl)

1.4.5. Time-Dependent Boundary Conditions
For boundaries that vary in time, use the time index:
from devito import Constant

# Time-varying amplitude
A = Constant(name='A")

# Sinusoidal forcing at left boundary
# u(0, t) = A * sin(omega * t)

import sympy as sp

omega = 2 * sp.pi # Angular frequency
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# The time value at step n
t_val =t *x dt # Symbolic time value

bc_left = Eq(ult+1, 0], A * sp.sin(omega * t_val))

# Set the amplitude before running
op = Operator([update, bc_left, bc_right])
op(time=Nt, dt=dt, A=1.0) # Pass A as keyword argument

1.4.6. Absorbing Boundary Conditions

For wave equations, we often want waves to exit the domain without reflection. A simple first-order

absorbing condition is:

ou ou
_ _— = :L
8t+cax 0 atzx

This can be discretized as:

# Absorbing BC at right boundary (waves traveling right)
dx = grid.spacingl[0]

bc_right_absorbing = Eq(

ult+1, Nx],
ult, Nx] - ¢ * dt / dx * (ul[t, Nx] - ult, Nx-11)

More sophisticated absorbing conditions use damping layers (sponges) near the boundaries. This is
covered in detail in Section 2.13.10.

1.4.7. Periodic Boundary Conditions
For periodic domains, the solution wraps around:
u(0,t) = u(L,t)
Devito doesn’t directly support periodic BCs, but they can be implemented by copying values:
# Periodic BCs: ul[0] = ul[Nx-1], ul[Nx] = ul[1]

bc_periodic_left = Eq(ult+1, 0], ul[t+1, Nx-1])
bc_periodic_right = Eq(ult+1, Nx], ult+1, 11)

Note: The order of equations matters. Update the interior first, then copy for periodicity.
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1.4.8. Best Practices
1. Use subdomain=grid.interior for interior updates to clearly separate physics from boundary
treatment

2. Check boundary equation order: Boundary equations should typically come after interior
updates in the operator

3. Verify boundary values: After running, check that boundaries have the expected values

4. Test with known solutions: Use problems with analytical solutions to verify boundary
condition implementation

1.4.9. Example: Complete Wave Equation Solver
Here’s a complete example combining interior updates with boundary conditions:

from devito import Grid, TimeFunction, Eq, Operator
import numpy as np

# Setup

L, ¢c, T=1.0, 1.0, 2.0
Nx = 100

C =0.9 # Courant number
dx = L / Nx

dt = C xdx / ¢

Nt = int(T / dt)

# Grid and field

grid = Grid(shape=(Nx + 1,), extent=(L,))

u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)
t = grid.stepping_dim

# Initial condition: plucked string

x_vals = np.linspace(0, L, Nx + 1)

u.datal0, :] = np.sin(op.pi * x_vals)

u.datall, :] = u.datal0, :] # Zero initial velocity

# Equations

update = Eq(u.forward, 2*u - u.backward + (c*xdt)**2 * u.dx2,
subdomain=grid.interior)

bc_left = Eq(ult+1, 0], 0)

bc_right = Eq(ult+1, Nx], 0)

# Solve

op = Operator([update, bc_left, bc_right])
op(time=Nt, dt=dt)
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# Verify: solution should return to initial shape at t = 2L/c
print(f"Initial max: {np.max(u.datall, :]1):.6f}")
print (f"Final max: {np.max(u.datal0, :]1):.6f}")

For a string with fixed ends and initial shape sin(7x), the solution oscillates with period 2L /c. After
one period, it should return to the initial configuration.

1.5. Verification and Convergence Testing

How do we know our numerical solution is correct? Verification is the process of confirming that
our code correctly solves the mathematical equations we intended. This section introduces key
verification techniques.

1.5.1. The Importance of Verification

Numerical codes can produce plausible-looking but incorrect results due to:

o Programming errors (typos, off-by-one errors)
e Incorrect boundary condition implementation
« Stability violations

o Insufficient resolution

Systematic verification catches these problems before they corrupt scientific results.

1.5.2. Convergence Rate Testing

The most powerful verification technique is convergence rate testing. For a scheme with truncation
error O(AxP), the error should decrease as:

E(Az) = CAzxP

By measuring errors at different resolutions, we can estimate p:

~ _log(F1/E)
P log(Ax1/Axs)

If the measured rate matches the theoretical order, we have strong evidence the implementation is
correct.

1.5.3. Implementing a Convergence Test
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import numpy as np
from devito import Grid, TimeFunction, Eq, Operator

def solve_wave_equation(Nx, L=1.0, T=0.5, c=1.0, C=0.5):
"""Solve 1D wave equation and return error vs exact solution."""

dx = L / Nx
dt = C *xdx / ¢
Nt = int(T / dt)

grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)
t_dim = grid.stepping_dim

# Initial condition: sin(pi*x)

x_vals = np.linspace(0, L, Nx + 1)

u.datal0, :] = np.sin(np.pi * x_vals)

u.datal[l, :] = np.sin(np.pi * x_vals) * np.cos(np.pi * c * dt)

# Wave equation

update = Eq(u.forward, 2*u - u.backward + (cxdt)**2 * u.dx2,
subdomain=grid.interior)

bc_left = Eq(ult_dim+1, 0], 0)

bc_right = Eq(ult_dim+1, Nx], 0)

op = Operator([update, bc_left, bc_right])
op(time=Nt, dt=dt)

# Exact solution: u(x,t) = sin(pi*x)*cos(pi*c*t)
t_final = Nt * dt
u_exact = np.sin(np.pi * x_vals) * np.cos(up.pi * ¢ * t_final)

# Return max error
error = np.max(np.abs(u.datal[0, :] - u_exact))
return error, dx

def convergence_test(grid_sizes):
"""Run convergence test and compute rates."""

errors = []
dx_values = []

for Nx in grid_sizes:
error, dx = solve_wave_equation(Nx)
errors.append(error)
dx_values.append (dx)
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print(£"Nx = {Nx:4d}, dx = {dx:.6f}, error = {error:.6e}")

# Compute convergence rates

rates = []

for i in range(len(errors) - 1):
rate = np.log(errors[i] / errors([i+1]) / np.log(dx_values[i] / dx_values[i+1])
rates.append(rate)

print ("\nConvergence rates:")
for i, rate in enumerate(rates):
print(f" {grid_sizes[i]} -> {grid_sizes[i+1]}: rate = {rate:.2f}")

return errors, dx_values, rates

# Run the test
grid_sizes = [20, 40, 80, 160, 320]
errors, dx_values, rates = convergence_test(grid_sizes)

# Check: rates should be close to 2 for second-order scheme

expected_rate = 2.0

assert all(abs(r - expected_rate) < 0.2 for r in rates), \
f"Convergence rates {rates} differ from expected {expected_ratel}"

1.5.4. Method of Manufactured Solutions (MMS)

For problems without analytical solutions, we use the Method of Manufactured Solutions:

1. Choose a solution umms(z,t) (any smooth function)

2. Compute the source term by substituting into the PDE
3. Solve the modified PDE with the computed source

4. Compare the numerical solution to uyms

Example: Diffusion equation

Let’s verify a diffusion solver using MMS:
import sympy as sp

# Symbolic variables

X_sym, t_sym = sp.symbols('x t')

alpha_sym = sp.Symbol('alpha')

# Manufactured solution (arbitrary smooth function)
u_mms = sp.sin(sp.pi * x_sym) * sp.exp(-t_sym)

# Compute required source term: f = u_t - alpha * u_xx
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u_t = sp.diff(u_mms, t_sym)
u_xx = sp.diff(u_mms, x_sym, 2)
f mms = u_t - alpha_sym * u_xx

print ("Manufactured solution:")
print(f" u_mms = {u_mms}")

print (f"Required source term:")
print(f" f = {sp.simplify(f_mms)}")

Now implement the solver with this source term:

from devito import Grid, TimeFunction, Function, Eq, Operator
import numpy as np

def solve_diffusion_mms(Nx, alpha=1.0, T=0.5, F=0.4):
"""Solve diffusion with MMS source term."""

L=1.0

dx = L / Nx

dt = F * dx**2 / alpha
Nt = int(T / dt)

grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)
t_dim = grid.stepping_dim

# Spatial coordinates for evaluation
x_vals = np.linspace(0, L, Nx + 1)

# MMS: u = sin(pix*x) * exp(-t)
# Source: f = sin(pi*x) * exp(-t) * (alpha*pi”2 - 1)
def u_exact(x, t):

return np.sin(ap.pi * x) * np.exp(-t)

def f_source(x, t):
return np.sin(np.pi * x) * np.exp(-t) * (alpha * np.pi**2 - 1)

# Initial condition from MMS
u.datal[0, :] = u_exact(x_vals, 0)

# We need to add source term at each time step
# For simplicity, use time-lagged source
f = Function(name='f', grid=grid)

# Update equation with source

update = Eq(u.forward, u + alpha * dt * u.dx2 + dt * f,
subdomain=grid.interior)
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bc_left = Eq(ult_dim+1, 0], 0) # u_mms(0,t) = O
bc_right = Eq(ult_dim+1, Nx], 0) # u_mms(l,t) =0

op = Operator([update, bc_left, bc_right])

# Time stepping with source update

for n in range(Nt):
t_current = n * dt
f.datal[:] = f_source(x_vals, t_current)
op(time=1, dt=dt)

# Compare to exact solution

t_final = Nt * dt

u_exact_final = u_exact(x_vals, t_final)

error = np.max(np.abs(u.datal0, :] - u_exact_final))

return error, dx

# Convergence test with MMS

print ("MMS Convergence Test for Diffusion Equation:")
grid_sizes = [20, 40, 80, 160]

errors = []

dx_vals = []

for Nx in grid_sizes:
error, dx = solve_diffusion_mms (Nx)
errors.append (error)
dx_vals.append (dx)
print (f"Nx = {Nx:4d}, error = {error:.6el}")

# Compute rates

for i in range(len(errors) - 1):
rate = np.log(errors[i] / errors[i+1]) / np.log(2)
print(f"Rate {grid_sizes[i]}->{grid_sizes[i+1]}: {rate:.2f}")

1.5.5. Quick Verification Checks

Before running full convergence tests, use these quick checks:
1. Conservation properties

For problems that should conserve mass or energy:

# Check mass conservation for diffusion with Neumann BCs
mass_initial = np.sum(u.datal[l, :]) * dx
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mass_final = np.sum(u.datal[0, :]) * dx
print (f"Mass change: {abs(mass_final - mass_initial):.2e}")

2. Symmetry

For symmetric initial conditions and domains:

# Check symmetry is preserved

u_left = u.datal0, :Nx//2]

u_right = u.datal0, Nx//2+1:]1[::-1] # Reversed
symmetry_error = np.max(np.abs(u_left - u_right))
print (f"Symmetry error: {symmetry_error:.2el}")

3. Steady state

For problems with known steady states:

# Run to steady state and check

u_steady_numerical = u.datal[0, :]

u_steady_exact = ... # Known analytical steady state
error = np.max(np.abs(u_steady_numerical - u_steady_exact))

1.5.6. Debugging Tips

When convergence tests fail:

1.

Check boundary conditions: Are they correctly implemented? Plot the solution near
boundaries.

. Check stability: Is the CFL/Fourier number within limits? Try smaller time steps.

. Check initial conditions: Are they set correctly? Verify u.datal[0, :] and u.datali,

:].

. Inspect generated code: Use print (op.ccode) to see what Devito actually computes.

. Test components separately: Verify spatial derivatives work on known functions before

testing full PDE.

1.5.7. Summary

Verification is essential for trustworthy numerical results:

Technique When to Use What It Checks

Convergence testing Always Correct order of accuracy
MMS No analytical solution Correct PDE implementation
Conservation Physics requires it No spurious sources/sinks
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Technique When to Use What It Checks

Symmetry Symmetric problems  Consistent treatment

A well-verified code gives confidence that results represent the physics, not numerical artifacts.
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Computational algorithms: Can they be briefly stated in words and then shown directly in Python
code rather than in an Algorithm box? Think so, for wavelD we can say dx, dt, etc what they are
and then first show the core of the algorithm. Thereafter the complete function and sample call.

Examples:

e Debugging: constant solution when we have Neumann conditions.

e Verification: convergence test, example with h = Ax = At.

e Make file database for solutions, 1D, 2D, 3D.

e guitar string, triangular, C=1

e a different C, ok solution

e (C > 1 instability

e moving left

e plug, C=1

e plug, C=0.95

e spherical waves

e Software: put spatial update in a separate function, could introduce a version with a class for
Mesh, Function (w/interpolation)

e Develop study guides for each file or module

2D: lots of implementations (Fortran, Instant C++, Cython, vectorized)

A very wide range of physical processes lead to wave motion, where signals are propagated through
a medium in space and time, normally with little or no permanent movement of the medium itself.
The shape of the signals may undergo changes as they travel through matter, but usually not so
much that the signals cannot be recognized at some later point in space and time. Many types
of wave motion can be described by the equation uy = V - (¢2Vu) + f, which we will solve in the
forthcoming text by finite difference methods.

2.1. Simulation of waves on a string

We begin our study of wave equations by simulating one-dimensional waves on a string, say on a
guitar or violin. Let the string in the undeformed state coincide with the interval [0, L] on the z
axis, and let u(z,t) be the displacement at time ¢ in the y direction of a point initially at z. The
displacement function w is governed by the mathematical model

Pu ,0%u
o _ 2l
ot? dz?’

u(z,0) =I(z), z€][0,L] (2.2)

ze(0,L), te(0,T] (2.1)
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0

au(m, 0)=0, z€]0,L] (2.3)
u(0,t) =0, te (0,7 (2.4)
w(L,t) =0, te(0,T] (2.5)

The constant ¢ and the function I(x) must be prescribed.

Equation (2.1) is known as the one-dimensional wave equation. Since this PDE contains a second-
order derivative in time, we need two initial conditions. The condition (2.2) specifies the initial shape
of the string, I(x), and (2.3) expresses that the initial velocity of the string is zero. In addition,
PDEs need boundary conditions, given here as (2.4) and (2.5). These two conditions specify that
the string is fixed at the ends, i.e., that the displacement u is zero.

The solution u(x,t) varies in space and time and describes waves that move with velocity ¢ to the
left and right.

Sometimes we will use a more compact notation for the partial derivatives to save space:

ou 0%u

Ut:E> Uttzﬁa

and similar expressions for derivatives with respect to other variables. Then the wave equation can
be written compactly as wy = c2uyy.

The PDE problem (2.1)-(2.5) will now be discretized in space and time by a finite difference
method.

2.2. Discretizing the domain

The temporal domain [0, 7] is represented by a finite number of mesh points
O=ty<ti<ta< - <ty_1 <ty =T.
Similarly, the spatial domain [0, L] is replaced by a set of mesh points
O=zo<z1 <T2< - <2N,-1<2N, =L.
One may view the mesh as two-dimensional in the z,¢ plane, consisting of points (z;,t,), with

1=0,...,Nyand n=0,...,N;.

2.2.1. Uniform meshes

For uniformly distributed mesh points we can introduce the constant mesh spacings At and Azx.
We have that
ri=1iAx, i=0,...,Nz, t,=nAt, n=0,...,N;.

We also have that Ax = x; —z;-1, 1 =1,..., N, and At = ¢, —t,—1, n = 1,..., N;. Figure
Figure 2.1 displays a mesh in the x, ¢ plane with N; =5, N, = 5, and constant mesh spacings.
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2.3. The discrete solution

The solution u(z,t) is sought at the mesh points. We introduce the mesh function w}', which
approximates the exact solution at the mesh point (z;,t,) for i = 0,..., N, and n = 0,..., N;.
Using the finite difference method, we shall develop algebraic equations for computing the mesh

function.

2.4. Fulfilling the equation at the mesh points

In the finite difference method, we relax the condition that (2.1) holds at all points in the space-time
domain (0, L) x (0,7] to the requirement that the PDE is fulfilled at the interior mesh points

only:
82 2

0
@u(a:i,tn) = czwu(a:i,tn), (2.6)
fori=1,...,N,—landn=1,...,N; — 1. For n = 0 we have the initial conditions u = I(z) and
u; = 0, and at the boundaries ¢ = 0, N, we have the boundary condition v = 0.

2.5. Replacing derivatives by finite differences

The second-order derivatives can be replaced by central differences. The most widely used difference
approximation of the second-order derivative is

2 ntl _ o, n n—1
iu(xi,tn) ~ Ui 2uj +u .
ot? At?

It is convenient to introduce the finite difference operator notation

up Tt — 2uP 4l
[DiDyu]it = — Atz —.

A similar approximation of the second-order derivative in the x direction reads
82
0x?

### Algebraic version of the PDE We can now replace the derivatives in (2.6) and get

ul o —2u +utr
u(wi, tn) ~ —H 3 =1 — [DyDyu]” .

n+1 n n—1 n n n
At? Az? ’

or written more compactly using the operator notation:

[D¢Dyu = 2D, D, . (2.8)
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2.5.1. Interpretation of the equation as a stencil

A characteristic feature of (2.7) is that it involves u values from neighboring points only: u?“,
u g, Uy, and u?‘l. The circles in Figure Figure 2.1 illustrate such neighboring mesh points that
contribute to an algebraic equation. In this particular case, we have sampled the PDE at the point
(2,2) and constructed (2.7), which then involves a coupling of u?, u3, u2, ud, and u3. The term
stencil is often used about the algebraic equation at a mesh point, and the geometry of a typical
stencil is illustrated in Figure Figure 2.1. One also often refers to the algebraic equations as discrete
equations, (finite) difference equations or a finite difference scheme.

Stencil at interior point

index n

index i

Figure 2.1.: Mesh in space and time. The circles show points connected in a finite difference equation.

2.5.2. Algebraic version of the initial conditions

We also need to replace the derivative in the initial condition (2.3) by a finite difference approximation.
A centered difference of the type

ud — u L %

[ 0
SAL [D * x2tul);

&u(azi,to) ~

seems appropriate. Writing out this equation and ordering the terms give

The other initial condition can be computed by

w) =I(x;), i=0,...,N,.

i =
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2.6. Formulating a recursive algorithm

We assume that u? and u}~! are available for i = 0,..., N,. The only unknown quantity in (2.7) is

therefore u?“, which we now can solve for:

ul ™ = T 2ul O (W kw1 — 2u™ ok kil ) (2.10)

We have here introduced the parameter

known as the Courant number.

1 C is the key parameter in the discrete wave equation

We see that the discrete version of the PDE features only one parameter, C, which is therefore
the key parameter, together with N, that governs the quality of the numerical solution (see
Section Section 2.61 for details). Both the primary physical parameter ¢ and the numerical
parameters Ax and At are lumped together in C. Note that C' is a dimensionless parameter.

Given that u?_l and u are known for ¢ =0, ..., N,, we find new values at the next time level by
applying the formula (2.10) for i = 1,..., N, — 1. Figure Figure 2.1 illustrates the points that are
used to compute u3. For the boundary points, i = 0 and i = N,, we apply the boundary conditions
u?“ =0.

Even though sound reasoning leads up to (2.10), there is still a minor challenge with it that needs to
be resolved. Think of the very first computational step to be made. The scheme (2.10) is supposed
to start at n = 1, which means that we compute u? from u' and u°. Unfortunately, we do not know
the value of u', so how to proceed? A standard procedure in such cases is to apply (2.10) also
for n = 0. This immediately seems strange, since it involves u; ! which is an undefined quantity
outside the time mesh (and the time domain). However, we can use the initial condition (2.9) in
combination with (2.10) when n = 0 to eliminate u; !and arrive at a special formula for u;:

0 1

?-3C° (v 1= 20 v ) (2.11)

1 _
U, =u

Figure Figure 2.2 illustrates how (2.11) connects four instead of five points: ud, uf, u3, and 3.

We can now summarize the computational algorithm:

1. Compute u) = I(x;) fori =0,..., N,

2. Compute u} by (2.11) for i = 1,2,..., N, — 1 and set u} = 0 for the boundary points given by
1=0and i = N,

3. For each time level n =1,2,..., N, — 1

apply (2.10) to find u?“ fori=1,...,N, —1

5. set u™t = 0 for the boundary points having i = 0, i = N,.

i

-

The algorithm essentially consists of moving a finite difference stencil through all the mesh points.
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Stencil at interior point

5
4_
3.
o
®
=
= 51
0 o o o ;
0 Y ~ 1 4 5
index i

Figure 2.2.: Modified stencil for the first time step.

2.7. Sketch of an implementation

The algorithm only involves the three most recent time levels, so we need only three arrays for
’LL;H_I, uy', and u?_l, i =0,...,N,. Storing all the solutions in a two-dimensional array of size
(Nz 4+ 1) x (Nt + 1) would be possible in this simple one-dimensional PDE problem, but is normally
out of the question in three-dimensional (3D) and large two-dimensional (2D) problems. We shall
therefore, in all our PDE solving programs, have the unknown in memory at as few time levels as
possible.

In a Python implementation of this algorithm, we use the array elements u[i] to store u?“

to store uf, and u_nm1[i] to store u} !

,unli]

The following Python snippet realizes the steps in the computational algorithm.

dx = x[1] - x[0]

dt = t[1] - t[0]

C = cxdt/dx # Courant number

Nt = len(t)-1

C2 = Cxx2 # Help variable in the scheme

for i in range(0, Nx+1):

u_nli] = I(x[i])

for i in range(l, Nx):
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uli]l = u_nli] - \
0.5%C**2(u_n[i+1] - 2*%u_n[i] + u_n[i-1])
ul0] = 0; ulNx] =0 # Enforce boundary conditions

unmi[:], unl[:] =un, u
for n in range(l, Nt):
for i in range(l, Nx):
ulil = 2u nl[i] - u nmi[i] - \
C¥*2(u_n[i+1] - 2*u_n[i] + u_n[i-1])

ul0] = 0; wulNx]

]
o

unmil[:], un(:] un, u

Before implementing the algorithm, it is convenient to add a source term to the PDE (2.1), since
that gives us more freedom in finding test problems for verification. Physically, a source term acts
as a generator for waves in the interior of the domain.

2.8. A slightly generalized model problem

We now address the following extended initial-boundary value problem for one-dimensional wave
phenomena:

U = gy + f(z,t), x€(0,L), te(0,T] (2.12)
u(z,0) = I(z), €0, L] (2.13)
u(z,0) =V (x), z€]|0,L] (2.14)
u(0,t) =0, t>0 (2.15)

w(L,t)=0, t>0 (2.16)

Sampling the PDE at (z;, t,,) and using the same finite difference approximations as above, yields

[D¢Dyu = 2Dy Dyu + f]7. (2.17)
Writing this out and solving for the unknown u"+1 results in
ul T = T 2ul + P ki 1 — 20w Ul )+ AL (2.18)

The equation for the first time step must be rederived. The discretization of the initial condition
ug = V(z) at t = 0 becomes

[Dgtu = V]O

(2

= ul =) - 2AtV;,

which, when inserted in (2.18) for n = 0, gives the special formula

1 1
ul = ud — AtV; + 502 (uo ki 41— 2u0 % i + u?,l) + §At2f? . (2.19)
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2.9. Using an analytical solution of physical significance

Many wave problems feature sinusoidal oscillations in time and space. For example, the original
PDE problem (2.1)-(2.5) allows an exact solution

ue(x,t) = Asin (Zx) cos (th) . (2.20)

This ue fulfills the PDE with f = 0, boundary conditions ue(0,t) = ue(L,t) = 0, as well as initial
conditions I(z) = Asin (¥x) and V = 0.

(] . . .
1 How to use exact solutions for verification

It is common to use such exact solutions of physical interest to verify implementations.
However, the numerical solution u}" will only be an approximation to ue(z;, t,). We have no
knowledge of the precise size of the error in this approximation, and therefore we can never
know if discrepancies between ] and wue(x;,t,) are caused by mathematical approximations
or programming errors. In particular, if plots of the computed solution u] and the exact
one (2.20) look similar, many are tempted to claim that the implementation works. However,
even if color plots look nice and the accuracy is “deemed good”, there can still be serious
programming errors present!

The only way to use exact physical solutions like (2.20) for serious and thorough verification is
to run a series of simulations on finer and finer meshes, measure the integrated error in each
mesh, and from this information estimate the empirical convergence rate of the method.

An introduction to the computing of convergence rates is given in Section 3.1.6 in (Langtangen
2016b). There is also a detailed example on computing convergence rates in Section 1.5.

In the present problem, one expects the method to have a convergence rate of 2 (see Section
Section 2.61), so if the computed rates are close to 2 on a sufficiently fine mesh, we have good
evidence that the implementation is free of programming mistakes.

2.10. Manufactured solution and estimation of convergence rates

2.10.1. Specifying the solution and computing corresponding data

One problem with the exact solution (2.20) is that it requires a simplification (V =0, f = 0) of the
implemented problem (2.12)-(2.16). An advantage of using a manufactured solution is that we can
test all terms in the PDE problem. The idea of this approach is to set up some chosen solution and
fit the source term, boundary conditions, and initial conditions to be compatible with the chosen
solution. Given that our boundary conditions in the implementation are u(0,t) = u(L,t) = 0, we
must choose a solution that fulfills these conditions. One example is

ue(z,t) = x(L — x)sint.
Inserted in the PDE uy = Pug, + f we get

—x(L —x)sint = —*2sint + f = f = (2¢ — (L — z))sint.
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The initial conditions become

2.10.2. Defining a single discretization parameter

To verify the code, we compute the convergence rates in a series of simulations, letting each
simulation use a finer mesh than the previous one. Such empirical estimation of convergence rates
relies on an assumption that some measure E of the numerical error is related to the discretization

parameters through
E = C/At" + Cp AP,

where Cy, C, r, and p are constants. The constants r and p are known as the convergence rates in
time and space, respectively. From the accuracy in the finite difference approximations, we expect
r = p = 2, since the error terms are of order At? and Axz?. This is confirmed by truncation error
analysis and other types of analysis.

By using an exact solution of the PDE problem, we will next compute the error measure £ on a
sequence of refined meshes and see if the rates r = p = 2 are obtained. We will not be concerned
with estimating the constants C; and C,, simply because we are not interested in their values.

It is advantageous to introduce a single discretization parameter h = At = ¢Ax for some constant ¢.
Since At and Az are related through the Courant number, At = CAz/c, we set h = At, and then
Az = he/C. Now the expression for the error measure is greatly simplified:

C

C

E = CAt" + CpAx" = Cih" + Cy ( c

T c T
Vwr—ow, p-ciie(2).
### Computing errors We choose an initial discretization parameter hg and run experiments with
decreasing h: h; = 2 %hg, i = 1,2,...,m. Halving h in each experiment is not necessary, but it is a
common choice. For each experiment we must record F and h. Standard choices of error measure
are the £2 and /> norms of the error mesh function e?:

1
Nt Nr 2
E=|le}|e = <AtAx > Z(e?)2> s el =ue(zi, ty) — uy, (2.21)

n=0 =0
E = ||e}']|se = max |e}]. (2.22)
in

In Python, one can compute >, (el

)2 at each time step and accumulate the value in some sum
variable, say e2_sum. At the final time step one can do sqrt(dt*dx*e2_sum). For the £°*° norm
one must compare the maximum error at a time level (e.max()) with the global maximum over the

time domain: e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step only, e.g., the end time T
(n = Nt)f
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1
E = |[e?|]| * #£* = (AwZ* ki = ONz(e?)Q) el = ue(xiy ty) — ul, (2.23)
E = |[e}]| * %> = maxxx 0 < i < Nylel'|. (2.24)

The important point is that the error measure (E) for the simulation is represented by a single
number.

2.10.3. Computing rates

Let E; be the error measure in experiment (mesh) number ¢ (not to be confused with the spatial index
i) and let h; be the corresponding discretization parameter (h). With the error model E; = Dh],
we can estimate r by comparing two consecutive experiments:

Eiy1 = Dhiy,
E; = Dh .

Dividing the two equations eliminates the (uninteresting) constant D. Thereafter, solving for r
yields
i S In Eiy1/E;
Inhiyi/h;
Since r depends on ¢, i.e., which simulations we compare, we add an index to r: 7;, where
i=0,...,m — 2, if we have m experiments: (hg, Ep), ..., (hm-1, Em—1).

In our present discretization of the wave equation we expect » = 2, and hence the r; values should
converge to 2 as 1 increases.

2.11. Constructing an exact solution of the discrete equations

With a manufactured or known analytical solution, as outlined above, we can estimate convergence
rates and see if they have the correct asymptotic behavior. Experience shows that this is a quite
good verification technique in that many common bugs will destroy the convergence rates. A
significantly better test though, would be to check that the numerical solution is exactly what
it should be. This will in general require exact knowledge of the numerical error, which we do
not normally have (although we in Section Section 2.61 establish such knowledge in simple cases).
However, it is possible to look for solutions where we can show that the numerical error vanishes,
i.e., the solution of the original continuous PDE problem is also a solution of the discrete equations.
This property often arises if the exact solution of the PDE is a lower-order polynomial. (Truncation
error analysis leads to error measures that involve derivatives of the exact solution. In the present
problem, the truncation error involves 4th-order derivatives of u in space and time. Choosing u as a
polynomial of degree three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution to both the PDE itself and the discrete
equations. Our chosen manufactured solution is quadratic in space and linear in time. More
specifically, we set

ue(z,t) = (L —x)(1 + %t), (2.25)
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which by insertion in the PDE leads to f(x,t) = 2(1 + t)c?. This ue fulfills the boundary conditions
u =0 and demands I(z) = 2(L — z) and V(z) = 22(L — z).

To realize that the chosen ue is also an exact solution of the discrete equations, we first remind
ourselves that ¢,, = nAt so that

2 —2t2 + 2

[D, D" = AP 41?2 -2+ (n—1)2% =2, (2.26)
n tng1 =2ty +tp n+1)—2n+(n—1))At
[DyDyt]" = 5 _ ) e ( D (2.27)

.Hence,

1 1
Similarly, we get that

1
[DeDyuel? = (1 + itn)[DzDI(a:L —2?));
1
= (14 gtn) LDz Dy — DD, x%);

1
= —2(1 + 5tn)

Now, f'=2(1+ %tn)cz, which results in

1 1
[DyDyue — ¢*DyDytie — f17 = 0+ c*2(1 + Stn) +2(1+ 5tn)c2 =0.
Moreover, ue(zi,0) = I(z;), Oue/0t = V(x;) at t = 0, and ue(xo,t) = ue(xn,,0) = 0. Also the
modified scheme for the first time step is fulfilled by wue(x;, ty).

Therefore, the exact solution ue(z,t) = x(L — z)(1 4+ ¢/2) of the PDE problem is also an exact
solution of the discrete problem. This means that we know beforehand what numbers the numerical
algorithm should produce. We can use this fact to check that the computed u] values from an
implementation equals wue(x;, t,), within machine precision. This result is valid regardless of the
mesh spacings Az and At! Nevertheless, there might be stability restrictions on Az and At, so the
test can only be run for a mesh that is compatible with the stability criterion (which in the present
case is C' < 1, to be derived later).

3 . . . . .
1 A product of quadratic or linear expressions in the various

independent variables, as shown above, will often fulfill both the PDE problem and the discrete
equations, and can therefore be very useful solutions for verifying implementations.
However, for 1D wave equations of the type uy = c*ug, we shall see that there is always
another much more powerful way of generating exact solutions (which consists in just setting
C =1 (!), as shown in Section Section 2.61).
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2.12. Solving the Wave Equation with Devito

In this section we demonstrate how to solve the wave equation using the Devito domain-specific
language (DSL). Devito allows us to write the PDE symbolically and generates optimized C code
automatically.

2.12.1. From Mathematics to Devito Code

Recall the 1D wave equation from Section 2.1:
Ou_ pou
otz Ox?’

with initial conditions u(z,0) = I(z) and du/0t|t=o = V (z), and boundary conditions u(0,t) =

u(L,t) = 0.

z e (0,L), te(0,T] (2.28)

In Devito, we express this PDE directly using symbolic derivatives. The key abstractions are:

e Grid: Defines the discrete domain

o TimeFunction: A field that varies in both space and time
« Eq: An equation relating symbolic expressions

e Operator: Compiles equations to optimized C code

2.12.2. The Devito Grid

A Devito Grid defines the discrete spatial domain:

from devito import Grid

L=1.0 # Domain length
Nx = 100 # Number of grid intervals

grid = Grid(shape=(Nx + 1,), extent=(L,))

The shape is the number of grid points (including boundaries), and extent is the physical size of
the domain.

2.12.3. TimeFunction for the Wave Field

The solution u(x,t) is represented by a TimeFunction:

from devito import TimeFunction

u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

The key parameters are:
e time_order=2: We need u"*!, u”, v ! for the wave equation

e space_order=2: Central difference with second-order accuracy
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2.12.4. Symbolic Derivatives

Devito provides symbolic access to derivatives through attribute notation:

Derivative Devito syntax Mathematical meaning
First time u.dt Ju/ot

Second time  u.dt2 0%/ Ot*

First space u.dx ou/0x

Second space u.dx2 0%u/0z*

2.12.5. Formulating the PDE

We express the wave equation as a residual that should be zero:
from devito import Eq, solve, Constant

c_sq = Constant(name='c_sq') # Wave speed squared

# PDE: u_tt - ¢c™2 * u_xx = 0
pde = u.dt2 - c_sq * u.dx2

The solve function isolates the unknown u™t!:

stencil = Eq(u.forward, solve(pde, u.forward))

Here u.forward represents u™ !, the solution at the next time level.

2.12.6. Boundary Conditions

For Dirichlet conditions u(0,t) = u(L,t) = 0, we add explicit equations:
t_dim = grid.stepping_dim # Time index dimension

bc_left = Eq(ult_dim + 1, 0], 0)

bc_right = Eq(ult_dim + 1, Nx], 0)

2.12.7. Creating and Running the Operator

The Operator compiles all equations into optimized code:
from devito import Operator

op = Operator([stencil, bc_left, bc_right])
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To execute a time step, we call:

op.apply(time_m=1, time_M=1, dt=dt, c_sqg=c**2)

2.12.8. Complete Solver Implementation

The module src.wave provides a complete solver that handles:

o Initial conditions with velocity (u¢(x,0) = V(x))
o CFL stability checking
e Optional history storage

from src.wave import solve_wave_1d
import numpy as np

# Define initial condition: plucked string
def I(x):
return np.sin(np.pi * x)

# Solve
result = solve_wave_1d(

L=l . O # Domain length

c=1.0, # Wave speed

Nx=100, # Grid points

T=1.0, # Final time

C=0.9, # Courant number

I=T, # Initial displacement
)

# Access results
u_final = result.u # Solution at final time
X = result.x # Spatial grid

2.12.9. The Courant Number and Stability
The Courant number C' = cAt/Ax determines stability. For the explicit wave equation solver, we
require C < 1.

When C =1 (the magic value), the numerical solution is exact for waves traveling in either direction.
This is because the domain of dependence of the numerical scheme exactly matches the physical
domain of dependence.
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2.12.10. Handling Initial Velocity

The first time step requires special treatment when V' (z) # 0. Using the Taylor expansion:

1
ut =u® + At-V(z) + §At202u?m

The solver implements this as:

u0 = I(x_coords)

v0 = V(x_coords)

u_xx_0 = np.zeros_like(u0)

u_xx_0[1:-1] = (u0[2:] - 2*%u0[1:-1] + u0[:-2]) / dx**2

ul = u0 + dt * vO + 0.5 * dt**2 * c*x*2 *x u_xx_0

2.12.11. Verification: Standing Wave Solution

The standing wave with I(z) = Asin(nz/L) and V = 0 has the exact solution:

u(z,t) = Asin <7TL$> cos (cht)

We can verify our implementation converges at the expected rate:

from src.wave import convergence_test_wave_1d

grid_sizes, errors, rate = convergence_test_wave_1d(
grid_sizes=[20, 40, 80, 160],

T=0.5,
C=0.9,

print (f"Observed convergence rate: {rate:.2f}") # Should be ~2.0

2.12.12. Visualization

For time-dependent problems, animation is essential. With the history saved, we can create
animations:

import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

result = solve_wave_1d(

L=1.0, c=1.0, Nx=100, T=2.0, C=0.9,
save_history=True,
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fig, ax = plt.subplots()

line, = ax.plot(result.x, result.u_history[0])
ax.set_ylim(-1.2, 1.2)

ax.set_xlabel('x')

ax.set_ylabel('u')

def update(frame):
line.set_ydata(result.u_history[frame])
ax.set_title(f't = {result.t_history[frame]:.3f}')
return line,

anim = FuncAnimation(fig, update, frames=len(result.t_history),
interval=50, blit=True)

2.12.13. Summary: Devito vs. NumPy

The key advantages of using Devito for wave equations:

1. Symbolic PDEs: Write the math, not the stencils

2. Automatic optimization: Cache-efficient loops generated automatically
3. Parallelization: OpenMP/MPI/GPU support without code changes

4. Dimension-agnostic: Same code pattern works for 1D, 2D, 3D

The explicit time-stepping loop remains visible to the user for educational purposes, but Devito
handles the spatial discretization and can generate highly optimized code for the inner loop.

2.13. Source Terms and Variable Coefficients

Real-world wave propagation often involves source terms and spatially varying wave speeds. This
section extends the Devito wave solver to handle these features.

2.13.1. Adding a Source Term
The wave equation with a source term is:
0%u 5 0%u

oz =5 T @) (2:29)

In seismic applications, f(x,t) often represents an impulsive source at a specific location.
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2.13.2. Source Wavelets

The src.wave module provides common source wavelets used in seismic modeling:

from src.wave import ricker_wavelet, gaussian_pulse
import numpy as np

t = np.linspace(0, 0.5, 501) # Time array

# Ricker wavelet with 25 Hz peak frequency
src_ricker = ricker_wavelet(t, £0=25.0)

# Gaussian pulse
src_gauss = gaussian_pulse(t, t0=0.1, sigma=0.02)

2.13.3. The Ricker Wavelet

The Ricker wavelet (Mexican hat wavelet) is the negative normalized second derivative of a
Gaussian:

r(t) = A (1= 202 f3(t — tg)?) e~ fi(t=to)”
where fy is the peak frequency and tg is the time shift.

import matplotlib.pyplot as plt
from src.wave import ricker_wavelet, get_source_spectrum

t = np.linspace(0, 0.3, 301)
dt = t[1] - t[o]

# Create wavelet
wavelet = ricker_wavelet(t, £0=25.0)

# Compute spectrum
freq, amp = get_source_spectrum(wavelet, dt)

fig, (axl, ax2) = plt.subplots(l, 2, figsize=(10, 4))
axl.plot(t, wavelet)

axl.set_xlabel('Time (s)')
axl.set_ylabel('Amplitude')

axl.set_title('Ricker Wavelet (f0 = 25 Hz)')

ax2.plot (freq[:100], amp[:100])

ax2.set_xlabel('Frequency (Hz)')

ax2.set_ylabel('Amplitude')

ax2.set_title('Frequency Spectrum')

ax2.axvline(25, color='r', linestyle='--', label='Peak freq')
ax2.legend ()
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2.13.4. Point Sources in Devito

For seismic modeling, sources are often located at specific points in space. Devito provides
SparseTimeFunction for this:

from devito import SparseTimeFunction

# Point source at x = 0.5

src = SparseTimeFunction(
name='src', grid=grid,
npoint=1, nt=Nt,
coordinates=np.array([[0.5]])

# Set source wavelet
src.datal:] = ricker_wavelet(t, £0=25.0).reshape(-1, 1)

# Inject into the wave equation
src_term = src.inject(field=u.forward, expr=src * dt**2)

2.13.5. Variable Wave Speed

In heterogeneous media, the wave speed varies in space:

9%u

72 = V- ((z)Vu)

In 1D, this simplifies to:

2

2
U = (C*Ug)x = C Uy + 2CCUy

For smoothly varying ¢(x), we can approximate this as:

Qutzscg(x)uwm

2.13.6. Implementing Variable Velocity in Devito
We use a Function (not TimeFunction) for the velocity field:
from devito import Function

# Velocity field
¢ = Function(name='c', grid=grid)

# Set velocity values (e.g., layer model)

x_coords = np.linspace(0, L, Nx + 1)
c.datal:] = np.where(x_coords < 0.5, 1.0, 2.0) # Two layers
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The PDE uses this spatially varying velocity:

pde = u.dt2 - c**2 x u.dx2
stencil = Eq(u.forward, solve(pde, u.forward))

2.13.7. CFL Condition with Variable Velocity

When velocity varies, the CFL condition must use the maximum velocity:

Az

Cmax

At <

c_max = np.max(c.data)
dt_stable = dx / c_max
2.13.8. Example: Wave Propagation in Layered Medium

Consider a domain with two layers of different wave speeds:

from devito import Grid, TimeFunction, Function, Eq, solve, Operator

# Setup
L=2.0
Nx = 200

grid = Grid(shape=(Nx + 1,), extent=(L,))

# Velocity: slow layer (c=1) then fast layer (c=2)
¢ = Function(name='c', grid=grid)

x_coords = np.linspace(0, L, Nx + 1)

c.datal:] = np.where(x_coords < 1.0, 1.0, 2.0)

# Wave field
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

# Initial condition: Gaussian pulse in slow region

sigma = 0.1

x0 = 0.3

u.datal0, :] = np.exp(-((x_coords - x0) / sigma)**2)
u.datal[l, :] = u.datal0, :]

# Wave equation with variable velocity
pde = u.dt2 - c**2 x u.dx2
stencil = Eq(u.forward, solve(pde, u.forward))

# Boundary conditions
bc_left = Eq(ulgrid.stepping _dim + 1, 0], 0)
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bc_right = Eq(ulgrid.stepping_dim + 1, Nx], 0)

# Operator
op = Operator([stencil, bc_left, bc_right])

When the pulse reaches the interface at x = 1:

1. Part of the wave is reflected back into the slow medium
2. Part of the wave is transmitted into the fast medium
3. The transmitted wave travels faster and has a different wavelength

2.13.9. Reflection and Transmission Coefficients

At an interface between media with velocities ¢; and cg, the reflection coefficient is:

cy—cC
R 1
c2+
And the transmission coefficient is:
202
T p—
c2+

For our example with ¢ =1 and ¢y = 2:

e R=(2-1)/2+1)=1/3
« T=2.2/(2+1)=4/3

The transmitted wave has larger amplitude but carries the same energy (accounting for the velocity

change).

2.13.10. Absorbing Boundary Conditions

For open-domain problems, we want waves to leave without reflecting from artificial boundaries. A
simple approach is a sponge layer that gradually damps the solution near boundaries:

from devito import Function

# Damping coefficient (zero in interior, increasing at boundaries)
damp = Function(name='damp', grid=grid)

pad = 20 # Width of sponge layer

damp_profile = np.zeros(Nx + 1)

damp_profile[:pad] = 0.1 * (1 - np.linspace(0, 1, pad))
damp_profile[-pad:] = 0.1 * np.linspace(0, 1, pad)
damp.datal[:] = damp_profile

# Modified PDE with damping term
pde_damped = u.dt2 + damp * u.dt - c**2 * u.dx2
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The damping term yu; removes energy from the wave as it enters the sponge layer.

2.13.11. Summary

Devito makes it straightforward to extend the basic wave solver to handle:

e Source terms: Point sources and wavelets for seismic modeling
e Variable velocity: Layered or smooth velocity variations
e Absorbing boundaries: Sponge layers to reduce reflections

The key is that Devito handles the discretization automatically once we express the PDE symbolically.
This allows us to focus on the physics rather than implementation details.

2.14. Implementation

This section presents the complete computational algorithm, its implementation in Python code,
animation of the solution, and verification of the implementation.

A real implementation of the basic computational algorithm from Sections Section 2.6 and Section 2.7
can be encapsulated in a function, taking all the input data for the problem as arguments. The
physical input data consists of ¢, I(x), V(x), f(z,t), L, and T. The numerical input is the mesh
parameters At and Ax.

Instead of specifying At and Az, we can specify one of them and the Courant number C instead,
since having explicit control of the Courant number is convenient when investigating the numerical
method. Many find it natural to prescribe the resolution of the spatial grid and set N,. The solver
function can then compute At = CL/(cN,). However, for comparing u(z,t) curves (as functions
of z) for various Courant numbers it is more convenient to keep At fixed for all C' and let Az
vary according to Ax = cAt/C. With At fixed, all frames correspond to the same time ¢, and this
simplifies animations that compare simulations with different mesh resolutions. Plotting functions
of = with different spatial resolution is trivial, so it is easier to let Az vary in the simulations than
At.

2.15. Callback function for user-specific actions

The solution at all spatial points at a new time level is stored in an array u of length N, + 1. We
need to decide what to do with this solution, e.g., visualize the curve, analyze the values, or write
the array to file for later use. The decision about what to do is left to the user in the form of a
user-supplied function

user_action(u, x, t, n)

where u is the solution at the spatial points x at time t[n]. The user_action function is called
from the solver at each time level n.
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If the user wants to plot the solution or store the solution at a time point, she needs to write such a
function and take appropriate actions inside it. We will show examples on many such user_action
functions.

Since the solver function makes calls back to the user’s code via such a function, this type of function
is called a callback function. When writing general software, like our solver function, which also
needs to carry out special problem- or solution-dependent actions (like visualization), it is a common
technique to leave those actions to user-supplied callback functions.

The callback function can be used to terminate the solution process if the user returns True. For
example,

def my_user_action_function(u, x, t, n):
return np.abs(u).max() > 10

is a callback function that will terminate the solver function (given below) of the amplitude of the
waves exceed 10, which is here considered as a numerical instability.

2.16. The solver function

A first attempt at a solver function is listed below.

import numpy as np

def solver(I, V, f, ¢, L, dt, C, T, user_action=None):
"""Solve u_tt=c 2%u_xx + f on (O0,L)x(O,T]."""
Nt = int(round(T / dt))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = dt * ¢ / float(C)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
C2 = Cxx2 # Help variable in the scheme
dx = x[1] - x[0]
dt = t[1] - t[0]

if f is None or £ == O:
f = lambda x, t: O
if V is None or V == O:

V = lambda x: O
u = np.zeros(Nx + 1) # Solution array at new time level
u_n = np.zeros(Nx + 1) # Solution at 1 time level back

u_nml = np.zeros(Nx + 1) # Solution at 2 time levels back

import time
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t0 = time.perf_counter() # Measure CPU time

for i in range(0, Nx + 1):
unli] = I(x[i])

if user_action is not None:
user_action(u n, x, t, 0)

n=20
for i in range(l, Nx):
uli] = (
u nli]
+dt * V(x[i])
+ 0.5 % C2 * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 11)
+ 0.5 * dt**x2 x f(x[i], t[mn])
)
ul0] =0
ulNx] =0

if user_action is not None:
user_action(u, x, t, 1)

unmil[:] = un

unl:] =u

for n in range(l, Nt):

for i in range(1l, Nx):
uli] = (

—u_nmil[i]
+ 2 % unli]
+ C2 * (un[i - 1] - 2 * unl[i] + unl[i + 1])
+ dt**2 * f(x[i], t[n])

ul0] =0
ul[Nx] = 0
if user_action is not None:
if user_action(u, x, t, n + 1):
break

unmi[:] = un

unl:] u

cpu_time = time.perf_counter() - tO
return u, x, t, cpu_time

A couple of remarks about the above code is perhaps necessary:
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e Although we give dt and compute dx via C and c, the resulting t and x meshes do not
necessarily correspond exactly to these values because of rounding errors. To explicitly ensure
that dx and dt correspond to the cell sizes in x and t, we recompute the values.

e According to the particular choice made in Section Section 2.15, a true value returned from
user_action should terminate the simulation. This is here implemented by a break statement
inside the for loop in the solver.

2.17. Verification: exact quadratic solution

We use the test problem derived in Section Section 2.8 for verification. Below is a unit test based on
this test problem and realized as a proper test function compatible with the unit test frameworks
nose or pytest.

def test_quadratic():
"""Check that u(x,t)=x(L-x) (1+t/2) is exactly reproduced."""

def u_exact(x, t):
return x * (L - x) * (1 + 0.5 * t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5 * u_exact(x, 0)

def f(x, t):
return 2 * (1 + 0.5 * t) * c**2

= 2.5
cl= 1.5
C=0.75
Nx = 6 # Very coarse mesh for this exact test
dt =C=* (L /Nx) /¢
T =18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
tol = 1e-13
assert diff < tol

solver(I, V, £, ¢, L, dt, C, T, user_action=assert_no_error)

When this function resides in the file wavelD_u0.py, one can run pytest to check that all test
functions with names test_* () in this file work:
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Terminal> py.test -s -v wavelD_u0.py

2.18. Verification: convergence rates

A more general method, but not so reliable as a verification method, is to compute the convergence
rates and see if they coincide with theoretical estimates. Here we expect a rate of 2 according to
the various results in Section Section 2.61. A general function for computing convergence rates can
be written like this:

1D wave equation with u=0 at the boundary.
Simplest possible implementation.

The key function is::
u, x, t, cpu = (I, V, £, ¢, L, dt, C, T, user_action)

which solves the wave equation u_tt = c**2xu_xx on (0,L) with u=0
on x=0,L, for t in (0,T]. Initial conditions: u=I(x), u t=V(x).

T is the stop time for the simulation.

dt is the desired time step.

C is the Courant number (=c*dt/dx), which specifies dx.
f(x,t) is a function for the source term (can be 0 or None).
I and V are functions of x.

user_action is a function of (u, x, t, n) where the calling

code can add visualization, error computations, etc.
nnn

import numpy as np

def solver(I, V, f, ¢, L, dt, C, T, user_action=None):
"""Solve u_tt=c 2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T / dt))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = dt * ¢ / float(C)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space

C2 = Cxx2 # Help variable in the scheme
dx = x[1] - x[0]
dt = t[1] - t[0]

if f is None or f ==
f = lambda x, t: O
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if V is None or V == 0:
V = lambda x: O

u = np.zeros(Nx + 1) # Solution array at new time level
u_n = np.zeros(Nx + 1) # Solution at 1 time level back
u_nml = np.zeros(Nx + 1) # Solution at 2 time levels back
import time

t0 = time.perf_counter() # Measure CPU time

for i in range(0, Nx + 1):
u_nf[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

n=20
for i in range(1, Nx):
uli] = (
u_nli]
+ dt * V(x[il)
+ 0.5 x C2 * (u_nf[i - 1] - 2 *x u_n[i] + u_nli + 11)
+ 0.5 * dt**2 * f(x[i], t[n])
)
ul0] =0
ul[Nx] =0

if user_action is not None:
user_action(u, x, t, 1)

unmi[:] = u_n
unl:] =u

for n in range(l, Nt):
for i in range(l, Nx):
uli] = (
-u_nml[i]
+ 2 x u nli]
+ C2 * (unfi - 1] - 2 * u_nl[i] + u_nfi + 11)
+ dt*x2 * f(x[i], t[n])

ul0] =0
ul[Nx] = 0
if user_action is not None:
if user_action(u, x, t, n + 1):
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cpu_time = time.perf_counter() - tO
return u, x, t, cpu_time

def test_quadratic():
"""Check that u(x,t)=x(L-x) (1+t/2) is exactly reproduced."""

def u_exact(x, t):
return x * (L - x) * (1 + 0.5 * t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5 * u_exact(x, 0)

def f(x, t):
return 2 * (1 + 0.5 * t) * c**2

= 2.5
c=1.5
C=0.75
Nx = 6 # Very coarse mesh for this exact test
dt =Cx* (L / Nx) / ¢
T =18

def assert no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e) .max()
tol = 1e-13
assert diff < tol

solver(I, V, f, ¢, L, dt, C, T, user_action=assert_no_error)

def test_constant():
"""Check that u(x,t)=Q=0 is exactly reproduced."""
u_const = 0 # Require O because of the boundary conditions
C=0.75
dt = C # Very coarse mesh
u, x, t, cpu = solver(I=lambda x: 0, V=0, f=0, c=1.5, L=2.5, dt=dt, C=C, T=18)
tol = le-14
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assert np.abs(u - u_const) .max() < tol

def viz(

T, # PDE parameters

umin,

umax, # Interval for u in plots

animate=True, # Simulation with animation?
solver_function=solver, # Function with numerical algorithm

"""Run solver and visualize u at each time level."""
import glob

import os

import time

import matplotlib.pyplot as plt

class PlotMatplotlib:
def __call__(self, u, x, t, n):

"""yser_action function for solver."""

==
plt.ion()
self.lines = plt.plot(x, u, "r-")
plt.xlabel("x"
plt.ylabel("u"
plt.axis([0, L, umin, umax])
plt.legend(["t=%f" % t[nl]l, loc="lower left")

else:
self.lines[0] .set_ydata(u)
plt.legend(["t=Vf" % t[nl], loc="lower left")
plt.draw()

time.sleep(2) if t[n] == 0 else time.sleep(0.2)

plt.savefig("tmp_%04d.png" % n) # for movie making

plot_u = PlotMatplotlib()

for filename in glob.glob("tmp_x*.png"):
os.remove (filename)

user_action = plot_u if animate else None
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u, x, t, cpu = solver_function(I, V, f, c, L, dt, C, T, user_action)

fps = 4 # frames per second
codec2ext = dict(
flv="£f1lv", 1ibx264="mp4", libvpx="webm", libtheora="ogg"
) # video formats
filespec = "tmp_%04d.png"
movie_program = "ffmpeg"
for codec in codec2ext:

ext = codec2ext[codec]

cmd = (
"%(movie_program)s -r %(fps)d -i %(filespec)s "
"-vcodec %(codec)s movie.%(ext)s" % vars()

)

os.system(cmd)

return cpu

def guitar(C):
"""Triangular wave (pulled guitar string)."""

L =0.75

x0 = 0.8 *x L
a = 0.005
freq = 440

wavelength = 2 * L

c = freq * wavelength

omega = 2 * np.pi * freq
num_periods = 1

T =2 * np.pi / omega * num_periods
dt =L/ 50.0/c

def I(x):
return a * x / x0 if x < x0 else a / (L - x0) * (L - x)

umin = -1.2 * a
umax = -umin
cpu = viz(I, 0, 0, ¢, L, dt, C, T, umin, umax, animate=True)

def convergence_rates(
u_exact, # Python function for exact solution
I,

3

, # physical parameters

o Hh<
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dto,
num_meshes,
C,
T,
): # numerical parameters
nnn
Half the time step and estimate convergence rates for
for num_meshes simulations.
nnn
global error
error = 0 # error computed in the user action function

def compute_error(u, x, t, n):
global error # must be global to be altered here
if n ==
error
else:
error = max(error, np.abs(u - u_exact(x, t[n])).max())

0

E=1[]
h = [1 # dt, solver adjusts dx such that C=dt*c/dx
dt = dtO

for i in range(num_meshes) :
solver(I, V, f, ¢, L, dt, C, T, user_action=compute_error)
E.append (error)
h.append(dt)
dt /= 2 # halve the time step for next simulation
print("E:", E)
print("h:", h)
r = [np.log(E[i] / E[i - 1]1) / np.log(hl[i]l / h[i - 1]) for i in range(l, num_meshes)]
return r

Using the analytical solution from Section Section 2.9, we can call convergence_rates to see if
we get a convergence rate that approaches 2 and use the final estimate of the rate in an assert
statement such that this function becomes a proper test function:

def test _convrate_sincos():
n=m-=2
L=1.0
u_exact = lambda x, t: np.cos(m * np.pi / L * t) * np.sin(m * np.pi / L * x)

r = convergence_rates(
u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: O,
£=0,
c=1,
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L=L,

dt0=0.1,

num_meshes=6,

C=0.9,

T=1,
)
print("rates sin(x)*cos(t) solution:", [round(r_, 2) for r_ in r])
assert abs(r[-1] - 2) < 0.002

Doing py.test -s -v wavelD_u0.py will run also this test function and show the rates 2.05, 1.98,
2.00, 2.00, and 2.00 (to two decimals).

2.19. Visualization: animating the solution

Now that we have verified the implementation it is time to do a real computation where we also
display evolution of the waves on the screen. Since the solver function knows nothing about what
type of visualizations we may want, it calls the callback function user_action(u, x, t, n). We
must therefore write this function and find the proper statements for plotting the solution.

2.19.1. Function for administering the simulation

The following viz function

1. defines a user_action callback function for plotting the solution at each time level,
2. calls the solver function, and
3. combines all the plots (in files) to video in different formats.

def viz(

T, # PDE parameters

umin,

umax, # Interval for u in plots

animate=True, # Simulation with animation?
solver_function=solver, # Function with numerical algorithm

"""Run solver and visualize u at each time level."""
import glob

import os

import time
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import matplotlib.pyplot as plt

class PlotMatplotlib:
def call_ (self, u, x, t, n):
"""yser_action function for solver."""
g | ==
plt.ion()
self.lines = plt.plot(x, u, "r-")
plt.xlabel("x"
plt.ylabel("u"
plt.axis([0, L, umin, umax])
plt.legend(["t=0f" % t[nl]l, loc="lower left")
else:
self.lines[0].set_ydata(u)
plt.legend(["t=Y%f" % t[nl], loc="lower left")
plt.draw()
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n) # for movie making

plot_u = PlotMatplotlib()

for filename in glob.glob("tmp_x*.png"):
os.remove (filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver_function(I, V, f, c, L, dt, C, T, user_action)

fps = 4 # frames per second
codec2ext = dict(
flv="flv", 1ibx264="mp4", libvpx="webm", libtheora="ogg"
) # video formats
filespec = "tmp_%04d.png"
movie_program = "ffmpeg"
for codec in codec2ext:

ext = codec2ext[codec]

cmd = (
"% (movie_program)s -r %(fps)d -i %(filespec)s "
"-vcodec %(codec)s movie.%(ext)s" % vars()

)

os.system(cmd)

return cpu
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2.19.2. Dissection of the code

The viz function uses Matplotlib for visualizing the solution. The user_action function is realized
as a class and needs statements that differ from those for making static plots.

With Matplotlib, one has to make the first plot the standard way, and then update the y data in
the plot at every time level. The update requires active use of the returned value from plt.plot in
the first plot. This value would need to be stored in a local variable if we were to use a closure for
the user_action function when doing the animation with Matplotlib. It is much easier to store the
variable as a class attribute self.lines. Since the class is essentially a function, we implement
the function as the special method __call__ such that the instance plot_u(u, x, t, n) can be
called as a standard callback function from solver.

To achieve a smooth animation, we want to save each frame in the animation to file. We then need
a filename where the frame number is padded with zeros, here tmp_0000.png, tmp_0001.png, and
so on. The proper printf construction is then tmp_%04d.png.

2.19.3. Making movie files

From the frame_x*.png files containing the frames in the animation we can make video files using
the ffmpeg (or avconv) program to produce videos in modern formats: Flash, MP4, Webm, and

Ogg.

The viz function creates an ffmpeg or avconv command with the proper arguments for each of
the formats Flash, MP4, WebM, and Ogg. The task is greatly simplified by having a codec2ext
dictionary for mapping video codec names to filename extensions. In practice, only two formats are
needed to ensure that all browsers can successfully play the video: MP4 and WebM.

Some animations having a large number of plot files may not be properly combined into a video
using ffmpeg or avconv. One alternative is to play the PNG files directly in an image viewer or
create an animated GIF using ImageMagick’s convert command:

Terminal> convert -delay 25 tmp_*.png animation.gif

The -delay option specifies the delay between frames in hundredths of a second.

2.19.4. Skipping frames for animation speed

Sometimes the time step is small and T is large, leading to an inconveniently large number of plot
files and a slow animation on the screen. The solution to such a problem is to decide on a total
number of frames in the animation, num_frames, and plot the solution only for every skip_frame
frames. For example, setting skip_frame=5 leads to plots of every 5 frames. The default value
skip_frame=1 plots every frame. The total number of time levels (i.e., maximum possible number of
frames) is the length of t, t.size (or len(t)), so if we want num_frames frames in the animation,
we need to plot every t.size/num_frames frames:
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skip_frame = int(t.size/float(num_frames))

if n 7 skip_frame == 0 or n == t.size-1:

st.plot(x, u, 'r-', ...)
The initial condition (n=0) is included by n % skip_frame == 0, as well as every skip_frame-th
frame. Asn % skip_frame == 0 will very seldom be true for the very final frame, we must also
check if n == t.size-1 to get the final frame included.

A simple choice of numbers may illustrate the formulas: say we have 801 frames in total (t.size)
and we allow only 60 frames to be plotted. As n then runs from 801 to 0, we need to plot every
801/60 frame, which with integer division yields 13 as skip_frame. Using the mod function, n %
skip_frame, this operation is zero every time n can be divided by 13 without a remainder. That is,
the if test is true when n equals 0, 13, 26, 39, ..., 780,801. The associated code is included in the
plot_u function, inside the viz function, in the file wave1D_u0.py.

2.20. Running a case

The first demo of our 1D wave equation solver concerns vibrations of a string that is initially
deformed to a triangular shape, like when picking a guitar string:

ax/xo, x < o,
I(x) = 2.
(z) { a(L —z)/(L — xp), otherwise (2.30)
We choose L = 75 cm, g = 0.8L, a = 5 mm, and a time frequency v = 440 Hz. The relation
between the wave speed ¢ and v is ¢ = v\, where \ is the wavelength, taken as 2L because the
longest wave on the string forms half a wavelength. There is no external force, so f = 0 (meaning
we can neglect gravity), and the string is at rest initially, implying V' = 0.

Regarding numerical parameters, we need to specify a At. Sometimes it is more natural to think of
a spatial resolution instead of a time step. A natural semi-coarse spatial resolution in the present
problem is N, = 50. We can then choose the associated At (as required by the viz and solver
functions) as the stability limit: At = L/(N,c). This is the At to be specified, but notice that if
C < 1, the actual Az computed in solver gets larger than L/N,: Az = cAt/C = L/(N,C). (The
reason is that we fix At and adjust Az, so if C' gets smaller, the code implements this effect in
terms of a larger Ax.)

A function for setting the physical and numerical parameters and calling viz in this application
goes as follows:

def guitar(C):

"""Triangular wave (pulled guitar string)."""

L =0.75

x0 = 0.8 *x L
a = 0.005
freq = 440

wavelength = 2 * L
c = freq * wavelength
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omega = 2 * np.pi * freq
num_periods = 1

T = 2 * np.pi / omega * num_periods
dt =L/ 50.0/c

def I(x):
return a * x / x0 if x < x0 else a / (L - x0) * (L - x)

umin = -1.2 * a
umax = -umin
cpu = viz(I, 0, 0, ¢, L, dt, C, T, umin, umax, animate=True)

The associated program has the name wavelD_u0.py. Run the program and watch the movie of
the vibrating string. The string should ideally consist of straight segments, but these are somewhat
wavy due to numerical approximation. Run the case with the wave1lD_u0.py code and C' =1 to see
the exact solution.

2.21. Working with a scaled PDE model

Depending on the model, it may be a substantial job to establish consistent and relevant physical
parameter values for a case. The guitar string example illustrates the point. However, by scaling the
mathematical problem we can often reduce the need to estimate physical parameters dramatically.
The scaling technique consists of introducing new independent and dependent variables, with the
aim that the absolute values of these lie in [0, 1]. We introduce the dimensionless variables (details
are found in Section 3.1.1 in (Langtangen and Pedersen 2016))

_r - c _u

:c:z, t:Zt, uza.
Here, L is a typical length scale, e.g., the length of the domain, and a is a typical size of u, e.g.,
determined from the initial condition: a = max, |I(z)|.

We get by the chain rule that

Ou O  _ . dt acdu
_ (au) _

ot ot dt Lot
Similarly,
Oou adu
dr Loz’

Inserting the dimensionless variables in the PDE gives, in case f =0,

a’c® 9%u B a’c® 0%u
L? 9t L2 9z%°
Dropping the bars, we arrive at the scaled PDE
Pu  0%u
ﬁzw, mE(O,l), te(O,CT/L),
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which has no parameter ¢ anymore. The initial conditions are scaled as

au(z,0) = I(Lx)

and 9
a Ou,_ _
Li/cﬁ(x’o) =V(Lz),
resulting in
s ea,_ L
uz,0) = max, |[(z)]” Ot (,0) = acV(Lx)'

In the common case V = 0 we see that there are no physical parameters to be estimated in the
PDE model!

If we have a program implemented for the physical wave equation with dimensions, we can obtain
the dimensionless, scaled version by setting ¢ = 1. The initial condition of a guitar string, given in
(2.30), gets its scaled form by choosing a =1, L = 1, and z¢ € [0, 1]. This means that we only need
to decide on the zy value as a fraction of unity, because the scaled problem corresponds to setting
all other parameters to unity. In the code we can just set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c!

The only non-trivial parameter to estimate in the scaled problem is the final end time of the
simulation, or more precisely, how it relates to periods in periodic solutions in time, since we often
want to express the end time as a certain number of periods. The period in the dimensionless
problem is 2, so the end time can be set to the desired number of periods times 2.

Why the dimensionless period is 2 can be explained by the following reasoning. Suppose that u
behaves as cos(wt) in time in the original problem with dimensions. The corresponding period
is then P = 27/w, but we need to estimate w. A typical solution of the wave equation is
u(x,t) = Acos(kz) cos(wt), where A is an amplitude and k is related to the wave length A in space:
A =27 /k. Both A and A will be given by the initial condition I(x). Inserting this u(z,t) in the PDE
yields —w? = —c?k?, i.e., w = kc. The period is therefore P = 27 /(kc). If the boundary conditions
are u(0,t) = u(L,t), we need to have kL = nr for integer n. The period becomes P = 2L/nc. The
longest period is P = 2L/c. The dimensionless period P is obtained by dividing P by the time scale
L/c, which results in P = 2. Shorter waves in the initial condition will have a dimensionless shorter
period P =2/n (n > 1).

2.22. Vectorized computations

The computational algorithm for solving the wave equation visits one mesh point at a time and
evaluates a formula for the new value u?“ at that point. Technically, this is implemented by a loop
over array elements in a program. Such loops may run slowly in Python (and similar interpreted
languages such as R and MATLAB). One technique for speeding up loops is to perform operations
on entire arrays instead of working with one element at a time. This is referred to as vectorization,
vector computing, or array computing. Operations on whole arrays are possible if the computations
involving each element is independent of each other and therefore can, at least in principle, be
performed simultaneously. That is, vectorization not only speeds up the code on serial computers,
but also makes it easy to exploit parallel computing. Actually, there are Python tools like Numba

that can automatically turn vectorized code into parallel code.
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2.23. Operations on slices of arrays

Efficient computing with numpy arrays demands that we avoid loops and compute with entire arrays
at once (or at least large portions of them). Consider this calculation of differences d; = w; 1 — u;:

n = u.size
for i in range(0, n-1):
d[il = uli+1] - u[il

All the differences here are independent of each other. The computation of d can therefore
alternatively be done by subtracting the array (ug,u1,...,u,—1) from the array where the elements
are shifted one index upwards: (u1,us,...,u,), see Figure Figure 2.3. The former subset of the
array can be expressed by u[0:n-1], u[0:-1], or just u[:-1], meaning from index 0 up to, but
not including, the last element (-1). The latter subset is obtained by u[1:n] or u[1:], meaning
from index 1 and the rest of the array. The computation of d can now be done without an explicit
Python loop:

d = ul1:] - ul:-1]

or with explicit limits if desired:

d = ull:n] - ul0:n-1]

Indices with a colon, going from an index to (but not including) another index are called slices. With
numpy arrays, the computations are still done by loops, but in efficient, compiled, highly optimized
C or Fortran code. Such loops are sometimes referred to as vectorized loops. Such loops can also
easily be distributed among many processors on parallel computers. We say that the scalar code
above, working on an element (a scalar) at a time, has been replaced by an equivalent vectorized
code. The process of vectorizing code is called vectorization.

0 1 2 3 4
ey L

Saae e
S
S
e
e s
B S
=

0 | 2 3 4

Figure 2.3.: Illustration of subtracting two slices of two arrays.
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@ Test your understanding

Newcomers to vectorization are encouraged to choose a small array u, say with five elements,
and simulate with pen and paper both the loop version and the vectorized version above.

Finite difference schemes basically contain differences between array elements with shifted indices.
As an example, consider the updating formula

for i in range(l, n-1):
u2[i] = uli-1] - 2*uli] + ul[i+1]

The vectorization consists of replacing the loop by arithmetics on slices of arrays of length n-2:

u2
u2

ul:-2] - 2*ul1:-1] + u[2:]
ul0:n-2] - 2*u[1:n-1] + ul2:n] # alternative

Note that the length of u2 becomes n-2. If u2 is already an array of length n and we want to use
the formula to update all the “inner” elements of u2, as we will when solving a 1D wave equation,
we can write

u2[1:-1]
u2[1:n-1]

ul:-2] - 2*ufl1:-1] + ul2:]
ul0:n-2] - 2*ull1:n-1] + ul[2:n] # alternative

The first expression’s right-hand side is realized by the following steps, involving temporary arrays
with intermediate results, since each array operation can only involve one or two arrays. The numpy
package performs (behind the scenes) the first line above in four steps:

templ = 2xu[1:-1]
temp2 = ul[:-2] - templ
temp3 = temp2 + ul[2:]

u2[1:-1] = temp3

We need three temporary arrays, but a user does not need to worry about such temporary arrays.

(3 . . .
1 Common mistakes with array slices

Array expressions with slices demand that the slices have the same shape. It easy to make a
mistake in, e.g.,

u2[1:n-1] = ul[0:n-2] - 2*ull:n-1] + ul[2:n]
and write
u2[1:n-1] = ul[0:n-2] - 2*ull:n-1] + ul1l:n]

Now u[1:n] has wrong length (n-1) compared to the other array slices, causing a ValueError
and the message could not broadcast input array from shape 103 into shape 104 (if
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n is 105). When such errors occur one must closely examine all the slices. Usually, it is easier
to get upper limits of slices right when they use -1 or -2 or empty limit rather than expressions
involving the length.

Another common mistake, when u2 has length n, is to forget the slice in the array on the
left-hand side,

u2 = ul0:n-2] - 2*%ull1:n-1] + ull:n]

This is really crucial: now u2 becomes a new array of length n-2, which is the wrong length as
we have no entries for the boundary values. We meant to insert the right-hand side array into
the original u2 array for the entries that correspond to the internal points in the mesh (1:n-1
or 1:-1).

Vectorization may also work nicely with functions. To illustrate, we may extend the previous
example as follows:

def f(x):
return x**2 + 1

for i in range(l, n-1):
u2[i]l = uli-11 - 2*uli] + uli+1] + £f(x[il)

Assuming u2, u, and x all have length n, the vectorized version becomes

u2[1:-1] = ul:-2] - 2%uf[1:-1] + u[2:] + £(x[1:-1])

Obviously, £ must be able to take an array as argument for £ (x[1:-1]) to make sense.

2.24. Finite difference schemes expressed as slices

We now have the necessary tools to vectorize the wave equation algorithm as described mathematically
in Section Section 2.6 and through code in Section Section 2.16. There are three loops: one for the
initial condition, one for the first time step, and finally the loop that is repeated for all subsequent
time levels. Since only the latter is repeated a potentially large number of times, we limit our
vectorization efforts to this loop. Within the time loop, the space loop reads:

for i in range(l, Nx):

uli] = 2*%u n[i] - u nmi1[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

The vectorized version becomes

ul1:-1] = - u_nmi[1:-1] + 2*%u n[1:-1] + \
C2x(u_n[:-2] - 2¥u n[1:-1] + u_n[2:])
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or

ul1:Nx] = 2*%u_n[1:Nx]- u_nmi[1:Nx] + \
C2+(u_n[0:Nx-1] - 2*%u_n[1:Nx] + u_n[2:Nx+1])

The program wavelD_uOv.py contains a new version of the function solver where both the scalar
and the vectorized loops are included (the argument version is set to scalar or vectorized,
respectively).

2.25. Verification

We may reuse the quadratic solution ue(z,t) = z(L — 2)(1 + $t) for verifying also the vectorized
code. A test function can now verify both the scalar and the vectorized version. Moreover, we may
use a user_action function that compares the computed and exact solution at each time level and
performs a test:

def test_quadratic():

Check the scalar and vectorized versions for

a quadratic u(x,t)=x(L-x) (1+t/2) that is exactly reproduced.
u_exact = lambda x, t: x * (L - x) * (1 + 0.5 * t)

I = lambda x: u_exact(x, 0)

V = lambda x: 0.5 * u_exact(x, 0)

f = lambda x, t: np.zeros_like(x) + 2 * c**2 * (1 + 0.5 * t)
= 2.5

8 = 1.8

C=0.75

Nx = 3 # Very coarse mesh for this exact test
dt =Cx* (L /Nx) / c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1e-13
diff = np.abs(u - u_e) .max()
assert diff < tol

solver(I, V, f, ¢, L, dt, C, T, user_action=assert_no_error, version="scalar")
solver(I, V, f, ¢, L, dt, C, T, user_action=assert_no_error, version="vectorized")
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1 Lambda functions

The code segment above demonstrates how to achieve very compact code, without degraded
readability, by use of lambda functions for the various input parameters that require a Python
function. In essence,

f = lambda x, t: L*x(x-t)**2

is equivalent to

def f(x, t):
return L(x-t)**2

Note that lambda functions can just contain a single expression and no statements.
One advantage with lambda functions is that they can be used directly in calls:

solver(I=lambda x: sin(pi*x/L), V=0, £=0, ...)

2.26. Efficiency measurements

The wavelD_uOv.py contains our new solver function with both scalar and vectorized code. For
comparing the efficiency of scalar versus vectorized code, we need a viz function as discussed in
Section Section 2.19. All of this viz function can be reused, except the call to solver_function.
This call lacks the parameter version, which we want to set to vectorized and scalar for our
efficiency measurements.

One solution is to copy the viz code from wavelD_uO into wavelD_uOv.py and add a version
argument to the solver_function call. Taking into account how much animation code we then du-
plicate, this is not a good idea. Alternatively, introducing the version argument in wave1D_u0.viz,
so that this function can be imported into wavelD_uOv.py, is not a good solution either, since
version has no meaning in that file. We need better ideas!

2.26.1. Solution 1

Calling viz in wavelD_uO with solver_function as our new solver in wavelD_uOv works fine,
since this solver has version="'vectorized' as default value. The problem arises when we want
to test version='scalar'. The simplest solution is then to use wavelD_u0.solver instead. We
make a new viz function in wavelD_uOv.py that has a version argument and that just calls
wavelD_u0.viz:

def viz(
I,

v,
f,
C

3
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L,

dt,

C,

T, # PDE parameters

umin,

umax, # Interval for u in plots

animate=True, # Simulation with animation?
solver_function=solver, # Function with numerical algorithm
version="vectorized", # 'scalar' or 'vectorized'

import wavelD_uO

if version == "vectorized":
cpu = wavelD_u0.viz(
I, Vv, £f, ¢, L, dt, C, T, umin, umax, animate, solver_function=solver
)
elif version == '"scalar":
cpu = wavelD_u0.viz(

umin,

umax,

animate,
solver_function=wavelD_uO.solver,

)

return cpu

def test_quadratic(Q):

Check the scalar and vectorized versions for

a quadratic u(x,t)=x(L-x) (1+t/2) that is exactly reproduced.
u_exact = lambda x, t: x * (L - x) * (1 + 0.5 * t)

I = lambda x: u_exact(x, 0)

V = lambda x: 0.5 * u_exact(x, 0)

f = lambda x, t: np.zeros_like(x) + 2 * c**2 * (1 + 0.5 * t)
= 2.5

8 = 1.8

C=0.75

Nx = 3 # Very coarse mesh for this exact test
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dt =Cx* (L /Nx) / c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol le-13
diff = np.abs(u - u_e) .max()
assert diff < tol

solver(I, V, f, ¢, L, dt, C, T, user_action=assert_no_error, version="scalar")
solver(I, V, f, ¢, L, dt, C, T, user_action=assert_no_error, version="vectorized")

def guitar(C):
"""Triangular wave (pulled guitar string)."""

L =0.75

x0 = 0.8 *x L
a = 0.005
freq = 440

wavelength = 2 * L

¢ = freq * wavelength

omega = 2 * pi * freq
num_periods = 1

T = 2 * pi / omega * num_periods
dt =L/ 50.0/c

def I(x):
return a * x / x0 if x < x0 else a / (L - x0) * (L - x)

umin = -1.2 * a
umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True)

def run_efficiency_experiments():
L=1
x0 = 0.8 *x L

Qa0 e
I
S 00N =

def I(x):
return a * x / x0 if x < x0 else a / (L - x0) * (L - x)

(]

intervals =
speedup = []
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for Nx in [50, 100, 200, 400, 800]:
dx = float(L) / Nx
dt = C / c * dx
print("solving scalar Nx=%d" % Nx, end=" ")
cpu_s = viz(I, 0, 0, ¢, L, dt, C, T, umin, umax, animate=False, version="scalar")

print (cpu_s)
print("solving vectorized Nx=Jd" % Nx, end=" ")
cpu_v = viz(
I, 0, O, ¢, L, dt, C, T, umin, umax, animate=False, version='"vectorized"
)
print (cpu_v)
intervals.append (Nx)
speedup.append(cpu_s / float(cpu_v))
print ("Nx=Y3d: cpu_v/cpu_s: %.3f" % (Nx, 1.0 / speedup[-1]))
print ("Nx:", intervals)
print ("Speed-up:", speedup)
if __name__ == "_main__":
test_quadratic() # verify
import sys

try:
C = float(sys.argv[1])
print ("C=Yg" % C)

except IndexError:
C=0.85

guitar(C)

2.26.2. Solution 2

There is a more advanced and fancier solution featuring a very useful trick: we can make a new func-
tion that will always call wavelD_uOv.solver with version='scalar'. The functools.partial
function from standard Python takes a function func as argument and a series of positional and
keyword arguments and returns a new function that will call func with the supplied arguments,
while the user can control all the other arguments in func. Consider a trivial example,

def f(a, b, c=2):
return a + b + ¢

We want to ensure that f is always called with c=3, i.e., £ has only two “free” arguments a and b.
This functionality is obtained by

import functools
f2 = functools.partial(f, c=3)

print f2(1, 2) # results in 1+2+3=6
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Now £2 calls £ with whatever the user supplies as a and b, but c is always 3.

Back to our viz code, we can do

import functools
scalar_solver = functools.partial(wavelD_u0.solver, version='scalar')
cpu = wavelD_u0.viz(

I, Vv, f, ¢, L, dt, C, T, umin, umax,

animate, tool, solver function=scalar_solver)

The new scalar_solver takes the same arguments as wavelD_u0O.scalar and calls
wavelD_uOv.scalar, but always supplies the extra argument version='scalar'. When
sending this solver_function to wavelD_u0.viz, the latter will call wavelD_uOv.solver with all
the I, V, £, etc., arguments we supply, plus version="'scalar'.

2.26.3. Efficiency experiments

We now have a viz function that can call our solver function both in scalar and vectorized mode.
The function run_efficiency_experiments in wavelD_uOv.py performs a set of experiments and
reports the CPU time spent in the scalar and vectorized solver for the previous string vibration
example with spatial mesh resolutions N, = 50, 100, 200,400, 800. Running this function reveals
that the vectorized code runs substantially faster: the vectorized code runs approximately N, /10
times as fast as the scalar code!

2.27. Remark on the updating of arrays

At the end of each time step we need to update the u_nm1 and u_n arrays such that they have the
right content for the next time step:

unmi[:] = un

u nl:] u

The order here is important: updating u_n first, makes u_nm1 equal to u, which is wrong!

The assignment u_n[:] = u copies the content of the u array into the elements of the u_n array.
Such copying takes time, but that time is negligible compared to the time needed for computing u
from the finite difference formula, even when the formula has a vectorized implementation. However,
efficiency of program code is a key topic when solving PDEs numerically (particularly when there are
two or three space dimensions), so it must be mentioned that there exists a much more efficient way
of making the arrays u_nml and u_n ready for the next time step. The idea is based on switching
references and explained as follows.

A Python variable is actually a reference to some object (C programmers may think of pointers).
Instead of copying data, we can let u_nm1 refer to the u_n object and u_n refer to the u object. This
is a very efficient operation (like switching pointers in C). A naive implementation like
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u_nml = u_n

un=u

will fail, however, because now u_nm1 refers to the u_n object, but then the name u_n refers to u,
so that this u object has two references, u_n and u, while our third array, originally referred to by
u_nmi, has no more references and is lost. This means that the variables u, u_n, and u_nm1 refer to
two arrays and not three. Consequently, the computations at the next time level will be messed up,
since updating the elements in u will imply updating the elements in u_n too, thereby destroying
the solution at the previous time step.

While u_nm1 = u_n is fine, u_n = u is problematic, so the solution to this problem is to ensure that
u points to the u_nm1 array. This is mathematically wrong, but new correct values will be filled
into u at the next time step and make it right.

The correct switch of references is

tmp = u_nml
u_nml = u_n
un =u
u = tmp

We can get rid of the temporary reference tmp by writing

unml, un, u=un, u, u_nml

This switching of references for updating our arrays will be used in later implementations.

Caution:

The update u_nml, u_n, u = u_n, u, u_nml leaves wrong content in u at the final time
step. This means that if we return u, as we do in the example codes here, we actually return
u_nml, which is obviously wrong. It is therefore important to adjust the content of u tou =
u_n before returning u. (Note that the user_action function reduces the need to return the
solution from the solver.)

2.28. Making Movies

We could also add making a hardcopy of the plot for later production of a movie file. The hardcopies
must be numbered consecutively, say tmp_0000.png, tmp_0001.png, tmp_0002.png, and so forth.
The filename construction can be based on the n counter supplied to the user action function:

filename = 'tmp_%04d.png' % n

The 04d format implies formatting of an integer in a field of width 4 characters and padded with
zeros from the left. An animated GIF file movie.gif can be made from these individual frames by
using the convert program from the ImageMagick suite:
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Unix> convert -delay 50 tmp_*.png movie.gif
Unix> animate movie.gif

The delay is measured in units of 1/100 s. The animate program, also in the ImageMagick suite,
can play the movie file. Alternatively, the display program can be used to walk through each
frame, i.e., solution curve, by pressing the space bar.

2.29. Exercise: Simulate a standing wave

The purpose of this exercise is to simulate standing waves on [0, L] and illustrate the error in the
simulation. Standing waves arise from an initial condition

u(x,0) = Asin (;/mm) )

where m is an integer and A is a freely chosen amplitude. The corresponding exact solution can be

computed and reads
= e ()
ue(x,t) = Asin Lma: cos me .
a)

Explain that for a function sin kx coswt the wave length in space is A = 27 /k and the period in
time is P = 27/w. Use these expressions to find the wave length in space and period in time of ue
above.

@ Solution

Since the sin and cos functions depend on z and t, respectively, the sin function will run

through one period as x increases by 2?”, while the cos function starts repeating as t increases
2

by <.

The wave length in space becomes

2 2L
)\ = Wi _ -
Zm m
The period in time becomes
p_ 2r 2L

b)

Import the solver function from wavelD_u0.py into a new file where the viz function is reimple-
mented such that it plots either the numerical and the exact solution, or the error.

@ Solution

See code below.

c)
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Make animations where you illustrate how the error e} = ue(zi,t,) — u} develops and increases in
time. Also make animations of v and wue simultaneously.

@ Quite long time simulations are needed in order to display significant

discrepancies between the numerical and exact solution.

@ A possible set of parameters is L =12, m =9, c=2, A=1, N, = 80,

C = 0.8. The error mesh function e” can be simulated for 10 periods, while 20-30 periods are
needed to show significant differences between the curves for the numerical and exact solution.

@ Solution

The code:
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import os
import sys

sys.path.insert (0, os.path.join(os.pardir, os.pardir, "src-wave", "wavelD"))

import numpy as np
from wavelD_uO import solver

def viz(
I, v, £f, ¢, L, dt, C, T,
ymax, # y axis: [-ymax, ymax]
u_exact, # u_exact(x, t)
animate="u and u_exact", # or 'error'
movie_filename="movie",

"""Run solver and visualize u at each time level."""
import glob
import os

import matplotlib.pyplot as plt
class Plot:

def __init__(self, ymax, frame_name="frame"):
self .max_error = [] # hold max amplitude errors

self .max_error_t = [] # time points corresp. to max_error

self.frame_name = frame_name
self.ymax = ymax

def _ call (self, u, x, t, n):

"""user_action function for solver."""

if animate == "u and u_exact":
plt.clf()
plt.plot(x, u, "r-", x, u_exact(x, t[n]), "b--")
plt.xlabel("x")
plt.ylabel("u"
plt.axis([0, L, -self.ymax, self.ymax])
plt.title(f"t={t[n]:f}")
plt.draw()
plt.pause(0.001)

else:
error = u_exact(x, t[n]) - u
local_max_error = np.abs(error) .max()

if self.max_error == [] or local_max_error > max(self.max_error):

self .max_error.append(local_max_error)
self .max_error_t.append(t[n])
self.ymax = max(self.ymax, max(self.max_error))
plt.clf()
plt.plot(x, error, "r-")
plt.xlabel("x")
plt.ylabel("error") 81
plt.axis([0, L, -self.ymax, self.ymax])
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1 Remarks

The important parameters for numerical quality are C' and kAz, where C' = cAt/Ax is the
Courant number and k is defined above (kAz is proportional to how many mesh points we
have per wave length in space, see Section Section 2.64 for explanation).

2.30. Exercise: Add storage of solution in a user action function

Extend the plot_u function in the file wavelD_u0.py to also store the solutions u in a list. To this
end, declare all_u as an empty list in the viz function, outside plot_u, and perform an append
operation inside the plot_u function. Note that a function, like plot_u, inside another function, like
viz, remembers all local variables in viz function, including all_u, even when plot_u is called (as
user_action) in the solver function. Test both all_u.append(u) and all_u.append(u.copy()).
Why does one of these constructions fail to store the solution correctly? Let the viz function return
the all_u list converted to a two-dimensional numpy array.

@ Solution

We have to explicitly use a copy of u, i.e. as all_u.append(u.copy()), otherwise we just get
a reference to u, which goes on changing with the computations.
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def viz(
I, v, £f, ¢, L, dt, C, T,
umin, umax,
animate=True,
solver_function=solver,

"""Run solver, store and visualize u at each time level."""
import glob

import os

import time

import matplotlib.pyplot as plt
all u = [] # store solutions

def plot_u(u, x, t, n):

user_action function for solver.
g m ==
plt.ion()
lines = plt.plot(x, u, "r-")
plt.xlabel("x")
plt.ylabel("u")
plt.axis([0, L, umin, umax])
plt.legend([f"t={t[n]:£}"], loc="lower left")
else:
lines[0] .set_ydata(u)
plt.legend([£f"t={t[n]:£}"], loc="lower left")
plt.draw()
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n)
all u.append(u.copy()) # must use copy!

# Clean up old movie frames
for filename in glob.glob("tmp_x*.png"):
os.remove (filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver_function(I, V, f, c, L, dt, C, T, user_action)
return cpu, np.array(all_u)

2.31. Exercise: Use a class for the user action function

Redo Exercise Section 2.30 using a class for the user action function. Let the all_u list be an
attribute in this class and implement the user action function as a method (the special method
__call__ is a natural choice). The class versions avoid that the user action function depends on
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parameters defined outside the function (such as all_u in Exercise Section 2.30).

@ Solution

Using a class, we get

class PlotMatplotlib:
def __init__(self):
self.all u = []

def call (self, u, x, t, n):
"""user_action function for solver."""
if n ==
plt.ion()
self.lines = plt.plot(x, u, "r-")
plt.xlabel ("x"
plt.ylabel("u"
plt.axis([0, L, umin, umax])
plt.legend([f"t={t[n]:£}"], loc="lower left")
else:
self.lines[0].set_ydata(u)
plt.legend([f"t={t[n]:£}"], loc="lower left")
plt.draw()
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n) # for movie making
self.all_u.append(u.copy())

def viz(I, V, f, ¢, L, dt, C, T, umin, umax,
animate=True, solver_function=solver):
"""Run solver, store and visualize u at each time level."""
import glob
import os

plot_u = PlotMatplotlib()

# Clean up old movie frames
for filename in glob.glob("tmp_*.png"):
os.remove (filename)

user_action = plot_u if animate else None
u, X, t, cpu = solver_function(I, V, f, c, L, dt, C, T, user_action)
return cpu, np.array(plot_u.all_u)
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2.32. Exercise: Compare several Courant numbers in one movie

The goal of this exercise is to make movies where several curves, corresponding to different Courant
numbers, are visualized. Write a program that resembles wave1D_u0_s2c.py in Exercise Section 2.31,
but with a viz function that can take a list of C values as argument and create a movie with
solutions corresponding to the given C values. The plot_u function must be changed to store the
solution in an array (see Exercise Section 2.30 or Section 2.31 for details), solver must be computed
for each value of the Courant number, and finally one must run through each time step and plot all
the spatial solution curves in one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in one plot correspond to the
same time point. The easiest remedy is to keep the time resolution constant and change the space
resolution to change the Courant number. Note that each spatial grid is needed for the final plotting,
so it is an option to store those grids too.

@ Solution

Modifying the code to store all solutions for each C value and also each corresponding spatial
grid (needed for final plotting), we get
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class PlotMatplotlib:
def __init__(self):
self.all u = []
self.all u_for_all C = []
self.x_mesh = [] # need each mesh for final plots

def __call_ _(self, u, x, t, n):
"""yser_action function for solver."""
self.all_u.append(u.copy())
if t[n] == T: # i.e., whole time interv. done for this C
self.x_mesh.append(x.copy())
self.all u_for_all_C.append(self.all_u)
self.all_u = [] # reset to empty list

if len(self.all u_for_all C) == len(C): # all C done
print ("Finished all C. Proceed with plots...")
plt.ion()
for n_ in range(0, n + 1): # for each tn
plt.clfO)
for j in range(len(C)):
plt.plot(self.x_mesh[j], self.all u_for_all C[j]l[n_1)
plt.axis([0, L, umin, umax])
plt.xlabel("x"
plt.ylabel("u")
plt.title(f"Solutions for all C at t={t[n_]:f}")
plt.draw()
time.sleep(2) if t[n_] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n_) # for movie

def viz(I, V, f, ¢, L, dt, C, T, umin, umax,
animate=True, solver_function=solver):
"""Run solver, store and viz. u at each time level with all C values."""
import glob
import os

plot_u = PlotMatplotlib()

# Clean up old movie frames
for filename in glob.glob("tmp_*.png"):
os.remove (filename)

user_action = plot_u if animate else None
for C_value in C:
print("C_value:", C_value)

u, x, t, cpu = solver_function(I, V, f, c, L, dt, C_value, T, user_actio

return cpu
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2.33. Exercise: Implementing the solver function as a generator

The callback function user_action(u, x, t, n) is called from the solver function (in, e.g.,
wavelD_u0.py) at every time level and lets the user work perform desired actions with the solution,
like plotting it on the screen. We have implemented the callback function in the typical way it
would have been done in C and Fortran. Specifically, the code looks like

if user_action is not None:
if user_action(u, x, t, n):
break

Many Python programmers, however, may claim that solver is an iterative process, and that
iterative processes with callbacks to the user code is more elegantly implemented as generators. The
rest of the text has little meaning unless you are familiar with Python generators and the yield
statement.

Instead of calling user_action, the solver function issues a yield statement, which is a kind of
return statement:

yield u, x, t, n

The program control is directed back to the calling code:

for u, x, t, n in solver(...):

When the block is done, solver continues with the statement after yield. Note that the functionality
of terminating the solution process if user_action returns a True value is not possible to implement
in the generator case.

Implement the solver function as a generator, and plot the solution at each time step.

@ Solution

2.34. Project: Calculus with 1D mesh functions

This project explores integration and differentiation of mesh functions, both with scalar and
vectorized implementations. We are given a mesh function f; on a spatial one-dimensional mesh
x; =iAx, 1 =0,..., N, over the interval [a, b].

a)

Define the discrete derivative of f; by using centered differences at internal mesh points and one-sided
differences at the end points. Implement a scalar version of the computation in a Python function
and write an associated unit test for the linear case f(z) = 4x — 2.5 where the discrete derivative
should be exact.
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@ Solution

See code below.

b)

Vectorize the implementation of the discrete derivative. Extend the unit test to check the validity
of the implementation.

@ Solution

See code below.

)

To compute the discrete integral F; of f;, we assume that the mesh function f; varies linearly
between the mesh points. Let f(z) be such a linear interpolant of f;. We then have

F, = /:Z f(z)dx.

The exact integral of a piecewise linear function f(x) is given by the Trapezoidal rule. Show that if
F; is already computed, we can find F;1q from

1
Fpn=F+ §<fi + fiy1)Az.

Make a function for the scalar implementation of the discrete integral as a mesh function. That is,
the function should return F; for i =0,..., N,. For a unit test one can use the fact that the above
defined discrete integral of a linear function (say f(z) = 4z — 2.5) is exact.

@ Solution

We know that the difference Fj; — F; must amount to the area of a trapezoid, which is exactly
what %( fi + fix1)Axz is. To show the relation above, we may start with the Trapezoidal rule:

Fip1 = Ax
i=1

1 n-l 1
o/ (o) + > flag) + S f@n)|

Since n = ¢ + 1, and since the final term in the sum may be separated out from the sum and
split in two, this may be written as

Fiy1 = Ax

i—1
S (0) + 3 () + 37 (wi) + 3 f(w) + ;fmm] .

Jj=1
This may further be written as

i—1

SF o)+ 3 fag) + 3 5 ()

J=1

Fi = Az + Az [;f(xz’) + %f(xﬂ—l)

Finally, this gives
1
Fi1=F; + i(fi + fiv1)Ax.

See code below for implementation.
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d)

Vectorize the implementation of the discrete integral. Extend the unit test to check the validity of
the implementation.

@ Interpret the recursive formula for F;1 as a sum.

Make an array with each element of the sum and use the “cumsum” (numpy . cumsum) operation
to compute the accumulative sum: numpy.cumsum([1,3,5]) is [1,4,9].

@ Solution

See code below.

o)

Create a class MeshCalculus that can integrate and differentiate mesh functions. The class can just
define some methods that call the previously implemented Python functions. Here is an example on
the usage:

import numpy as np
calc = MeshCalculus(vectorized=True)

x = np.linspace(0, 1, 11) # mesh

f = np.exp(x) # mesh function

df = calc.differentiate(f, x) # discrete derivative

F = calc.integrate(f, x) # discrete anti-derivative

@ Solution

See code below.

@ Solution

The final version of the code reads
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Calculus with a 1D mesh function.

import numpy as np

class MeshCalculus:

def __init__(self, vectorized=True):
self.vectorized = vectorized
def differentiate(self, f, x):
Computes the derivative of f by centered differences, but
forw and back difference at the start and end, respectively.
dx = x[1] - x[0]
Nx = len(x) - 1 # number of spatial steps
num_dfdx = np.zeros(Nx + 1)
# Compute approximate derivatives at end-points first
num_dfdx[0] = (£(x[1]) - £(x[0])) / dx # FD approx.
num_dfdx[Nx] = (f(x[Nx]) - f(x[Nx - 1])) / dx # BD approx.
# proceed with approximate derivatives for inner mesh points
if self.vectorized:
num_dfdx[1:-1] = (£(x[2:]1) - £(x[:-2])) / (2 * dx)
else: # scalar version
for i in range(1, Nx):
num_dfdx[i] = (f£(x[i + 1]1) - £(x[1 - 11)) / (2 * dx)
return num_dfdx
def integrate(self, f, x):
Computes the integral of f(x) over the interval
covered by x.
dx = x[1] - x[0]
F = np.zeros(len(x))
F[0] = 0 # starting value for iterative scheme
if self.vectorized:
all_trapezoids = np.zeros(len(x) - 1)
all_trapezoids[:] = 0.5 * (f(x[:-1]) + £(x[1:]1)) * dx
F[1:] = np.cumsum(all_trapezoids)
else: # scalar version
for i in range(0, len(x) - 1):
F[i + 1] = F[i] + 0.5 * (£(x[1]) + £(x[i + 1])) * dx
return F
def test differentiate(): 90
def f(x):

return 4 * x - 2.5
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2.35. Neumann boundary conditions

The boundary condition u = 0 in a wave equation reflects the wave, but u changes sign at the
boundary, while the condition u, = 0 reflects the wave as a mirror and preserves the sign.

Why is it so? Consider the boundary x = 0 and the condition v = 0. How will two values u(0, t)
and u(Awx,t change from time ¢ to ¢t + At? Since u(0,t) = 0, u(Ax,t) and u(Az,t + At) will be close
to zero too. Their average in time must also be close to zero, especially in the limit Az, At — 0:

1
i(u(Aa:, t)+u(Az,t+At)) =0 = u(Az,t+ At) = —u(Az,t).
This tells that u changes sign in time close to the boundary (otherwise the average would be larger
than the u values and this is not compatible with keeping neighboring value u(0, ) fixed at zero).

For a Neumann condition u; = 0 at x = 0 we consider the values u(0,t), u(Ax,t), u(0,t + At)
and u(Az,t + At). Now the boundary condition demands u(0,t) ~ u(Ax,t) and u(0,t + At) ~
u(Ax,t+ At) to always get a flat spatial derivative.

Our next task is to explain how to implement the boundary condition u, = 0, which is more
complicated to express numerically and also to implement than a given value of u. We shall present
two methods for implementing u, = 0 in a finite difference scheme, one based on deriving a modified
stencil at the boundary, and another one based on extending the mesh with ghost cells and ghost
points.

2.36. Neumann boundary condition

When a wave hits a boundary and is to be reflected back, one applies the condition

0
8—Zzn-Vu:(). (2.31)
The derivative @/dn is in the outward normal direction from a general boundary. For a 1D domain
[0, L], we have that
0

an

0

=L 4 8I

0

IEZL7 8?’1

__9
m:O_ al‘

=0

1 Boundary condition terminology

Boundary conditions that specify the value of du/dn (or shorter wu,) are known as Neumann
conditions, while Dirichlet conditions refer to specifications of u. When the values are zero
(Ou/On = 0 or u = 0) we speak about homogeneous Neumann or Dirichlet conditions.
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2.37. Discretization of derivatives at the boundary

How can we incorporate the condition (2.31) in the finite difference scheme? Since we have used
central differences in all the other approximations to derivatives in the scheme, it is tempting to
implement (2.31) at x = 0 and ¢t = ¢,, by the difference
u’ll - 'UJ711
2Ax

The problem is that u” is not a u value that is being computed since the point is outside the mesh.
However, if we combine (2.32) with the scheme

[Do,ull = =0. (2.32)

ul = T 2ul + CF (u kw1 — 2u™ kil ), (2.33)

)

for i = 0, we can eliminate the fictitious value u™;. We see that v = u}' from (2.32), which can be

used in (2.33) to arrive at a modified scheme for the boundary point uf™**:

uptl = P 2ul 4202 (W ki 1 — U ki), 0= 0.

(2

Figure Figure 2.4 visualizes this equation for computing u3 in terms of u2, ud, and u2.

Stencil at boundary point

=

index n

S A A
7
O

o

index i

Figure 2.4.: Modified stencil at a boundary with a Neumann condition.

Similarly, (2.31) applied at = L is discretized by a central difference

uly +1 un, 1
—r-__ - —, 2.34
2Ax ( )
n+1.

Combined with the scheme for i = N, we get a modified scheme for the boundary value uj

't = T 2ul 4207 (Wt wi — 1 —u" x %), 0= N,.
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The modification of the scheme at the boundary is also required for the special formula for the first
time step.

2.38. Implementation of Neumann conditions

We have seen in the preceding section that the special formulas for the boundary points arise from
replacing ;' | by u',; when computing u?“ from the stencil formula for ¢ = 0. Similarly, we
replace uj, ; by u* ; in the stencil formula for ¢ = N,. This observation can conveniently be used
in the coding: we just work with the general stencil formula, but write the code such that it is
easy to replace u[i-1] by ul[i+1] and vice versa. This is achieved by having the indices i+1 and
i-1 as variables ip1 (i plus 1) and iml (i minus 1), respectively. At the boundary we can easily
define im1=i+1 while we use im1=i-1 in the internal parts of the mesh. Here are the details of the

implementation (note that the updating formula for u[i] is the general stencil formula):

i=0

ipl = i+1

iml = ipl # i-1 -> i+l

uli] = u_n[i] + C2*(u_n[iml] - 2*u_n[i] + u_n[ip1])

iml = i-1
ipl = im1 # i+1 -> i-1
uli] = u_n[i] + C2*(u_n[iml] - 2*u_n[i] + u_n[ip1])

We can in fact create one loop over both the internal and boundary points and use only one updating
formula:

for i in range(0, Nx+1):
ipl = i+1 if i < Nx else i-1
iml = i-1 if i > 0 else i+l
uli] = u_n[i] + C2*(u_n[iml] - 2*u_n[i] + u_n[ip1])

The program wavelD_nO.py contains a complete implementation of the 1D wave equation with
boundary conditions u, = 0 at x = 0 and z = L.

It would be nice to modify the test_quadratic test case from the wavelD_u0.py with Dirichlet
conditions, described in Section Section 2.25. However, the Neumann conditions require the
polynomial variation in the x direction to be of third degree, which causes challenging problems
when designing a test where the numerical solution is known exactly. Exercise Section 2.60 outlines
ideas and code for this purpose. The only test in wavelD_n0.py is to start with a plug wave at rest
and see that the initial condition is reached again perfectly after one period of motion, but such a
test requires C' = 1 (so the numerical solution coincides with the exact solution of the PDE, see
Section Section 2.64).
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2.39. Index set notation

To improve our mathematical writing and our implementations, it is wise to introduce a special
notation for index sets. This means that we write xz;, followed by i € Z,, instead of : =0, ..., N,.
Obviously, Z, must be the index set Z,, = {0, ..., Nz}, but it is often advantageous to have a symbol
for this set rather than specifying all its elements (all the time, as we have done up to now). This
new notation saves writing and makes specifications of algorithms and their implementation as
computer code simpler.

The first index in the set will be denoted ZU and the last Z;!. When we need to skip the first

element of the set, we use Z; for the remaining subset Z,7 = {1,..., N, }. Similarly, if the last
element is to be dropped, we write Z, = {0,..., N, — 1} for the remaining indices. All the indices
corresponding to inner grid points are specified by Z!. = {1,..., N; — 1}. For the time domain we

find it natural to explicitly use 0 as the first index, so we will usually write n = 0 and tg rather
than n = Z. We also avoid notation like x7-1 and will instead use w;, i =7 L

The Python code associated with index sets applies the following conventions:

Notation Python

Te Ix

70 Ix[0]
7! Ix[-1]
I Ix[:-1]
r Ix[1:]
Tt Ix[1:-1]

i Why index sets are useful

An important feature of the index set notation is that it keeps our formulas and code independent
of how we count mesh points. For example, the notation i € Z, or i = Z0 remains the same
whether Z, is defined as above or as starting at 1, i.e., Z, = {1,...,Q}. Similarly, we can in
the code define Ix=range (Nx+1) or Ix=range(1,Q), and expressions like Ix[0] and Ix[1:-1]
remain correct. One application where the index set notation is convenient is conversion
of code from a language where arrays has base index 0 (e.g., Python and C) to languages
where the base index is 1 (e.g., MATLAB and Fortran). Another important application is
implementation of Neumann conditions via ghost points (see next section).

For the current problem setting in the x,t plane, we work with the index sets
Zy ={0,...,N;}, Zy ={0,..., N},
defined in Python as

Ix
It

range (0, Nx+1)
range(0, Nt+1)

A finite difference scheme can with the index set notation be specified as
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1 .
u?“:u?—502(u”**i+1—2u”**i+u’iﬂl), ey, n=0,

uftt =~ 2ul + CF (W kiA1= 2 ki bl ), €T neT],

utt =0, i=1° nel,

7
u =0, i=Z;' nel; .

7 b T )

The corresponding implementation becomes

for i in Ix[1:-1]:
uli]l = u nli] - 0.5%C2*(u_n[i-1] - 2%u n[i] + u_n[i+1])

for n in It[1:-1]:
for i in Ix[1:-1]:
ulil = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])
Ix[0]; wuli]l =0
Ix[-1]; uli]l =0

1 The program wavelD_dn.py

applies the index set notation and solves the 1D wave equation uy = c?ug, + f(x,t) with quite
general boundary and initial conditions:

e 2=0: u="Up(t) or up =0
e x=L:u=Ug(t) oru, =0
t=0:u=1I(x)

o t=0: uy =V(x)

The program combines Dirichlet and Neumann conditions, scalar and vectorized implementation
of schemes, and the index set notation into one piece of code. A lot of test examples are also
included in the program:

o A rectangular plug-shaped initial condition. (For C' =1 the solution will be a rectangle
that jumps one cell per time step, making the case well suited for verification.)

e A Gaussian function as initial condition.

o A triangular profile as initial condition, which resembles the typical initial shape of a
guitar string.

e A sinusoidal variation of u at x = 0 and either u =0 or u, = 0 at x = L.

An analytical solution u(x,t) = cos(mmt/L)sin(3mmz/L), which can be used for conver-

gence rate tests.

2.40. Verifying the implementation of Neumann conditions

How can we test that the Neumann conditions are correctly implemented? The solver function in
the wavelD_dn.py program described in the box above accepts Dirichlet or Neumann conditions at
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x =0 and z = L. It is tempting to apply a quadratic solution as described in Sections Section 2.8
and Section 2.17, but it turns out that this solution is no longer an exact solution of the discrete
equations if a Neumann condition is implemented on the boundary. A linear solution does not help
since we only have homogeneous Neumann conditions in wavelD_dn.py, and we are consequently
left with testing just a constant solution: u = const.

def test_constant():
nnn
Check the scalar and vectorized versions for
a constant u(x,t). We simulate in [0, L] and apply
Neumann and Dirichlet conditions at both ends.
u_const = 0.45
u_exact = lambda x, t: u_const
I = lambda x: u_exact(x, 0)
Vv lambda x: O
f lambda x, t: O

def assert no_error(u, x, t, n):
u_e = u_exact(x, t[nl)
diff = np.abs(u - u_e).max()
msg = "diff=YE, t_%d=%g" % (diff, n, t[n])
tol = 1le-13
assert diff < tol, msg

for U_O0 in (None, lambda t: u_const):
for U L in (None, lambda t: u_const):

L = 2.8

g 2 1.6

C=0.75

Nx = 3 # Very coarse mesh for this exact test

dt =Cx* (L /Nx) / ¢
T = 18 # long time integration

solver(

user_action=assert_no_error,
version="scalar",
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solver(

user_action=assert_no_error,
version="vectorized",

)

print(U_0, U_L)

The quadratic solution is very useful for testing, but it requires Dirichlet conditions at both ends.

Another test may utilize the fact that the approximation error vanishes when the Courant number is
unity. We can, for example, start with a plug profile as initial condition, let this wave split into two
plug waves, one in each direction, and check that the two plug waves come back and form the initial
condition again after “one period” of the solution process. Neumann conditions can be applied at
both ends. A proper test function reads

def test_plug(:
"""Check that an initial plug is correct back after one period."""
L=1.0
CRENONS
dt = (L / 10) / ¢ # Nx=10
I = lambda x: 0 if abs(x - L / 2.0) > 0.1 else 1

u_s, x, t, cpu = solver(

U_L=None,
L=L,
dt=dt,
Cc=1,
T=4,
user_action=None,
version="scalar",

)

u_v, x, t, cpu = solver(
I=I,
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user_action=None,

version="vectorized",
)
tol = 1e-13
diff = abs(u_s - u_v).max()
assert diff < tol
u_0 = np.array([I(x_) for x_ in x])
diff = np.abs(u_s - u_0).max()
assert diff < tol

Other tests must rely on an unknown approximation error, so effectively we are left with tests on
the convergence rate.

2.41. Alternative implementation via ghost cells

2.41.1. ldea

Instead of modifying the scheme at the boundary, we can introduce extra points outside the domain
such that the fictitious values u”; and u}, |, are defined in the mesh. Adding the intervals [-Az, 0]
and [L, L+ Az], known as ghost cells, to the mesh gives us all the needed mesh points, corresponding
toi=—-1,0,...,N,, N, + 1. The extra points with ¢ = —1 and ¢ = N, + 1 are known as ghost
points, and values at these points, vy and u}y, ., are called ghost values.

The important idea is to ensure that we always have

u =y and uy g = Uy, 1,
because then the application of the standard scheme at a boundary point ¢ = 0 or ¢« = N, will be
correct and guarantee that the solution is compatible with the boundary condition u, = 0.

Some readers may find it strange to just extend the domain with ghost cells as a general technique,
because in some problems there is a completely different medium with different physics and equations
right outside of a boundary. Nevertheless, one should view the ghost cell technique as a purely
mathematical technique, which is valid in the limit Az — 0 and helps us to implement derivatives.
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2.41.2. Implementation

The u array now needs extra elements corresponding to the ghost points. Two new point values are
needed:

u = zeros(Nx+3)

The arrays u_n and u_nm1 must be defined accordingly.

Unfortunately, a major indexing problem arises with ghost cells. The reason is that Python indices
must start at 0 and u[-1] will always mean the last element in u. This fact gives, apparently, a
mismatch between the mathematical indices i = —1,0,..., N, + 1 and the Python indices running
over u: 0,..,Nx+2. One remedy is to change the mathematical indexing of ¢ in the scheme and
write
ultt = =1, N, + 1,

instead of ¢ = 0,..., N, as we have previously used. The ghost points now correspond to ¢ = 0 and
i = N, + 1. A better solution is to use the ideas of Section Section 2.39: we hide the specific index
value in an index set and operate with inner and boundary points using the index set notation.

To this end, we define u with proper length and Ix to be the corresponding indices for the real
physical mesh points (1,2,..., N, + 1):

u = zeros (Nx+3)
Ix = range(1l, u.shape[0]-1)

That is, the boundary points have indices Ix[0] and Ix[-1] (as before). We first update the
solution at all physical mesh points (i.e., interior points in the mesh):

for i in Ix:
ulil = - u_nmi[i] + 2*u_n[i] + \
C2x(u_n[i-1] - 2%u n[i] + u_n[i+1])

The indexing becomes a bit more complicated when we call functions like V(x) and f(x, t), as we
must remember that the appropriate x coordinate is given as x[i-Ix[0]]:

for i in Ix:
uli]l = u_nl[i] + dt*V(x[i-Ix[0]]) + \
0.5%C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
0.5*dt2x*f (x[1-Ix[0]], t[0])

It remains to update the solution at ghost points, i.e., u[0] and u[-1] (or u[Nx+2]). For a boundary
condition u, = 0, the ghost value must equal the value at the associated inner mesh point. Computer
code makes this statement precise:

i = Ix[0] # x=0 boundary
uli-1] = uli+1]
i = Ix[-1] # x=L boundary

uli+1] = ul[i-1]
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The physical solution to be plotted is now in u[1:-1], or equivalently u[Ix[0] :Ix[-1]+1], so this
slice is the quantity to be returned from a solver function. A complete implementation appears in
the program wavelD_nO_ghost.py.

We have to be careful with how the spatial and temporal mesh

points are stored. Say we let x be the physical mesh points,
x = linspace(0, L, Nx+1)
“Standard coding” of the initial condition,

for i in Ix:
unli] = I(x[i])

becomes wrong, since u_n and x have different lengths and the index i corresponds to two
different mesh points. In fact, x[i] corresponds to u[1+i]. A correct implementation is

for i in Ix:
u_nf[i] = I(x[i-Ix[0]])

Similarly, a source term usually coded as £ (x[i], t[n]) is incorrect if x is defined to be the
physical points, so x[i] must be replaced by x[i-Ix[0]].
An alternative remedy is to let x also cover the ghost points such that u[i] is the value at

x[i].

The ghost cell is only added to the boundary where we have a Neumann condition. Suppose we
have a Dirichlet condition at * = L and a homogeneous Neumann condition at x = 0. One ghost
cell [-Az,0] is added to the mesh, so the index set for the physical points becomes {1,..., N, + 1}.
A relevant implementation is

u = zeros(Nx+2)
Ix = range(1, u.shapel[0])

for i in Ix[:-1]:
uli]l = - u_nmi[i] + 2%u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt2*f (x[1-Ix[0]]1, t[nl)

i = Ix[-1]
uli] = U_O # set Dirichlet value
i = Ix[0]

uli-1] = uli+1] # update ghost value

The physical solution to be plotted is now in ul1:] or (as always) u[Ix[0]:Ix[-1]+1].
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2.42. Variable wave velocity

Our next generalization of the 1D wave equation (2.1) or (2.12) is to allow for a variable wave
velocity ¢: ¢ = ¢(x), usually motivated by wave motion in a domain composed of different physical
media. When the media differ in physical properties like density or porosity, the wave velocity c is
affected and will depend on the position in space. Figure Figure 2.5 shows a wave propagating in
one medium [0,0.7] U [0.9, 1] with wave velocity ¢; (left) before it enters a second medium (0.7, 0.9)
with wave velocity co (right). When the wave meets the boundary where ¢ jumps from ¢; to ca,
a part of the wave is reflected back into the first medium (the reflected wave), while one part is
transmitted through the second medium (the transmitted wave).

Nx=80, t=0.375000 Nx=80, t=1.250000

15

15

1.0f

0.0F

— I I I I - L L I I
0'3.0 0.2 0.4 0.6 0.8 1.0 0'6.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 2.5.: Left: wave entering another medium; right: transmitted and reflected wave.

2.43. The model PDE with a variable coefficient

Instead of working with the squared quantity c¢?(z), we shall for notational convenience introduce
q(r) = c*(z). A 1D wave equation with variable wave velocity often takes the form

2’LL u
S = e (1@ 50 ) + 1), (2.35)

This is the most frequent form of a wave equation with variable wave velocity, but other forms also
appear, see Section Section 2.81 and equation (2.118).

As usual, we sample (2.35) at a mesh point,
0? 0 0
where the only new term to discretize is

;x (ﬂ%)iu(%?tN)) = L‘ic (q@)gmj '

#+4# Discretizing the variable coefficient {#sec-wave-pde2-var-c-ideas}
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The principal idea is to first discretize the outer derivative. Define

ou

and use a centered derivative around x = x; for the derivative of ¢:

061"~ 2eth ok g

~
i

Then discretize

oul" Uiy — Ui n
Pirl =it} {8:1: i+l NUrl T AL T [qDI“]H% '
Similarly,
oul” uy — Un,1
$i1 =1 {ax] L qi—%ﬁ S
=3

These intermediate results are now combined to

0 ou\1" 1 n Y n n
{83& <Q($)8x>} o~ N ((IH% (Ui+1 - Uz) — 94 (uz - UFl)) .

7

With operator notation we can write the discretization as

(i3] = @D

i

(2.36)

(2.37)

Do not use the chain rule on the spatial derivative term!
Many are tempted to use the chain rule on the term 8% (q(w)%), but this is not a good idea
when discretizing such a term.

The term with a variable coefficient expresses the net flux qu, into a small volume (i.e., interval
in 1D):

oo (a0 50) % (e + Aryuate +A0) - a(@us@))

Our discretization reflects this principle directly: qu, at the right end of the cell minus qu, at
the left end, because this follows from the formula (2.36) or [D;(¢Dgu)]?.
When using the chain rule, we get two terms quy, + qzu,. The typical discretization is

[D:L‘quu + D2qu2xu];’L’ (238)

Writing this out shows that it is different from [D,(¢D,u)]|? and lacks the physical interpretation
of net flux into a cell. With a smooth and slowly varying ¢(z) the differences between the
two discretizations are not substantial. However, when ¢ exhibits (potentially large) jumps,
[Dy(¢Dyu)]? with harmonic averaging of ¢ yields a better solution than arithmetic averaging
or (2.38). In the literature, the discretization [D;(¢Dyu)|? totally dominates and very few
mention the alternative in (2.38).
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2.44. Computing the coefficient between mesh points

If ¢ is a known function of x, we can easily evaluate 9t simply as q(xi_%) with Tl = + %Aw.
However, in many cases ¢, and hence ¢, is only known as a discrete function, often at the mesh
points x;. Evaluating ¢ between two mesh points x; and x;+; must then be done by interpolation
techniques, of which three are of particular interest in this context:

Qg1 R % (¢i + ¢i+1) = [¢°]; (arithmetic mean) (2.39)
1 1\ ! )

Qi1 & 2 <qZ + qu) (harmonic mean) (2.40)

Qiy1 ™ (QiQi+1)1/2 (geometric mean) (2.41)

The arithmetic mean is by far the most commonly used averaging technique and is well suited for
smooth ¢(x) functions. The harmonic mean is often preferred when ¢(x) exhibits large jumps (which
is typical for geological media). The geometric mean is less used, but popular in discretizations to
linearize quadratic nonlinearities.

With the operator notation for the arithmetic mean we can specify the discretization of the complete
variable-coeflicient wave equation in a compact way:

[DyDyu = Dyg” Dou + f]7 . (2.42)

Strictly speaking, [D,q" Dyu|l* = [Dg (" Dyu)]?.

From the compact difference notation we immediately see what kind of differences that each term is
approximated with. The notation g% also specifies that the variable coefficient is approximated by
an arithmetic mean, the definition being [¢°]; |1 = (¢ + gi+1)/2

2
n+1,

Before implementing, it remains to solve (2.42) with respect to u; " ":

U?H =- U?_l + 2ul+
At\? (1 1
(M> (2(% + i) (uiyy — ) = 5@+ gi-1) (g — u?1)> + (2.43)
AL

2.45. How a variable coefficient affects the stability

The stability criterion derived later (Section Section 2.63) reads At < Az/c. If ¢ = ¢(x), the

criterion will depend on the spatial location. We must therefore choose a At that is small enough

such that no mesh cell has At > Az/c(z). That is, we must use the largest ¢ value in the criterion:
Az

AMt<f—m————.
maXgzeo,L] c(a;)
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The parameter (3 is included as a safety factor: in some problems with a significantly varying c it

turns out that one must choose 5 < 1 to have stable solutions (8 = 0.9 may act as an all-round
value).

A different strategy to handle the stability criterion with variable wave velocity is to use a spatially
varying At. While the idea is mathematically attractive at first sight, the implementation quickly

becomes very complicated, so we stick to a constant At and a worst case value of ¢(z) (with a safety
factor (3).

2.46. Neumann condition and a variable coefficient

Consider a Neumann condition du/0x = 0 at x = L = N, Az, discretized as

n
D n_uiJrl_uifl_O n _ n
[Daguli = T 9Ar = Uiy = U,

for i = N,. Using the scheme (2.43) at the end point i = N, with v}, ; = " | results in

U?H = —u?fl + 2ul+

At 2 . . . 9 .
Az (q“r%(ui—l —ui') = g1 (u — “1—1)) + A7 f;

(3) s
E

= —up o+ 2u] + (@41 +q-) (g —u) + AL ]

~ —ul Tt 2ul +

bk Bk

2
) 2i(ul y — ul) + AL

Here we used the approximation

d d?
qz‘+l+qz‘_l:%'+ “ Ax + “q Al’2+—|—
2 2 dx / .

dq dQ(J 2
d2
=2¢; + 2 (dl‘ )le + O(Az?)

An alternative derivation may apply the arithmetic mean of ¢, _1 and g, 1 in (2.44), leading to the
2 2
term

1
(@ + 5(%‘+1 +qi-1))(uig —uy') .

Since %(qiﬂ +gi—1) = q; + O(Az?), we can approximate with 2¢;(u’ ; —u?) for i = N, and get the
same term as we did above.
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A common technique when implementing du/0x = 0 boundary conditions, is to assume dq/dx = 0
as well. This implies ¢;+1 = gi—1 and g;11/2 = ¢;_1/2 for © = N,. The implications for the scheme
are

uttt = —u?il + 2uj'+

s (qi+%(ui—1 —ug) — q@'_%(ui - Ui—l)) +

Y (2.46)

2.47. Implementation of variable coefficients

The implementation of the scheme with a variable wave velocity g(z) = ¢(x) may assume that g
is available as an array q[i] at the spatial mesh points. The following loop is a straightforward
implementation of the scheme (2.43):

for i in range(1, Nx):
uli]l = - u_nmi[i] + 2*u_n[i] + \
C2%(0.5%(ql[i] + q[i+11)*(u_n[i+1] - u_n[il) - \
0.5%(qli] + qli-11)*(u_nl[i] - u_n[i-11)) + \
dt2#f (x[i], t[n])

The coefficient C2 is now defined as (dt/dx) *%*2, i.e., not as the squared Courant number, since the
wave velocity is variable and appears inside the parenthesis.

With Neumann conditions u; = 0 at the boundary, we need to combine this scheme with the
discrete version of the boundary condition, as shown in Section Section 2.46. Nevertheless, it would
be convenient to reuse the formula for the interior points and just modify the indices ipl=i+1
and im1=i-1 as we did in Section Section 2.38. Assuming dgq/dx = 0 at the boundaries, we can
implement the scheme at the boundary with the following code.

i=0

ipl = i+1

iml = ip1

uli]l = - u_nmi[i] + 2*%u_n[i] + \

C2%(0.5%(ql[i] + qlip1l)*(u_n[ip1l] - u_nl[il) - \
0.5%(qli] + qlim1D)*(u_n[i] - u_n[im1])) + \
dt2*f (x[i], t[nl)

With ghost cells we can just reuse the formula for the interior points also at the boundary, provided

that the ghost values of both u and ¢ are correctly updated to ensure v, = 0 and ¢, = 0.

A vectorized version of the scheme with a variable coefficient at internal mesh points becomes
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ull1:-1] = - u_nmi[1:-1] + 2%u_n[1:-1] + \
C2%(0.5%(q[1:-1] + q[2:1)*(u_n[2:] - u_n[1:-1]) -
0.5%(ql1:-1] + ql[:-2D)*(u_n[1:-1] - u_n[:-2]1)) + \
dt2xf(x[1:-1], t[n])

2.48. A more general PDE model with variable coefficients

Sometimes a wave PDE has a variable coefficient in front of the time-derivative term:

0u 0 ou
— = — t). 2.47
o) 5z = 5o (a@) 5 ) + o) (247)
One example appears when modeling elastic waves in a rod with varying density, cf.~(Section 2.81)
with o(x).

A natural scheme for (2.47) is
[oD:Dyuw = D" Dyu + f]2.

We realize that the ¢ coefficient poses no particular difficulty, since ¢ enters the formula just as a
simple factor in front of a derivative. There is hence no need for any averaging of o. Often, g will
be moved to the right-hand side, also without any difficulty:

[D¢Dyu = 07 DyG" Dy + 1.
## Generalization: damping

Waves die out by two mechanisms. In 2D and 3D the energy of the wave spreads out in space,
and energy conservation then requires the amplitude to decrease. This effect is not present in 1D.
Damping is another cause of amplitude reduction. For example, the vibrations of a string die out
because of damping due to air resistance and non-elastic effects in the string.

The simplest way of including damping is to add a first-order derivative to the equation (in the
same way as friction forces enter a vibrating mechanical system):

*u  Ou 0%
_2Zl

a2 T T ¢ a2

where b > 0 is a prescribed damping coefficient.

- f(SC,t), (248)

A typical discretization of (2.48) in terms of centered differences reads

[D¢Dyu + bDoyu = 2Dy Dyu + 1. (2.49)

n+1

Writing out the equation and solving for the unknown u; " gives the scheme

1 1
't = (14 ibAt)_l((ibAt — Dl 420l + O (u ki + 1 — 2u™ x ki +ul ) + AL,
(2.50)

! and for boundary points in case of

for i € Z! and n > 1. New equations must be derived for u},

Neumann conditions.

The damping is very small in many wave phenomena and thus only evident for very long time
simulations. This makes the standard wave equation without damping relevant for a lot of applica-
tions.
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2.49. Building a general 1D wave equation solver

The program wavelD_dn_vc.py is a fairly general code for 1D wave propagation problems that
targets the following initial-boundary value problem

uy = (A(x)ug)s + f(z,t), x€(0,L), t € (0,T] (2.51)
u(z,0) = I(z), x€l0,L]
w(x,0) =V(t), z¢€ [o, L]
w(0,t) = Up(t) or ug(0,£) =0, te (0,7
u(L,t) = Ur(t) or ug(L,t) =0, te(0,T)

The only new feature here is the time-dependent Dirichlet conditions, but they are trivial to
implement:

i = Ix[0] # x=0
uli]l = U_0(t[n+1])

i = Ix[-1] # x=L
uli] = U_L(t[n+1])

The solver function is a natural extension of the simplest solver function in the initial
wavelD_u0.py program, extended with Neumann boundary conditions (u, = 0), time-varying
Dirichlet conditions, as well as a variable wave velocity. The different code segments needed to
make these extensions have been shown and commented upon in the preceding text. We refer to
the solver function in the wavelD_dn_vc.py file for all the details. Note in that solver function,
however, that the technique of “hashing” is used to check whether a certain simulation has been
run before, or not. This technique is further explained in Section Section 8.7.

The vectorization is only applied inside the time loop, not for the initial condition or the first time
steps, since this initial work is negligible for long time simulations in 1D problems.

The following sections explain various more advanced programming techniques applied in the general
1D wave equation solver.

2.50. User action function as a class

A useful feature in the wavelD_dn_vc.py program is the specification of the user_action function
as a class. This part of the program may need some motivation and explanation. Although the
plot_u_st function (and the PlotMatplotlib class) in the wavelD_u0.viz function remembers
the local variables in the viz function, it is a cleaner solution to store the needed variables together
with the function, which is exactly what a class offers.
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2.50.1. The code

A class for flexible plotting, cleaning up files, making movie files, like the function wavelD_u0.viz
did, can be coded as follows:

class PlotAndStoreSolution:

nnn

Class for the user_action function in solver.

Visualizes the solution only.

i

def __init_ (
self,
casename='tmp', # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
screen_movie=True, # Show movie on screen?

title="", # Extra message in title
skip_frame=1, # Skip every skip_frame frame
filename=None) : # Name of file with solutions

self.casename = casename
self.yaxis = [umin, umax]
self.pause = pause_between_frames
import matplotlib.pyplot as plt
self.plt = plt
self.screen_movie = screen_movie
self.title = title
self.skip_frame = skip_frame
self.filename = filename
if filename is not None:

self.t = []

filenames = glob.glob('.' + self.filename + '*.dat.npz')

for filename in filenames:

os.remove (filename)

for filename in glob.glob('frame_x*.png'):
os.remove(filename)

def _ call_ (self, u, x, t, n):

Callback function user_action, call by solver:

Store solution, plot on screen and save to file.
nnn

if self.filename is not None:

name = 'uj,04d' % n # array name
kwargs = {name: u}
fname = '.' + self.filename + '_' + name + '.dat'

np.savez(fname, *xkwargs)
self.t.append(t[n]) # store corresponding time value
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if n == O: # save x once
np.savez('.' + self.filename + '_x.dat', x=x)

if n 7 self.skip_frame != O:
return
title = 't=%.3f' % t[n]
if self.title:
title = self.title + ' ' + title

if n ==
self.plt.ion()
self.lines = self.plt.plot(x, u, 'r-')
self.plt.axis([x[0], x[-1],
self.yaxis[0], self.yaxis[1]])
self.plt.xlabel('x"')
self.plt.ylabel('u')
self.plt.title(title)
self.plt.legend(['t=%.3f" % t[nll)
else:
self.lines[0] .set_ydata(u)
self.plt.legend(['t=%.3f"' % t[nll)
self.plt.draw()

if t[n] ==
time.sleep(2) # let initial condition stay 2 s
else:
if self.pause is None:
pause = 0.2 if u.size < 100 else 0O
time.sleep(pause)

self.plt.savefig('frame_%04d.png' % (n))

2.50.2. Dissection

Understanding this class requires quite some familiarity with Python in general and class program-
ming in particular. The class supports plotting with Matplotlib for visualization.

With the screen_movie parameter we can suppress displaying each movie frame on the screen.
Alternatively, for slow movies associated with fine meshes, one can set skip_frame=10, causing
every 10 frames to be shown.

The __call__ method makes PlotAndStoreSolution instances behave like functions, so we can
just pass an instance, say p, as the user_action argument in the solver function, and any call to
user_action will be a call to p.__call__. The __call__ method plots the solution on the screen,
saves the plot to file, and stores the solution in a file for later retrieval.

More details on storing the solution in files appear in Section 8.4.
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2.51. Pulse propagation in two media

The function pulse in wavelD_dn_vc.py demonstrates wave motion in heterogeneous media where ¢
varies. One can specify an interval where the wave velocity is decreased by a factor slowness_factor
(or increased by making this factor less than one). Figure Figure 2.5 shows a typical simulation
scenario.

Four types of initial conditions are available:

a rectangular pulse (plug),

a Gaussian function (gaussian),

a “cosine hat” consisting of one period of the cosine function (cosinehat),
half a period of a “cosine hat” (half-cosinehat)

Ll

These peak-shaped initial conditions can be placed in the middle (loc="'center"') or at the left end
(Loc="1left') of the domain. With the pulse in the middle, it splits in two parts, each with half the
initial amplitude, traveling in opposite directions. With the pulse at the left end, centered at z = 0,
and using the symmetry condition Ou/dx = 0, only a right-going pulse is generated. There is also a
left-going pulse, but it travels from = 0 in negative x direction and is not visible in the domain
[0, L].

The pulse function is a flexible tool for playing around with various wave shapes and jumps in the
wave velocity (i.e., discontinuous media). The code is shown to demonstrate how easy it is to reach
this flexibility with the building blocks we have already developed:

def pulse(
Cc=1, # Maximum Courant number
Nx=200, # spatial resolution

animate=True,

version='vectorized',

T=2, # end time

loc="'left"', # location of initial condition
pulse_tp='gaussian', # pulse/init.cond. type
slowness_factor=2, # inverse of wave vel. in right medium
medium=[0.7, 0.9], # interval for right medium
skip_frame=1, # skip frames in animations

sigma=0.05 # width measure of the pulse

)

win

Various peaked-shaped initial conditions on [0,1].

Wave velocity is decreased by the slowness_factor inside
medium. The loc parameter can be 'center' or 'left',
depending on where the initial pulse is to be located.
The sigma parameter governs the width of the pulse.

L=1.0

c 0=1.0

if loc == 'center':
xc = L/2
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elif loc == 'left':
xc =0

if pulse_tp in ('gaussian','Gaussian'):

def I(x):
return np.exp(-0.5%((x-xc)/sigma)**2)
elif pulse_tp == 'plug':
def I(x):
return 0 if abs(x-xc) > sigma else 1
elif pulse_tp == 'cosinehat':
def I(x):
w =2

a = wksigma
return 0.5%(1 + np.cos(np.pi*x(x-xc)/a)) \
if xc - a <= x <= xc + a else 0

elif pulse_tp == 'half-cosinehat':
def I(x):
w =24
a = wksigma
return np.cos(np.pi*(x-xc)/a) \
if xc - 0.5%a <= x <= xc + 0.5*a else O
else:
raise ValueError('Wrong pulse_tp="Ys""' % pulse_tp)

def c(x):
return c_0/slowness_factor \
if medium[0] <= x <= medium[1] else c_O

umin=-0.5; umax=1.5*I(xc)
casename = 'Js_NxYs_sf/s' % \
(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(
medium, casename=casename, umin=umin, umax=umax,
skip_frame=skip_frame, screen_movie=animate,
backend=None, filename='tmpdata')

dt = (L/Nx)/c_0

cpu, hashed_input = solver(
I=I, V=None, f=None, c=c,
U_O=None, U_L=None,
L=L, dt=dt, C=C, T=T,
user_action=action,
version=version,
stability_safety_factor=1)

if cpu > 0: # did we generate new data?
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action.close_file(hashed_input)
action.make_movie_file()
print('cpu (-1 means no new data generated):', cpu)

def convergence_rates(
u_exact,
I, v, £, ¢, U_O0, U_L, L,
dt0, num_meshes,
C, T, version='scalar',
stability_safety_factor=1.0):
win
Half the time step and estimate convergence rates for
for num_meshes simulations.
i
class ComputeError:
def __init__(self, norm_type):
self.error = 0

def call (self, u, x, t, n):
"""Store norm of the error in self.E."""
error = np.abs(u - u_exact(x, t[n])).max()
self.error = max(self.error, error)

E =[]
h =[] # dt, solver adjusts dx such that C=dt*c/dx
dt = dtO

for i in range(num_meshes):
error_calculator = ComputeError('Linf')
solver(I, V, £, ¢, U O, UL, L, dt, C, T,
user_action=error_calculator,
version='scalar',
stability_safety_factor=1.0)
E.append(error_calculator.error)
h.append(dt)
dt /= 2 # halve the time step for next simulation
print('E:', E)
print('h:"', h)
r = [np.log(E[i]l/E[i-1])/np.log(h[i]l/h[i-1])
for i in range(1,num_meshes)]
return r

def test_convrate_sincos():
n=m-=2
L=1.0

u_exact = lambda x, t: np.cos(m*np.pi/L*t)*np.sin(m*np.pi/L*x)

r = convergence_rates(
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u_exact=u_exact,

I=lambda x: u_exact(x, 0),

V=lambda x: O,

£=0,

c=1,

U_0=0,

U_L=0,

L=L,

dt0=0.1,

num_meshes=6,

C=0.9,

T=1,

version='scalar',

stability_safety_factor=1.0)
print('rates sin(x)*cos(t) solution:',

[round(r_,2) for r_ in r])

assert abs(r[-1] - 2) < 0.002

The PlotMediumAndSolution class used here is a subclass of PlotAndStoreSolution where the
medium with reduced ¢ value, as specified by the medium interval, is visualized in the plots.

[ . . . .
1 Comment on the choices of discretization parameters

The argument N, in the pulse function does not correspond to the actual spatial resolution of
C < 1, since the solver function takes a fixed At and C, and adjusts Ax accordingly. As seen
in the pulse function, the specified At is chosen according to the limit C =1, so if C < 1, At
remains the same, but the solver function operates with a larger Axz and smaller N, than
was specified in the call to pulse. The practical reason is that we always want to keep At
fixed such that plot frames and movies are synchronized in time regardless of the value of C
(i.e., Az is varied when the Courant number varies).

The reader is encouraged to play around with the pulse function:

>>> import wavelD_dn_vc as w
>>> w.pulse(Nx=50, loc='left', pulse_tp='cosinehat', slowness_factor=2)

To easily kill the graphics by Ctrl-C and restart a new simulation it might be easier to run the
above two statements from the command line with

Terminal> python -c 'import wavelD_dn_vc as w; w.pulse(...)'
2.52. Exercise: Find the analytical solution to a damped wave equation

Consider the wave equation with damping (2.48). The goal is to find an exact solution to a wave
problem with damping and zero source term. A starting point is the standing wave solution from
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Exercise Section 2.29. It becomes necessary to include a damping term e~#* and also have both a
sine and cosine component in time:

ue(x,t) = e Ptsin ka (A coswt — Bsinwt) .

Find k from the boundary conditions u(0,t) = u(L,t) = 0. Then use the PDE to find constraints
on 3, w, A, and B. Set up a complete initial-boundary value problem and its solution.

@ Solution

Mathematical model:
Pu  Ou 0%

o ot ¢ aa?
b > 0 is a prescribed damping coefficient.
Ansatz:
u(z,t) = e Plsin ka (A coswt — Bsinwt)

Boundary condition: u = 0 for x = 0, L. Fulfilled for x = 0. Requirement at x = L gives
kL = mm,

for an arbitrary integer m. Hence, k = mm /L.
Inserting the ansatz in the PDE and dividing by e ?* results in

(B2 sinkx — w?sinkx — bBsinkz)(A coswt + Bsinwt)+
(bwsinkx — 2Bwsinkx)(—Asinwt + B coswt) = —(A coswt + B sin wt)k?c?

This gives us two requirements:
ﬂQ—w2—|—bﬁ—|—k‘202:0

and
—2Bw +bw =0

Since b, ¢ and k are to be given in advance, we may solve these two equations to get

/ b2
w cck 1

From the initial condition on the derivative, i.e. 88“; = 0, we find that

Bw = A

Inserting the expression for w, we find that

for A prescribed.
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Using ¢ = 0 in the expression for wu,. gives us the initial condition as
I(z) = Asinkx

Summarizing, the PDE problem can then be states as

w‘l‘bazc @, .CUE(O,L), tG(O,T]
u(z,0) = I(x), x € [0,L]
aatu(x,O) =0, xz € [0, L]
uw(0,1) = 0, te (0,1]
w(L,t) =0, te (0,7]

where constants ¢, A, b and k, as well as I(x), are prescribed.
The solution to the problem is then given as

ue(x,t) = e Pt sinka (A coswt — Bsinwt) .
with & = mm/L for arbitrary integer m, 8 = %, w = 1/c2k? — %, B=—-t__ A and
2 /02k2_£
4

I(xz) = Asinkz.

2.53. Problem: Explore symmetry boundary conditions

Consider the simple “plug” wave where ) = [-L, L] and

I(x):{ 1, z€l-4,4],

0, otherwise

for some number 0 < § < L. The other initial condition is u¢(x,0) = 0 and there is no source term
f- The boundary conditions can be set to u = 0. The solution to this problem is symmetric around
x = 0. This means that we can simulate the wave process in only half of the domain [0, L].

a)

Argue why the symmetry boundary condition is u, = 0 at x = 0.

@ Symmetry of a function about z = xo means that

f(zo+h) = f(zo — h).

@ Solution

A symmetric v around x = 0 means that u(—=z,t) = u(z,t). Let xg = 0 and = z¢ + h. Then
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we can use a centered finite difference definition of the derivative:

0 u(zo+ht) —u(ro—h) . u(h,t) —u(—h,t)
gz w0, 1) = limy 2h = pm 2h

=0,

since u(h,t) = u(—h,t) for any h. Symmetry around a point x = x( therefore always implies
uz(zo,t) = 0.

b)

Perform simulations of the complete wave problem on [—L, L]. Thereafter, utilize the symmetry of
the solution and run a simulation in half of the domain [0, L], using a boundary condition at z = 0.
Compare plots from the two solutions and confirm that they are the same.

@ Solution

We can utilize the wavelD_dn.py code which allows Dirichlet and Neumann conditions. The
solver and viz functions must take zg and xy as parameters instead of just L such that we
can solve the wave equation in [zg,z1]. The we can call up solver for the two problems on
[—L, L] and [0, L] with boundary conditions u(—L,t) = u(L,t) = 0 and u,(0,t) = u(L,t) = 0,
respectively.

The original wave1D_dn.py code makes a movie by playing all the .png files in a browser. It
can then be wise to let the viz function create a movie directory and place all the frames and
HTML player file in that directory. Alternatively, one can just make some ordinary movie file
(Ogg, WebM, MP4, Flash) with avconv or ffmpeg and give it a name. It is a point that the
name is transferred to viz so it is easy to call viz twice and get two separate movie files or
movie directories.

The plots produced by the code (below) shows that the solutions indeed are the same.

c)

Prove the symmetry property of the solution by setting up the complete initial-boundary value
problem and showing that if u(z,t) is a solution, then also u(—=x,t) is a solution.

@ Solution

The plan in this proof is to introduce v(z,t) = u(—=x,t) and show that v fulfills the same
initial-boundary value problem as u. If the problem has a unique solution, then v = u. Or, in
other words, the solution is symmetric: u(—z,t) = u(z,t).

We can work with a general initial-boundary value problem on the form

ugt(z,t) = gy (z,t) + fz,t) (2.52)
u(z,0) = I(x) (2.53)
u(x,0) = V(x) (2.54)
u(—L,0) =0 (2.55)
w(L,0) =0 (2.56)
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Introduce a new coordinate £ = —z. We have that

@ — ﬂ <8u&r> — ﬂ <8u(_1)) — (_1)2@
0x2  0x \0x0x) 0x \0x N 0x?
The derivatives in time are unchanged.
Substituting by —z leads to

ug(—7,t) = Cugz(—Z,t) + f(—T,1) (2.57)
u(—z,0) = I(—x) (2.58)
u(—z,0) = V(—x) (2.59)
w(L,0) =0 (2.60)
w(—L,0) =0 (2.61)
Now, dropping the bars and introducing v(x,t) = u(—x,t), we find that

v (2, 1) = Puge(z,t) + f(—2,1) (2.62)
v(z,0) =I(—x) (2.63)
ve(x,0) =V (—x) (2.64)
v(~L,0) =0 (2.65)
o(L,0) =0 (2.66)

Provided that I, f, and V are all symmetric around x = 0 such that [(z) = I(—x), V(z)
V(—=x), and f(z,t) = f(—z,t), we can express the initial-boundary value problem as

Vit (2, 1) = Cvge(z,t) + f(z,1) (2.67)
v(z,0) = I(x) (2.68)

v (x,0) = V(x) (2.69)
v(=L,0) =0 (2.70)
o(L,0) =0 (2.71)

This is the same problem as the one that w fulfills. If the solution is unique, which can be
proven, then v = u, and u(—=x,t) = u(z,t).
To summarize, the necessary conditions for symmetry are that

« all involved functions I, V, and f must be symmetric, and
o the boundary conditions are symmetric in the sense that they can be flipped (the
condition at z = —L can be applied at x = L and vice versa).

d)

If the code works correctly, the solution u(z,t) = z(L — x)(1 + %) should be reproduced exactly.
Write a test function test_quadratic that checks whether this is the case. Simulate for z in [0, £]

with a symmetry condition at the end = = %
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@ Solution

Running the code below, shows that the test case indeed is reproduced exactly.

def test_quadratic():
nnn
Check the scalar and vectorized versions work for
a quadratic u(x,t)=x(L-x) (1+t/2) that is exactly reproduced.
We simulate in [0, L/2] and apply a symmetry condition
at the end x=L/2.
exact_solution = lambda x, t: x * (L - x) * (1 + 0.5 * t)
I = lambda x: exact_solution(x, 0)
V = lambda x: 0.5 * exact_solution(x, 0)
f = lambda x, t: 2 * (1 + 0.5 * t) * c**2
U_0 = lambda t: exact_solution(0, t)

U_L = None

L=2.5

6 = 1.8

Nx = 3 # very coarse mesh
c=1

T =18 # long time integration

def assert no_error(u, x, t, n):
u_e = exact_solution(x, t[n])
diff = abs(u - u_e) .max()
assert diff < 1le-13, f"Max error: {diff}"

solver (
I, v, f, ¢, UO, UL, O, L /2, Nx, C, T,
user_action=assert_no_error, version='"scalar",

)
solver (
I, v, f, ¢, U O, UL, O, L/ 2, Nx, C, T,
user_action=assert_no_error, version="vectorized",
)

2.54. Exercise: Send pulse waves through a layered medium

Use the pulse function in wavelD_dn_vc.py to investigate sending a pulse, located with its peak
at © = 0, through two media with different wave velocities. The (scaled) velocity in the left medium
is 1 while it is i in the right medium. Report what happens with a Gaussian pulse, a “cosine hat”
pulse, half a “cosine hat” pulse, and a plug pulse for resolutions N, = 40,80,160, and sy = 2,4.
Simulate until 7' = 2.
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@ Solution

In all cases, the change in velocity causes some of the wave to be reflected back (while the rest
is let through). When the waves go from higher to lower velocity, the amplitude builds, and
vice versa.

import os
import sys

path = os.path.join(
os.pardir, os.pardir, os.pardir, os.pardir, "wave", "src-wave", "wavelD"
)
sys.path.insert (0, path)
from wavelD_dn_vc import pulse

pulse_tp = sys.argv[1]
C = float(sys.argv([2])
pulse(pulse_tp=pulse_tp, C=C, Nx=100, animate=False, slowness_factor=4)

2.55. Exercise: Explain why numerical noise occurs

The experiments performed in Exercise Section 2.54 shows considerable numerical noise in the form
of non-physical waves, especially for s; = 4 and the plug pulse or the half a “cosinehat” pulse. The
noise is much less visible for a Gaussian pulse. Run the case with the plug and half a “cosinehat”
pulse for sy = 1, ¢ = 0.9,0.25, and N, = 40,80,160. Use the numerical dispersion relation to
explain the observations.

2.56. Exercise: Investigate harmonic averaging in a 1D model

Harmonic means are often used if the wave velocity is non-smooth or discontinuous. Will harmonic
averaging of the wave velocity give less numerical noise for the case sy = 4 in Exercise Section 2.547

2.57. Problem: Implement open boundary conditions

To enable a wave to leave the computational domain and travel undisturbed through the boundary
x = L, one can in a one-dimensional problem impose the following condition, called a radiation
condition or open boundary condition:

ou ou
5 T, =0 (2.72)

The parameter c is the wave velocity.
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Show that (2.72) accepts a solution u = gr(x — ct) (right-going wave), but not v = gr(z + ct)
(left-going wave). This means that (2.72) will allow any right-going wave gr(x — ct) to pass through
the boundary undisturbed.

A corresponding open boundary condition for a left-going wave through x = 0 is

e =0. (2.73)

a)

A natural idea for discretizing the condition (2.72) at the spatial end point i = N, is to apply
centered differences in time and space:

[Dayu + cDoygu = 0], i= N,. (2.74)

Eliminate the fictitious value u}; ,; by using the discrete equation at the same point.

The equation for the first step, u}, is in principle also affected, but we can then use the condition
upn, = 0 since the wave has not yet reached the right boundary.

b)

A much more convenient implementation of the open boundary condition at x = L can be based on
an explicit discretization
[Dffu+cDyu=0]", i=N,. (2.75)

From this equation, one can solve for uﬁ,il and apply the formula as a Dirichlet condition at the

boundary point. However, the finite difference approximations involved are of first order.

Implement this scheme for a wave equation uy = c?uy, in a domain [0, L], where you have u; =0
at = 0, the condition (2.72) at = L, and an initial disturbance in the middle of the domain, e.g.,
a plug profile like

1, L/2—¢<z<L/2+¢,

0, otherwise

u(z,0) = {

Observe that the initial wave is split in two, the left-going wave is reflected at x = 0, and both
waves travel out of x = L, leaving the solution as u = 0 in [0, L]. Use a unit Courant number such
that the numerical solution is exact. Make a movie to illustrate what happens.

Because this simplified implementation of the open boundary condition works, there is no need to
pursue the more complicated discretization in a).

@ Modify the solver function in

wavelD_dn.py.

c)

Add the possibility to have either u, = 0 or an open boundary condition at the left boundary. The
latter condition is discretized as

[Dfu—cDfu=0" i=0, (2.76)

leading to an explicit update of the boundary value ug‘ﬂ.
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The implementation can be tested with a Gaussian function as initial condition:

1 _@=m?
(&} 252

r;m,s) =
g( ) 5

Run two tests:

1. Disturbance in the middle of the domain, I(z) = g(z; L/2,s), and open boundary condition
at the left end.

2. Disturbance at the left end, I(x) = g(x;0, s), and u, = 0 as symmetry boundary condition at
this end.

Make test functions for both cases, testing that the solution is zero after the waves have left the
domain.

d)

In 2D and 3D it is difficult to compute the correct wave velocity normal to the boundary, which is

needed in generalizations of the open boundary conditions in higher dimensions. Test the effect of
having a slightly wrong wave velocity in (2.75). Make movies to illustrate what happens.

1 Remarks

The condition (2.72) works perfectly in 1D when ¢ is known. In 2D and 3D, however, the
condition reads uy + czu, + cyu, = 0, where ¢, and ¢, are the wave speeds in the x and y
directions. Estimating these components (i.e., the direction of the wave) is often challenging.
Other methods are normally used in 2D and 3D to let waves move out of a computational
domain.

2.58. Exercise: Implement periodic boundary conditions

It is frequently of interest to follow wave motion over large distances and long times. A straightforward
approach is to work with a very large domain, but that might lead to a lot of computations in areas
of the domain where the waves cannot be noticed. A more efficient approach is to let a right-going
wave out of the domain and at the same time let it enter the domain on the left. This is called a
periodic boundary condition.

The boundary condition at the right end x = L is an open boundary condition (see Exercise
Section 2.57) to let a right-going wave out of the domain. At the left end, x = 0, we apply, in
the beginning of the simulation, either a symmetry boundary condition (see Exercise Section 2.53)
u, = 0, or an open boundary condition.

This initial wave will split in two and either be reflected or transported out of the domain at z = 0.
The purpose of the exercise is to follow the right-going wave. We can do that with a periodic
boundary condition. This means that when the right-going wave hits the boundary x = L, the
open boundary condition lets the wave out of the domain, but at the same time we use a boundary
condition on the left end z = 0 that feeds the outgoing wave into the domain again. This periodic
condition is simply u(0) = u(L). The switch from u, = 0 or an open boundary condition at the left
end to a periodic condition can happen when u(L,t) > €, where ¢ = 10~% might be an appropriate
value for determining when the right-going wave hits the boundary x = L.
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The open boundary conditions can conveniently be discretized as explained in Exercise Section 2.57.
Implement the described type of boundary conditions and test them on two different initial shapes:
a plug u(z,0) =1 for < 0.1, u(z,0) = 0 for > 0.1, and a Gaussian function in the middle of the
domain: u(z,0) = exp (—%(z — 0.5)?/0.05). The domain is the unit interval [0, 1]. Run these two
shapes for Courant numbers 1 and 0.5. Assume constant wave velocity. Make movies of the four
cases. Reason why the solutions are correct.

2.59. Exercise: Compare discretizations of a Neumann condition

We have a 1D wave equation with variable wave velocity: uy = (quy),. A Neumann condition u, at
x =0, L can be discretized as shown in (2.44) and (2.46).

The aim of this exercise is to examine the rate of the numerical error when using different ways of
discretizing the Neumann condition.

a)

As a test problem, ¢ = 1 + (z — L/2)* can be used, with f(z,t) adapted such that the solution has
a simple form, say u(z,t) = cos(wz/L) cos(wt) for, e.g., w = 1. Perform numerical experiments and
find the convergence rate of the error using the approximation (2.44).

b)

Switch to ¢(x) = 1 + cos(mx/L), which is symmetric at x = 0, L, and check the convergence rate of
the scheme (2.46). Now, ¢;_; /5 is a 2nd-order approximation to g;, g;—1/2 = ¢; + 0.25¢) Ax? + - - -,
because ¢} = 0 for i = N, (a similar argument can be applied to the case i = 0).

)

A third discretization can be based on a simple and convenient, but less accurate, one-sided difference:
u; —ui—1 = 0 at i = Ny and u;41 —u; = 0 at © = 0. Derive the resulting scheme in detail and
implement it. Run experiments with ¢ from a) or b) to establish the rate of convergence of the
scheme.

d)

A fourth technique is to view the scheme as

1
(DuDal} = 5= (laDaull g~ laDodl?y ) = 171,

and place the boundary at z 1 = N, instead of exactly at the physical boundary. With this

it+30

idea of approximating (moving) the boundary, we can just set [(]D:,;u]?Jr 1 = 0. Derive the complete
2

scheme using this technique. The implementation of the boundary condition at L — Az/2 is O(Axz?)

accurate, but the interesting question is what impact the movement of the boundary has on the

convergence rate. Compute the errors as usual over the entire mesh and use ¢ from a) or b).
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2.60. Exercise: Verification by a cubic polynomial in space

The purpose of this exercise is to verify the implementation of the solver function in the program
wavelD_nO.py by using an exact numerical solution for the wave equation u; = gy + f with
Neumann boundary conditions u,(0,t) = u,(L,t) = 0.

A similar verification is used in the file wave1D_u0.py, which solves the same PDE, but with
Dirichlet boundary conditions u(0,¢) = u(L,t) = 0. The idea of the verification test in function
test_quadratic in wavelD_u0.py is to produce a solution that is a lower-order polynomial such
that both the PDE problem, the boundary conditions, and all the discrete equations are exactly
fulfilled. Then the solver function should reproduce this exact solution to machine precision. More
precisely, we seek u = X (x)7T'(t), with T'(t) as a linear function and X (x) as a parabola that fulfills
the boundary conditions. Inserting this v in the PDE determines f. It turns out that u also fulfills
the discrete equations, because the truncation error of the discretized PDE has derivatives in = and
t of order four and higher. These derivatives all vanish for a quadratic X (z) and linear T'(¢).

It would be attractive to use a similar approach in the case of Neumann conditions. We set
u = X (x)T'(t) and seek lower-order polynomials X and 7T'. To force u, to vanish at the boundary,
we let X, be a parabola. Then X is a cubic polynomial. The fourth-order derivative of a cubic
polynomial vanishes, so u = X (z)7'(t) will fulfill the discretized PDE also in this case, if f is
adjusted such that u fulfills the PDE.

However, the discrete boundary condition is not exactly fulfilled by this choice of u. The reason is
that

(Dowtt]” = 1y (25, 1) + %umx(x t) A — O(Ac?). (2.77)

At the two boundary points, we must demand that the derivative X,(x) = 0 such that u, = 0.
However, ug;, is a constant and not zero when X (z) is a cubic polynomial. Therefore, our
u= X(z)T(t) fulfills

1
[DZ:J:U]ZL = guzxx(xi,tn)A$2a

and not
[DQQJU]? :07 i:O,Nx,

as it should. (Note that all the higher-order terms O(Az?) also have higher-order derivatives that
vanish for a cubic polynomial.) So to summarize, the fundamental problem is that u as a product
of a cubic polynomial and a linear or quadratic polynomial in time is not an exact solution of the
discrete boundary conditions.

To make progress, we assume that u = X (x)T'(t), where T for simplicity is taken as a prescribed
linear function 1 + %t, and X (x) is taken as an unknown cubic polynomial Z?:O ajz’. There are
two different ways of determining the coefficients ay, ..., as such that both the discretized PDE
and the discretized boundary conditions are fulfilled, under the constraint that we can specify a
function f(z,t) for the PDE to feed to the solver function in wavelD_nO.py. Both approaches are
explained in the subexercises.

a)

One can insert u in the discretized PDE and find the corresponding f. Then one can insert u in the
discretized boundary conditions. This yields two equations for the four coefficients ag,...,as. To
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find the coefficients, one can set ap = 0 and a; = 1 for simplicity and then determine as and as.
This approach will make as and ag depend on Az and f will depend on both Az and At.

Use sympy to perform analytical computations. A starting point is to define u as follows:

def test_cubicl():
import sympy as sm
x, t, ¢, L, dx, dt = sm.symbols('x t ¢ L dx dt')
i, n = sm.symbols('i n', integer=True)

lambda t: 1 + sm.Rational(l,2)*t # Temporal term

= sm.symbols('a_0 a_1 a_2 a_3")

lambda x: sum(al[q]*x**q for q in range(4)) # Spatial term
lambda x, t: X(x)*T(t)

e X A
I

The symbolic expression for u is reached by calling u(x,t) with x and t as sympy symbols.

Define DxDx(u, i, n), DtDt(u, i, n), and D2x(u, i, n) as Python functions for returning the
difference approximations [Dy Dgul?, [DyDyu]?, and [Dagul?. The next step is to set up the residuals
for the equations [Do,ulg = 0 and [Da,uly, = 0, where N, = L/Azx. Call the residuals R_0 and
R_L. Substitute ag and a; by 0 and 1, respectively, in R_0, R_L, and a:

R_0O = R_0O.subs(al[0], 0).subs(al[1l], 1)

R_L = R_L.subs(a[0], 0).subs(al1], 1)

a = list(a) # enable in-place assignment
al0:2] =0, 1

Determining ao and ag from the discretized boundary conditions is then about solving two equations
with respect to ao and ag, i.e., a[2:]:

s = sm.solve([R_O, R_ L], al[2:])
al2:] = s[al[2]], s[al3]]

Now, a contains computed values and u will automatically use these new values since X accesses a.

Compute the source term f from the discretized PDE: f = [DyDyu — ¢?D,D,u]?. Turn u, the
time derivative u; (needed for the initial condition V' (z)), and f into Python functions. Set
numerical values for L, N,, C, and c. Prescribe the time interval as At = CL/(N,c), which imply
Az = ¢At/C = L/N,. Define new functions I(x), V(x), and f(x,t) as wrappers of the ones made
above, where fixed values of L, ¢, Az, and At are inserted, such that I, V, and f can be passed
on to the solver function. Finally, call solver with a user_action function that compares the
numerical solution to this exact solution u of the discrete PDE problem.

@ To turn a sympy expression e, depending on a series of

symbols, say x, t, dx, dt, L, and c, into a plain Python function e_exact(x,t,L,dx,dt,c),
one can write
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e_exact = sm.lambdify([x,t,L,dx,dt,c], e, 'numpy')

The 'numpy' argument is a good habit as the e_exact function will then work with array
arguments if it contains mathematical functions (but here we only do plain arithmetics, which
automatically work with arrays).

b)

An alternative way of determining ay, . ..,as is to reason as follows. We first construct X (x) such
that the boundary conditions are fulfilled: X = (L — x). However, to compensate for the fact that
this choice of X does not fulfill the discrete boundary condition, we seek u such that

1
uy = —x(L —x)T(t) — éumzAx2,
since this v will fit the discrete boundary condition. Assuming u = T'(t) Z?:o a;x?, we can use the
above equation to determine the coefficients a1, as,a3. A value, e.g., 1 can be used for ag. The
following sympy code computes this u:

def test_cubic2():
import sympy as sm
X, t, ¢, L, dx = sm.symbols('x t ¢ L dx')
T = lambda t: 1 + sm.Rational(l,2)*t # Temporal term
= lambda x: sum(al[il]*x**i for i in range(4))
= sm.symbols('a_ 0 a_1 a_2 a_3")
lambda x, t: X(x)*T(t)
= sm.diff (u(x,t), x) - (
x*(L-x) - sm.Rational(1,6)*sm.diff (u(x,t), x, x, x)*dx**2)
R = sm.poly(R, x)
coeff = R.all_coeffs()
s = sm.solve(coeff, a[l:]) # a[0] is not present in R
slal0]] =1
X = lambda x: sm.simplify(sum(s[al[i]l]l*x**i for i in range(4)))
u = lambda x, t: X(x)*T(t)
print 'u:', u(x,t)

e X
I

The next step is to find the source term f_e by inserting u_e in the PDE. Thereafter, turn u, £,
and the time derivative of u into plain Python functions as in a), and then wrap these functions
in new functions I, V, and £, with the right signature as required by the solver function. Set
parameters as in a) and check that the solution is exact to machine precision at each time level
using an appropriate user_action function.
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2. Wave Equations
2.61. Analysis of the wave equation

2.61.1. Properties of the solution

The wave equation
?u  ,0%u
o2l
Ot? Ox?
has solutions of the form
u(z,t) = gr(x — ct) + gr(x + ct), (2.78)

for any functions gr and gy, sufficiently smooth to be differentiated twice. The result follows from
inserting (2.78) in the wave equation. A function of the form gr(x — ct) represents a signal moving
to the right in time with constant velocity c¢. This feature can be explained as follows. At time
t = 0 the signal looks like gr(x). Introducing a moving horizontal coordinate £ = & — ct, we see the
function gr(&) is “at rest” in the £ coordinate system, and the shape is always the same. Say the
gr(&) function has a peak at £ = 0. This peak is located at x = ct, which means that it moves with
the velocity dz/dt = ¢ in the x coordinate system. Similarly, g (x + ct) is a function, initially with
shape gr,(x), that moves in the negative z direction with constant velocity ¢ (introduce £ = x + ct,
look at the point £ = 0, z = —ct, which has velocity dx/dt = —c).

With the particular initial conditions
u(z,0) = I(z) gu(x 0)=0
b - b at ) - )
we get, with u as in (2.78),

gr(x) + gr(x) = I(z), —cgr(z)+cgp(z)=0.

The former suggests gr = gz, and the former then leads to gr = gr, = I/2. Consequently,
1 1
u(z,t) = 5](3: —ct)+ 5[(3: +ct). (2.79)

The interpretation of (2.79) is that the initial shape of u is split into two parts, each with the same
shape as I but half of the initial amplitude. One part is traveling to the left and the other one to
the right.

The solution has two important physical features: constant amplitude of the left and right wave,
and constant velocity of these two waves. It turns out that the numerical solution will also preserve
the constant amplitude, but the velocity depends on the mesh parameters At and Az.

The solution (2.79) will be influenced by boundary conditions when the parts $I(z — ct) and
%I (z + ct) hit the boundaries and get, e.g., reflected back into the domain. However, when I(z)
is nonzero only in a small part in the middle of the spatial domain [0, L], which means that the
boundaries are placed far away from the initial disturbance of u, the solution (2.79) is very clearly
observed in a simulation.

A useful representation of solutions of wave equations is a linear combination of sine and/or cosine
waves. Such a sum of waves is a solution if the governing PDE is linear and each sine or cosine wave
fulfills the equation. To ease analytical calculations by hand we shall work with complex exponential
functions instead of real-valued sine or cosine functions. The real part of complex expressions will
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typically be taken as the physical relevant quantity (whenever a physical relevant quantity is strictly
needed). The idea now is to build I(x) of complex wave components e?*%:

I(z)~ > bre'*™. (2.80)
keK

Here, k is the frequency of a component, K is some set of all the discrete k£ values needed to
approximate I(x) well, and by are constants that must be determined. We will very seldom need to
compute the by coefficients: most of the insight we look for, and the understanding of the numerical
methods we want to establish, come from investigating how the PDE and the scheme treat a single
component ¢*** wave.

Letting the number of &k values in K tend to infinity, makes the sum (2.80) converge to I(z).
This sum is known as a Fourier series representation of I(z). Looking at (2.79), we see that the
solution wu(x,t), when I(x) is represented as in (2.80), is also built of basic complex exponential

wave components of the form e?*(#%ct) according to
1 ik(z—ct) | L ik(z-+ct
u(z,t) = 3 3 betklamet) 4 ¢ 3 ettt (2.81)
keK keK

It is common to introduce the frequency in time w = k¢ and assume that u(z,t) is a sum of
basic wave components written as e**~“*_ (Observe that inserting such a wave component in the
governing PDE reveals that w? = k?c?, or w = +kc, reflecting the two solutions: one (+kc) traveling
to the right and the other (—kc) traveling to the left.)

2.62. More precise definition of Fourier representations

The above introduction to function representation by sine and cosine waves was quick and intuitive,
but will suffice as background knowledge for the following material of single wave component analysis.
However, to understand all details of how different wave components sum up to the analytical and
numerical solutions, a more precise mathematical treatment is helpful and therefore summarized
below.

It is well known that periodic functions can be represented by Fourier series. A generalization of
the Fourier series idea to non-periodic functions defined on the real line is the Fourier transform:

I(x) = /_ O:O A(k)e*2dk, (2.82)

Alk) = / I(2)e % dz . (2.83)
The function A(k) reflects the weight of each wave component ¢?** in an infinite sum of such wave

components. That is, A(k) reflects the frequency content in the function I(x). Fourier transforms
are particularly fundamental for analyzing and understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

u(z,t) :/ A(k)e!Fe=w®)) gy,
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In a finite difference method, we represent u by a mesh function uy;, where n counts temporal mesh

points and ¢ counts the spatial ones (the usual counter for spatial points, 4, is here already used
as imaginary unit). Similarly, I(z) is approximated by the mesh function I,, ¢ = 0,..., N,. On
a mesh, it does not make sense to work with wave components ¢”** for very large k, because the
shortest possible sine or cosine wave that can be represented uniquely on a mesh with spacing Ax is
the wave with wavelength 2Ax. This wave has its peaks and throughs at every two mesh points.
That is, the wave “jumps up and down” between the mesh points.

The corresponding k value for the shortest possible wave in the mesh is k = 27 /(2Az) = w/Az. This
maximum frequency is known as the Nyquist frequency. Within the range of relevant frequencies
(0, m/Ax] one defines the discrete Fourier transform, using N, + 1 discrete frequencies:

N,
1 5
I, = ST Akl Net ) g =0, N, (2.84)
Ny +1 k=0
Ny '
A=Y Ie #mka/ (0Nt =0, N, . (2.85)
q=0

The Aj, values represent the discrete Fourier transform of the I, values, which themselves are the
inverse discrete Fourier transform of the Aj values.

The discrete Fourier transform is efficiently computed by the Fast Fourier transform algorithm.
For a real function I(z), the relevant Python code for computing and plotting the discrete Fourier
transform appears in the example below.

import numpy as np
from numpy import pi, sin

def I(x):
return sin(2 * pi * x) + 0.5 * sin(4 * pi * x) + 0.1 * sin(6 * pi * x)

L =10

Nx = 100

x = np.linspace(0, L, Nx + 1)
dx = L / float(Nx)

A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

freqs = np.linspace(0, pi / dx, A_amplitude.size)
import matplotlib.pyplot as plt

plt.plot(freqs, A_amplitude)
plt.show()
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2.63. Stability

The scheme
[DyDyu = ¢* Dy Dgul}! (2.86)

for the wave equation u; = u,, allows basic wave components

_ ei(ka:q —Qty)

n
’LLq

as solution, but it turns out that the frequency in time, @, is not equal to the exact frequency
w = kc. The goal now is to find exactly what © is. We ask two key questions:

e How accurate is @ compared to w?
o Does the amplitude of such a wave component preserve its (unit) amplitude, as it should, or
does it get amplified or damped in time (because of a complex @)?

The following analysis will answer these questions. We shall continue using ¢ as an identifier for a
certain mesh point in the x direction.

2.63.1. Preliminary results

A key result needed in the investigations is the finite difference approximation of a second-order
derivative acting on a complex wave component:

[DtDteiwt]n _ 7%.[;2 sin2 <W2At> ez‘wnAt .

By just changing symbols (w — k, t — x, n — q) it follows that

. 4 kA »
[DmD;Eeka]q — _ AI'Q Sin2 ( . x) ezk:qu‘ .

##+# Numerical wave propagation Inserting a basic wave component u; = eilkzq=0tn) jp (2.86)
results in the need to evaluate two expressions:

[DtDteika:efid)t}n — [DtDtefi&)t]neikqu

q
4 DAL i ;
_ s sin? <w2> e~ WwnAt jikgAx (2.87)
(D Dye™ e 1 = [Dy Dye]ge o
= - A4 2 sin? (k§x> ethaAz o —idnAt. (2.88)
x

Then the complete scheme,

[DtDteik:xe—ia)t — CQDszeikxe—iajt]Z

leads to the following equation for the unknown numerical frequency @ (after dividing by

ik o—iaty,
4 sin? (ONJAt> =c? 4 sin? (kAx)
2 ) Ax? 2 )’
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or
JAN A
sin? (wt) = (C?%sin® <M> , (2.89)
2 2
where A
c
C=—
Az

is the Courant number. Taking the square root of (2.89) yields

sin (w;At) = C'sin <kA2m) , (2.90)

Since the exact w is real it is reasonable to look for a real solution @ of (2.90). The right-hand side
of (2.90) must then be in [—1, 1] because the sine function on the left-hand side has values in [—1,1]
for real @. The magnitude of the sine function on the right-hand side attains the value 1 when

kAx

T = 5 +mm, meZ.
With m = 0 we have kAx = 7, which means that the wavelength A = 27 /k becomes 2Ax. This
is the absolutely shortest wavelength that can be represented on the mesh: the wave jumps up
and down between each mesh point. Larger values of |m/| are irrelevant since these correspond to k
values whose waves are too short to be represented on a mesh with spacing Az. For the shortest
possible wave in the mesh, sin (kAz/2) = 1, and we must require

C<1. (2.91)

Consider a right-hand side in (2.90) of magnitude larger than unity. The solution @ of (2.90) must
then be a complex number & = @, + i@; because the sine function is larger than unity for a complex
argument. One can show that for any w; there will also be a corresponding solution with —w;. The
component with w; > 0 gives an amplification factor e*i! that grows exponentially in time. We
cannot allow this and must therefore require C' < 1 as a stability criterion.

1 Remark on the stability requirement

For smoother wave components with longer wave lengths per length Az, (2.91) can in theory
be relaxed. However, small round-off errors are always present in a numerical solution and
these vary arbitrarily from mesh point to mesh point and can be viewed as unavoidable noise
with wavelength 2Ax. As explained, C > 1 will for this very small noise lead to exponential
growth of the shortest possible wave component in the mesh. This noise will therefore grow
with time and destroy the whole solution.

2.64. Numerical dispersion relation

Equation (2.90) can be solved with respect to @:

2y - (kAz
= A 5in (C’sm <2)> . (2.92)

&
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The relation between the numerical frequency @ and the other parameters k, ¢, Az, and At is
called a numerical dispersion relation. Correspondingly, w = kc is the analytical dispersion relation.
In general, dispersion refers to the phenomenon where the wave velocity depends on the spatial
frequency (k, or the wave length \ = 27 /k) of the wave. Since the wave velocity is w/k = ¢, we
realize that the analytical dispersion relation reflects the fact that there is no dispersion. However,
in a numerical scheme we have dispersive waves where the wave velocity depends on k.

The special case C' = 1 deserves attention since then the right-hand side of (2.92) reduces to

2 kAx 1 wAz w
— —_—— == =uw.

At 2 At ¢ C

That is, @ = w and the numerical solution is exact at all mesh points regardless of Az and At!
This implies that the numerical solution method is also an analytical solution method, at least for
computing u at discrete points (the numerical method says nothing about the variation of u between
the mesh points, and employing the common linear interpolation for extending the discrete solution
gives a curve that in general deviates from the exact one).

For a closer examination of the error in the numerical dispersion relation when C' < 1, we can
study @ — w, @/w, or the similar error measures in wave velocity: ¢ — ¢ and ¢/¢, where ¢ = w/k and
¢ = @/k. It appears that the most convenient expression to work with is ¢/c, since it can be written
as a function of just two parameters:

(SN

= insim1 (Csinp),
with p = kAz/2 as a non-dimensional measure of the spatial frequency. In essence, p tells how many
spatial mesh points we have per wave length in space for the wave component with frequency k
(recall that the wave length is 27 /k). That is, p reflects how well the spatial variation of the wave
component is resolved in the mesh. Wave components with wave length less than 2Ax (27/k < 2Ax)
are not visible in the mesh, so it does not make sense to have p > /2.

We may introduce the function r(C,p) = ¢/c for further investigation of numerical errors in the
wave velocity:

r(C,p) = insin_1 (Csinp), Ce€(0,1], pe (0,7/2]. (2.93)

This function is very well suited for plotting since it combines several parameters in the problem
into a dependence on two dimensionless numbers, C' and p.

Defining

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

we can plot r(C,p) as a function of p for various values of C, see Figure Figure 2.6. Note that the
shortest waves have the most erroneous velocity, and that short waves move more slowly than they
should.

We can also easily make a Taylor series expansion in the discretization parameter p:
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11 Numerical divided by exact wave velocity

1.0

o
©

velocity ratio

o
o<

0.7 5
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Figure 2.6.: The fractional error in the wave velocity for different Courant numbers.
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>>> import sympy as sym

>>> C, p = sym.symbols('C p')

>>> # Compute the 7 first terms around p=0 with no 0() term
>>> rs = r(C, p).series(p, 0, 7).remove0()

>>> rs

px*6* (6xCx*6/112 - C*x4/16 + 13xCx*2/720 - 1/5040) +

p**4x (3%C*x4/40 - C*x*2/12 + 1/120) +

p**2* (C**2/6 - 1/6) + 1

>>> # Pick out the leading order term, but drop the constant 1
>>> rs_error_leading order = (rs - 1).extract_leading order(p)
>>> rs_error_leading_order

p**2% (C**2/6 - 1/6)

>>> # Turn the series expansion into a Python function
>>> rs_pyfunc = lambdify([C, p]l, rs, modules='numpy')

>>> # Check: rs_pyfunc is exact (=1) for C=1
>>> rs_pyfunc(l, 0.1)
1.0

Note that without the .remove0() call the series gets an 0(x**7) term that makes it impossible to
convert the series to a Python function (for, e.g., plotting).

From the rs_error_leading order expression above, we see that the leading order term in the
error of this series expansion is

1 (kAz\?, k25 )
6<T> (0—1)=ﬁ(cAt—Ax),

pointing to an error O(At?, Az?), which is compatible with the errors in the difference approximations
(D¢Dyu and DDy u).

We can do more with a series expansion, e.g., factor it to see how the factor C' — 1 plays a significant
role. To this end, we make a list of the terms, factor each term, and then sum the terms:

>>> rs = r(C, p).series(p, 0, 4).removeO().as_ordered_terms()
>>> rs

[1, Cx*2xp**2/6 - p*x*2/6,

3xCxx4xpx*x4 /40 — Ck*2xp*x4/12 + p*x4/120,

BxC**B*px*6/112 — Cx*4*p**6/16 + 13*C**2*p**6/720 — p**6/5040]
>>> rs = [factor(t) for t in rs]

>>> rs

[1, pxx2x(C - 1)*x(C + 1)/6,

p*¥*4*(C - 1)*x(C + 1)*(3*C - 1)*(3*C + 1)/120,

px*6%(C - 1)*x(C + 1)*(225%xC*x*4 - 90*C**2 + 1)/5040]

>>> rs = sum(rs) # Python's sum function sums the list

>>> rs
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p*x*x6*(C - 1)*(C + 1)*(225*C**4 - 90*C*x2 + 1) /5040 +
p**4x(C - 1)*(C + 1)*(3%C - 1)*(3*C + 1)/120 +
p**x2*%(C - 1)*(C + 1)/6 + 1

We see from the last expression that C' = 1 makes all the terms in rs vanish. Since we already know
that the numerical solution is exact for C' = 1, the remaining terms in the Taylor series expansion
will also contain factors of C' — 1 and cancel for C' = 1.

2.65. Extending the analysis to 2D and 3D

The typical analytical solution of a 2D wave equation
Ut = Cz(ucc:c + uyy)y

is a wave traveling in the direction of k = k;% + k,j, where ¢ and j are unit vectors in the z and y
directions, respectively (¢ should not be confused with 7 = /=1 here). Such a wave can be expressed
by

u(z,y,t) = g(kyx + kyy — ket)

for some twice differentiable function g, or with w = ke, k = |k|:

uw(z,y,t) = g(kyx + kyy — wt) .
We can, in particular, build a solution by adding complex Fourier components of the form

elilkezt+hyy—wt))
A discrete 2D wave equation can be written as
[DyDyu = (DyDyu + DyDyu)]7 .. (2.94)

This equation admits a Fourier component

ul = lilkeaBa-thyrAy—anAt) (2.95)

as solution. Letting the operators DDy, Dy D, and Dy, D, act on uy, from (2.95) transforms (2.94)

to
4 5 (WAL o 4 . o (kiAx o 4 o (kyAy
Tﬁsm (T) =c N sin ( 5 > +c A—y2$1n (2) .

or
WAL
sin? (2> = Cg sin? p, + CS sin? Dy,

where we have eliminated the factor 4 and introduced the symbols

cAt cAt ks Az kyAy

0:7 0:7 p—
x Az’ Y Ay’ Dz 5 Dy 9

For a real-valued @ the right-hand side must be less than or equal to unity in absolute value,
requiring in general that
CZ+C2<1. (2.96)
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This gives the stability criterion, more commonly expressed directly in an inequality for the time
step:
1/ 1 1 \"Y?
At< = | —5 + — 2.97
¢ <A:J:2 + Ay2) ( )
A similar, straightforward analysis for the 3D case leads to

st ()
~c\Az2  Ay? Az

In the case of a variable coefficient ¢ = c?(x), we must use the worst-case value

¢ =, /maxc?(x)
ze

in the stability criteria. Often, especially in the variable wave velocity case, it is wise to introduce a
safety factor € (0, 1] too:

1/ 1 1 1\ 1/2
At s ﬁg (Aa:Q + Ay? + A22>

The exact numerical dispersion relations in 2D and 3D becomes, for constant c,

.2 . . 3

O =50 ! ((Cg sin? p, + C’; sin? py> 2) , (2.98)
.2 . . . 3

O = 4 sin ! ((C’% sin’ p,, + C’g sin? p,, + C?2 sin? pz> 2) . (2.99)

We can visualize the numerical dispersion error in 2D much like we did in 1D. To this end, we need
to reduce the number of parameters in @. The direction of the wave is parameterized by the polar

angle 0, which means that
ky = ksin®, k, =kcos0.

A simplification is to set Az = Ay = h. Then C, = Cy = cAt/h, which we call C'. Also,

1 1
Pr = §kh cosf, py = §kh sin @ .

The numerical frequency @ is now a function of three parameters:

o C, reflecting the number of cells a wave is displaced during a time step,
e p= %kh, reflecting the number of cells per wave length in space,
e 0, expressing the direction of the wave.

We want to visualize the error in the numerical frequency. To avoid having At as a free parameter
in @, we work with é/c = @/(kc). The coefficient in front of the sin~! factor is then

2 2 12
kcAt — 2kcAth/h  Ckh  Cp’

and

ol

. 2 1 . 9 . 92 . %
= C—psm (C (sm (pcos @) + sin (ps1n9)) > :
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We want to visualize this quantity as a function of p and 8 for some values of C' < 1. It is instructive
to make color contour plots of 1 — ¢&/c in polar coordinates with 6 as the angular coordinate and p
as the radial coordinate.

The stability criterion (2.96) becomes C' < Cpax = 1/4/2 in the present 2D case with the C' defined
above. Let us plot 1 — ¢&/c in polar coordinates for Ciax, 0.9Chax, 0.5Cnax, 0.2Chax. The program
below does the somewhat tricky work in Matplotlib, and the result appears in Figure Figure 2.7.
From the figure we clearly see that the maximum C value gives the best results, and that waves
whose propagation direction makes an angle of 45 degrees with an axis are the most accurate.

LR
L

Figure 2.7.: Error in numerical dispersion in 2D.
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2.66. Multi-dimensional wave equations

A natural next step is to consider extensions of the methods for various variants of the one-
dimensional wave equation to two-dimensional (2D) and three-dimensional (3D) versions of the
wave equation.
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2.67. Multi-dimensional wave equations

The general wave equation in d space dimensions, with constant wave velocity ¢, can be written in
the compact form

2
gté‘ = AV for z € Q C RY, ¢ € (0,7, (2.100)
where o o
2, g T
Viu = 972 + 92

in a 2D problem (d = 2) and

u  0*u  Du
BT
in three space dimensions (d = 3).

Many applications involve variable coefficients, and the general wave equation in d dimensions is in
this case written as

05z =V (@Vu)+ florzeQc R?, t € (0,7, (2.101)

which in, e.g., 2D becomes
0%u 0 ou 0 ou
Q(ﬂfvy)w = oz <q<$’y)8x> + oy (fJ(%?J)ay) + f(@,y,t).

To save some writing and space we may use the index notation, where subscript ¢, x, or y means
differentiation with respect to that coordinate. For example,

Pu
ot?

(fy (q(w,y)gzﬁ = (quy)y

.These comments extend straightforwardly to 3D, which means that the 3D versions of the two
wave PDEs, with and without variable coefficients, can be stated as

= Utt,

U = A (Ugg + Uyy +uzs) + (2.102)
our = (qug)z + (quy)y + (quz). + f . (2.103)

At each point of the boundary 92 (of ©2) we need one boundary condition involving the unknown w.
The boundary conditions are of three principal types:

1. u is prescribed (v = 0 or a known time variation of v at the boundary points, e.g., modeling
an incoming wave),

2. Ou/On = n - Vu is prescribed (zero for reflecting boundaries),

3. an open boundary condition (also called radiation condition) is specified to let waves travel
undisturbed out of the domain, see Exercise Section 2.57 for details.

All the listed wave equations with second-order derivatives in time need two initial conditions:

1. u=1,
2. ut:V.
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2.68. Mesh

We introduce a mesh in time and in space. The mesh in time consists of time points
to=0<t1 < - <tny,

normally, for wave equation problems, with a constant spacing At =t,41 —t,, n € Z; .

Finite difference methods are easy to implement on simple rectangle- or box-shaped spatial domains.
More complicated shapes of the spatial domain require substantially more advanced techniques
and implementational efforts (and a finite element method is usually a more convenient approach).
On a rectangle- or box-shaped domain, mesh points are introduced separately in the various space
directions:

xp < 21 < --- < xp, in the x direction,
Yo < y1 < --- <yn, in the y direction,
2p < 21 < --- < zy, in the z direction.
We can write a general mesh point as (z;,y;, 2k, tn), with i € Z,, j € Z,,, k € 7, and n € T;.

It is a very common choice to use constant mesh spacings: Az = zj11 — x4, 1 € I, Ay = yjr1 — vy,
VRS Iy_, and Az = 241 — 2k, k € Z; . With equal mesh spacings one often introduces h = Az =
Ay = Az.

The unknown u at mesh point (z;,y;, 2k, tn) is denoted by u:‘]k In 2D problems we just skip the z

coordinate (by assuming no variation in that direction: 0/9z = 0) and write uj;.

2.69. Discretization

Two- and three-dimensional wave equations are easily discretized by assembling building blocks for
discretization of 1D wave equations, because the multi-dimensional versions just contain terms of
the same type as those in 1D.

2.69.1. Discretizing the PDEs

Equation (2.102) can be discretized as
[D¢Dyu = ¢*(Dy Dy + DyDyu+ D Do) + f17 -
A 2D version might be instructive to write out in detail:

[DyDyu = ¢*(DyDyu + DyDyu) + f]

n
Z‘?j’
which becomes
u L *i, ] — 2u™ % *i, j —|—uzj_1 2u” %)+ 1,5 — 2u™ * x1, J +u?—1’j_|_ 9
= C C
At2 A$2 Ay2

u kg, § 4+ 1 —2u” kxi, g +ult
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Assuming, as usual, that all values at time levels n and n — 1 are known, we can solve for the only

unknown u?jl The result can be compactly written as

n+1

u"oxd, = 20" x i, § 4 uy 4 AP Dy Dyu 4 DyDyul? (2.104)

As in the 1D case, we need to develop a special formula for uzlj where we combine the general
n+1

scheme for u;’ 5 when n =0, with the discretization of the initial condition:

[Dayu = V]?’j = wlwwi,j=ulwxij— 2ALV; ;.

The result becomes, in compact form,

1
ul ki, j = ul xxi, j — 24V + 502At2[D$Dxu + DyDyul? ;. (2.105)
The PDE (2.103) with variable coefficients is discretized term by term using the corresponding
elements from the 1D case:
[0D¢Dyu = (D:q" Dyu + Dyq? Dyu + D.q" D,u) + f17 1 -

When written out and solved for the unknown u?jkl;, one gets the scheme

W o, g k= —u T o, Gk 4 20+
11 1 yr -
o A2 g gk T ity (W A1, G ko — i, k)=
5
1 - L
2 @im1g i g ) (W xoxd, ok — o =1, )+
11,1 no no
0i okKy‘?(ﬁ(qz‘u’,k F Gigaik) (Wt J A 1k — ek, g k) —
27‘77
1 - o
§(€Iz',j—1,k + i) (U x 0, gk —u" xokd, § — 1, k))+
11 1 n no
o A2 (5 i+ Qi)W i ok = ki K) -
Z7]7
1 - o
2 (i1 F Gig ) (W™ o, o k= o o k= 1))+
2
AL [k

117 ik by combining the scheme for n = 0 with the

discrete initial condition, which is just a matter of inserting u=' x *i, j, k = u' % %i, j, k — 2AtV; ;i in
the scheme and solving for uzl ke

Also here we need to develop a special formula for u

2.69.2. Handling boundary conditions where v is known

The schemes listed above are valid for the internal points in the mesh. After updating these, we
need to visit all the mesh points at the boundaries and set the prescribed u value.
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2.69.3. Discretizing the Neumann condition

The condition du/On = 0 was implemented in 1D by discretizing it with a Da,u centered difference,
followed by eliminating the fictitious u point outside the mesh by using the general scheme at the
boundary point. Alternatively, one can introduce ghost cells and update a ghost value for use in the
Neumann condition. Exactly the same ideas are reused in multiple dimensions.

Consider the condition du/dn = 0 at a boundary y = 0 of a rectangular domain [0, L] x [0, L,] in
2D. The normal direction is then in —y direction, so

ou  Ou

on Oy’

and we set "
Ui — U

[—Dgyu = 0]20 =
From this it follows that uj!_; = ;. The discretized PDE at the boundary point (4,0) reads

n+1 . n . n—1 n . n . n n . n . n
*%7,0 — 2u™ x %7, 0 + u; ux x4+ 1,0 — 2u™ % %2, 0 4+ u! u x %0, 1 — 20" % %1, 0 + uk
3 ) ) n
(3 ) ) i,0 9 ) ) i—1.0 2 ) ) 7,—1
At? —° Ax? e Ay? +hi

We can then just insert u;y for w;'_; in this equation and solve for the boundary value u%rl, just as
was done in 1D.

From these calculations, we see a pattern: the general scheme applies at the boundary j = 0 too
if we just replace 7 — 1 by j + 1. Such a pattern is particularly useful for implementations. The
details follow from the explained 1D case in Section Section 2.38.

The alternative approach to eliminating fictitious values outside the mesh is to have u;’_; available
as a ghost value. The mesh is extended with one extra line (2D) or plane (3D) of ghost cells at a
Neumann boundary. In the present example it means that we need a line with ghost cells below the
y axis. The ghost values must be updated according to u™ ! * xi, —1 = w1 % xi, 1.

2.70. The 2D Wave Equation with Devito

Extending the wave solver to two dimensions illustrates the power of Devito’s dimension-agnostic
approach. The same symbolic patterns apply, and Devito automatically generates optimized 2D
stencils.

2.70.1. The 2D Wave Equation

The two-dimensional wave equation on [0, L] x [0, L,] is:

0?u o [%*u  O%u 29

where V2u = ugy + Uyy is the Laplacian.
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2.70.2. Devito’s Dimension-Agnostic Laplacian
Devito provides the .laplace attribute that works in any dimension:
from devito import Grid, TimeFunction

# 2D grid
grid = Grid(shape=(Nx + 1, Ny + 1), extent=(Lx, Ly))

# 2D wave field
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

# The Laplacian works the same as in 1D!
laplacian = u.laplace # Returns u_xx + u_yy automatically

This is one of Devito’s key strengths: the same code pattern scales from 1D to 2D to 3D without
changes.

2.70.3. CFL Stability Condition in 2D

The stability condition in 2D is more restrictive than in 1D:

1 1

=c- At | —+-—<1
C=c-At A2 + N
For equal grid spacing Ax = Ay = h:
At<

Compared to the 1D condition At < h/c, the 2D condition allows smaller time steps by a factor of
1/V2 ~ 0.707.

2.70.4. The 2D Solver

The src.wave module provides solve_wave_2d:

from src.wave import solve_wave_2d
import numpy as np

# Initial condition: 2D standing wave
def I(X, Y):
return np.sin(np.pi * X) * np.sin(np.pi * Y)

result = solve wave_2d(

L=l o0, Iyl .0 # Domain size
c=1.0, # Wave speed
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Nx=50, Ny=50, # Grid points

T=1.0, # Final time

C=0.5, # Courant number

I=1, # Initial displacement

# Result is a 2D array
print (result.u.shape) # (51, 51)

2.70.5. 2D Boundary Conditions

Dirichlet conditions must be applied on all four boundaries:

from devito import Eq

t_dim = grid.stepping_dim
x_dim, y_dim = grid.dimensions

# Boundary conditions (u = O on all boundaries)

bc_x0 = Eq(ult_dim + 1, 0, y_dim], O0) # Left
bc_xN = Eq(ult_dim + 1, Nx, y_dim], 0) # Right
bc_y0 = Eq(ult_dim + 1, x_dim, 0], 0) # Bottom
bc_yN = Eq(ult_dim + 1, x_dim, Ny], 0) # Top

2.70.6. Standing Waves in 2D

The exact solution for the initial condition I(x,y) = sin(nz/L;) sin(ry/L,) with V = 0 is:

u(z,y,t) = sin <Z) sin <7Lry:> cos(wt)

where the angular frequency is:

1 + 1
W=Cny| =5 s
271

This can be used for verification:

from src.wave import convergence_test_wave_2d

grid_sizes, errors, rate = convergence_test_wave_2d(
grid_sizes=[10, 20, 40, 80],

T=0.25,
C=0.5,

print (f"Observed convergence rate: {rate:.2f}") # Should be ~2.0
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2.70.7. Visualizing 2D Solutions

For 2D problems, surface plots and contour plots are useful:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

result = solve_wave_2d(Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=0.5, C=0.5)
X, Y = np.meshgrid(result.x, result.y, indexing='ij')
fig = plt.figure(figsize=(12, 5))

# Surface plot

axl = fig.add_subplot(121, projection='3d"')
axl.plot_surface(X, Y, result.u, cmap='viridis')
axl.set_xlabel('x"')

axl.set_ylabel('y')

axl.set_zlabel('u')

axl.set_title(f't = {result.t:.3f}')

# Contour plot

ax2 = fig.add_subplot(122)

c = ax2.contourf(X, Y, result.u, levels=20, cmap='RdBu_r')
plt.colorbar(c, ax=ax2)

ax2.set_xlabel('x"')

ax2.set_ylabel('y"')

ax2.set_title('Contour plot')

ax2.set_aspect('equal')

2.70.8. Animation of 2D Waves

from matplotlib.animation import FuncAnimation

result = solve wave_2d(
Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=2.0, C=0.5,
save_history=True,

fig, ax = plt.subplots()
X, Y = np.meshgrid(result.x, result.y, indexing='ij')
vmax = np.abs(result.u_history) .max()

im = ax.contourf (X, Y, result.u_history[0], levels=20,
cmap='RdBu_r', vmin=-vmax, vmax=vmax)
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def update(frame) :
ax.clear()
ax.contourf (X, Y, result.u_history[frame], levels=20,
cmap='RdBu_r', vmin=-vmax, vmax=vmax)
ax.set_title(f't = {result.t_history[frame]:.3f}"')
ax.set_aspect('equal')
return []

anim = FuncAnimation(fig, update, frames=len(result.t_history),
interval=50)

2.70.9. From 2D to 3D

The pattern extends naturally to three dimensions. In Devito, the main changes are:

1. Add a third dimension to the grid
2. The .laplace attribute automatically includes u,,

# 3D grid
grid = Grid(shape=(Nx+1, Ny+1, Nz+1), extent=(Lx, Ly, Lz))

# 3D wave field
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

# The PDE is unchanged!
pde = u.dt2 - c**2 * u.laplace

The CFL condition in 3D becomes:

for equal grid spacing in all directions.

2.70.10. Computational Considerations

2D and 3D wave simulations can become computationally expensive. Devito helps through:

e Automatic parallelization: Set OMP_NUM_THREADS for OpenMP
e Cache optimization: Loop tiling is applied automatically
e GPU support: Use platform='nvidiaX' for CUDA execution

For large-scale simulations, the generated C code is highly optimized and can match hand-tuned
implementations.
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2.70.11. Summary

Key points for 2D wave equations with Devito:

The .laplace attribute handles the dimension automatically

CFL conditions are more restrictive (factor of 1/v/d in d dimensions)
Boundary conditions must be applied on all boundaries
Visualization requires surface/contour plots and animations

The same code patterns extend to 3D with minimal changes

Gl W=

Devito’s abstraction means we write the physics once and let the framework handle the computational
complexity across dimensions.

2.71. Implementation of 2D and 3D wave equations

We shall now describe in detail various Python implementations for solving a standard 2D, linear
wave equation with constant wave velocity and © = 0 on the boundary. The wave equation is to
be solved in the space-time domain © x (0,77, where Q = (0, L) x (0, Ly) is a rectangular spatial
domain. More precisely, the complete initial-boundary value problem is defined by

Uy = (Ugy +uyy) + f(2,y,8),  (v,y) €Q, t€(0,T], (2.107)
u(z,y,0) = I(z,y), (z,y) € Q, (2.108)
ut(z,y,0) = V(z,y), (z,y) € Q, (2.109)
u =0, (x,y) € 0Q, t € (0,77, (2.110)

where 0f) is the boundary of €2, in this case the four sides of the rectangle Q = [0, L,] x [0, L,]:
r=0,v=L;,y=0,and y = L.

The PDE is discretized as

[DyDyu = ¢*(DyDyu + DyDyu) + f]

n
2,37

which leads to an explicit updating formula to be implemented in a program:

n+1l __ n—1 n
Uij = Uiy T 2u 5+

i?j
2/, n n n 2/, n n n 2 rn
Cx(ul 15 — 2“7,,] + U, 17]') + Cy (U,L,] 1 — Qul,j + ui,j 1) + At INE

(2.111)

for all interior mesh points i € Z? and j € I;, for n € Z;7. The constants C, and C, are defined as

At At
Cp=c—, Cy=c—
* Az’ Y Ay
At the boundary, we simply set uf;rl =0fori=0,7=0,...,Ny; 0 =Ny, 7=0,...,Ny; 5 =0,
i=0,...,Np;and j = Ny, i =0,...,N,. For the first step, n = 0, (2.111) is combined with the
discretization of the initial condition u; =V, [Doyu = V]?J to obtain a special formula for uzlj at
the interior mesh points:
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uj; =g+ AtVij+
L 2 0 0 0 L 2 0o 0 0
§Cx(uz‘+1,j = 2uy; + Uiy ;) + icy (wijpr — 2uij +ug )+

1
5At2 b

The algorithm is very similar to the one in 1D:

S Uk W=

Set initial condition u?} ;= 1(zi,y;)
Compute u; ; from (2.111)

Set ullj = 0 for the boundaries ¢ = 0, Ny, j = 0, N,
Forn=1,2,..., N

Find u?jl from (2.111) for all internal mesh points, i € 7%, j € I;

Set uf;rl = 0 for the boundaries ¢ = 0, N, j = 0, N,

2.72. Scalar computations

(2.112)

The solver function for a 2D case with constant wave velocity and boundary condition v = 0
is analogous to the 1D case with similar parameter values (see wavelD_u0.py), apart from a few
necessary extensions. The code is found in the program wave2D_u0.py.

2.72.1. Domain and mesh

The spatial domain is now [0, L] x [0, L,], specified by the arguments Lx and Ly. Similarly, the
number of mesh points in the x and y directions, N, and Ny, become the arguments Nx and Ny. In
multi-dimensional problems it makes less sense to specify a Courant number since the wave velocity
is a vector and mesh spacings may differ in the various spatial directions. We therefore give At
explicitly. The signature of the solver function is then

def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,

user_action=None, version='scalar'):

Key parameters used in the calculations are created as

X

y

dx
dy
Nt

t = linspace(0, Nxdt, N+1)

= linspace(0, Lx, Nx+1)
linspace(0, Ly, Ny+1)

# mesh points in x dir
# mesh points in y dir
x[1] - x[0]

y[1] - y[0]

int (round(T/float (dt)))

# mesh points in time

Cx2 = (cxdt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt*xx*x2
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2.72.2. Solution arrays

We store u™ 1 % %i, j, u™ % i, j, and uf]_l in three two-dimensional arrays,
I

u zeros ((Nx+1,Ny+1))  # solution array

[zeros ((Nx+1,Ny+1)), zeros((Nx+1,Ny+1))] # t-dt, t-2xdt

u_n

where u?jl corresponds to uli, jI, uf; tou_nli,jl, and u?]_l to u_nmi[i,j].

2.72.3. Index sets

It is also convenient to introduce the index sets (cf. Section Section 2.39)

Ix = range(0, u.shape[0])
It = range(0, u.shapel[1])
It = range(0, t.shapel[0])

2.72.4. Computing the solution

Inserting the initial condition I in u_n and making a callback to the user in terms of the user_action
function is a straightforward generalization of the 1D code from Section Section 2.7:

for i in Ix:
for j in It:
u_nli,jl = I(x[i], y[jD)

if user_action is not None:
user_action(u_n, x, xv, y, yv, t, 0)

The user_action function has additional arguments compared to the 1D case. The arguments xv
and yv will be commented upon in Section Section 2.73.

The key finite difference formula (2.104) for updating the solution at a time level is implemented in
a separate function as

def advance_scalar(u, u_n, u_nml, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, stepl=False):

Ix = range(0, u.shape[0]); It = range(O, u.shape[1l])

if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5*%dt2 # redefine
D1 =1; D2 =0

else:
D1 =2; D2 =1

for i in Ix[1:-1]:
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for j in It[1:-1]:

u_xx = u_nf[i-1,j] - 2*xu_n[i,jl + u_n[i+1,j]

uyy = unfli,j-1] - 2*xu_n[i,j] + u_nl[i,j+1]

uli,j] = Di*u_n[i,j] - D2*u_nmi[i,jl + \

Cx2*u_xx + Cy2+u_yy + dt2xf(x[i], y[jl, t[nl)
if stepl:
uli,jl += atxv(x[i], y[j1)

j = It[0]
for i in Ix: uli,j]l =0
j = It[-1]
for i in Ix: uli,j]
i = Ix[0]
for j in It: uli,j]
i = Ix[-1]
for j in It: uli,j]
return u

I
o

]
o

]
o

The step1l variable has been introduced to allow the formula to be reused for the first step, computing
1.
ul7] .
u = advance_scalar(u, u_n, f, x, y, t,
n, Cx2, Cy2, dt, V, stepl=True)

Below, we will make many alternative implementations of the advance_scalar function to speed
up the code since most of the CPU time in simulations is spent in this function.

1 Remark: How to use the solution

The solver function in the wave2D_u0.py code updates arrays for the next time step by
switching references as described in Section Section 2.27. Any use of u on the user’s side is
assumed to take place in the user action function. However, should the code be changed such
that u is returned and used as solution, have in mind that you must return u_n after the time
limit, otherwise a return u will actually return u_nm1 (due to the switching of array indices
in the loop)!

2.73. Vectorized computations

The scalar code above turns out to be extremely slow for large 2D meshes, and probably useless in
3D beyond debugging of small test cases. Vectorization is therefore a must for multi-dimensional
finite difference computations in Python. For example, with a mesh consisting of 30 x 30 cells,
vectorization brings down the CPU time by a factor of 70 (!). Equally important, vectorized code
can also easily be parallelized to take (usually) optimal advantage of parallel computer platforms.

In the vectorized case, we must be able to evaluate user-given functions like I(z,y) and f(z,y,t)
for the entire mesh in one operation (without loops). These user-given functions are provided as
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Python functions I(x,y) and f(x,y,t), respectively. Having the one-dimensional coordinate arrays
x and y is not sufficient when calling I and £ in a vectorized way. We must extend x and y to their
vectorized versions xv and yv:

from numpy import newaxis
xv = x[:,newaxis]

yv = y[newaxis, :]
x.reshape((x.size, 1))
y.reshape((1, y.size))

XV
yv

This is a standard required technique when evaluating functions over a 2D mesh, say
sin(xv)*cos(xv), which then gives a result with shape (Nx+1,Ny+1). Calling I(xv, yv) and
f(xv, yv, t[n]) will now return I and f values for the entire set of mesh points.

With the xv and yv arrays for vectorized computing, setting the initial condition is just a matter
of

unl:,:] = I(xv, yv)

One could also have written u_n = I(xv, yv) and let u_n point to a new object, but vectorized
operations often make use of direct insertion in the original array through u_n[:,:], because
sometimes not all of the array is to be filled by such a function evaluation. This is the case with the
connputaﬁonalschenuzﬂnfqulz
def advance_vectorized(u, u_n, u_nml, f_a, Cx2, Cy2, dt2,
V=None, stepl=False):
if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5*%dt2 # redefine
D1 =1; D2 =0
else:
D1 =2; D2 =1
uxx =unl:-2,1:-1] - 2*xu_n[1:-1,1:-1] + u_n[2:,1:-1]
uyy = unfl1:-1,:-2] - 2%u_nf[1:-1,1:-1] + u_n[1:-1,2:]
ul1:-1,1:-1] = Di*u_n[1:-1,1:-1] - D2*u nmi[1:-1,1:-1] + \
Cx2*u_xx + Cy2*u_yy + dt2*f_al[l:-1,1:-1]

if stepl:
ull:-1,1:-1] += dt*V[1:-1, 1:-1]

j=0

ul:,31 =0

j = u.shape[1]-1

ul:,j]1 =0

i=0

uli,:] =0

i = u.shape[0]-1

uli,:] =0

return u
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Array slices in 2D are more complicated to understand than those in 1D, but the logic from 1D
applies to each dimension separately. For example, when doing u"  *i,j — u™ x xi — 1, j for i € I\,
we just keep j constant and make a slice in the first index: u_n[1:,3j] - u_n[:-1,j], exactly as
in 1D. The 1: slice specifies all the indices i = 1,2,..., N, (up to the last valid index), while :-1
specifies the relevant indices for the second term: 0,1,..., N, — 1 (up to, but not including the last
index).

In the above code segment, the situation is slightly more complicated, because each displaced slice
in one direction is accompanied by a 1:-1 slice in the other direction. The reason is that we only
work with the internal points for the index that is kept constant in a difference.

The boundary conditions along the four sides make use of a slice consisting of all indices along a
boundary:

ul: ,0] =0
ul:,Ny] =0
ul0 ,:1 =0
u[Nx,:] =0

In the vectorized update of u (above), the function f is first computed as an array over all mesh
points:

f_a = f(xv, yv, tlnl)

We could, alternatively, have used the call £(xv, yv, t[n])[1:-1,1:-1] in the last term of the
update statement, but other implementations in compiled languages benefit from having f available
in an array rather than calling our Python function f (x,y,t) for every point.

Also in the advance_vectorized function we have introduced a boolean stepl to reuse the formula
for the first time step in the same way as we did with advance_scalar. We refer to the solver
function in wave2D_u0.py for the details on how the overall algorithm is implemented.

The callback function now has the arguments u, x, xv, y, yv, t, n. The inclusion of xv and
yv makes it easy to, e.g., compute an exact 2D solution in the callback function and compute errors,
through an expression like u - u_exact(xv, yv, t[n]).

2.74. Verification

2.74.1. Testing a quadratic solution

The 1D solution from Section Section 2.11 can be generalized to multi-dimensions and provides
a test case where the exact solution also fulfills the discrete equations, such that we know (to
machine precision) what numbers the solver function should produce. In 2D we use the following
generalization of (2.25):

el y.1) = (L —~ 2)y(Ly — y)(1+ 1), (2.113)
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This solution fulfills the PDE problem if I(z,y) = ue(2,y,0), V = Jue(z,y,0), and f = 2¢*(1 +
2t)(y(Ly — y) + 2(Ly — x)). To show that ue also solves the discrete equations, we start with the
general results [DyDy1]" = 0, [DyDst]™ = 0, and [D;D;t?] = 2, and use these to compute

1
[l)xl)xUGMZ'::[y(Lm —y)(1+ ét)l)ml)xx(Lm —-x)ﬂz

= 45 (Ly — )L+ ) (-2).

n

A similar calculation must be carried out for the [DyDyuc]i; and [DyDyue];; terms. One must

also show that the quadratic solution fits the special formula for uzlj The details are left as
Exercise Section 2.76. The test_quadratic function in the wave2D_u0.py program implements

this verification as a proper test function for the pytest and nose frameworks.

2.75. Visualization

Eventually, we are ready for a real application with our code! Look at the wave2D_u0.py and the
gaussian function. It starts with a Gaussian function to see how it propagates in a square with
u = 0 on the boundaries:

def gaussian(plot_method=2, version='vectorized', save_plot=True):
Initial Gaussian bell in the middle of the domain.
plot_method=1 applies mesh function,
=2 means surf, =3 means Matplotlib, =4 means mayavi,
=0 means no plot.
for name in glob('tmp_*.png'):
os.remove (name)

Lx = 10
Ly = 10
c=1.0

from numpy import exp
def I(x, y):
"""Gaussian peak at (Lx/2, Ly/2)."""
return exp(-0.5%(x-Lx/2.0)**2 - 0.5%(y-Ly/2.0)**2)

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""
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dt, cpu = solver(I, None, None, c, Lx, Ly, Nx, Ny, -1, T,
user_action=plot_u, version=version)

2.75.1. Matplotlib

We want to animate a 3D surface in Matplotlib, but this is a really slow process and not recommended,
so we consider Matplotlib not an option as long as on-screen animation is desired. One can use the
recipes for single shots of u, where it does produce high-quality 3D plots.

2.75.2. Gnuplot

Let us look at different ways for visualization using Gnuplot. If you have the C package Gnuplot
and the Gnuplot.py Python interface module installed, you can get nice 3D surface plots with
contours beneath (Figure Figure 2.8). It gives a nice visualization with lifted surface and contours
beneath. Figure Figure 2.8 shows four plots of u.

=0 t=1.59099

t=3.18198 t=19.4454

Figure 2.8.: Snapshots of the surface plotted by Gnuplot.

Video files can be made of the PNG frames:
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Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec flv movie.flv
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec 1inx264 movie.mp4
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libtheora movie.ogg

It is wise to use a high frame rate — a low one will just skip many frames. There may also be
considerable quality differences between the different formats.

MOVIE: [https://raw.githubusercontent.com/hplgit /fdm-book/master/doc/pub/book/html/mov-
wave/gnuplot /wave2D__u0__gaussian/movie25.mp4]

2.75.3. Mayavi

The best option for doing visualization of 2D and 3D scalar and vector fields in Python programs
is Mayavi, which is an interface to the high-quality package VITK in C++4. There is good online
documentation and also an introduction in Chapter 5 of (Langtangen 2016a).

To obtain Mayavi on Ubuntu platforms you can write

pip install mayavi --upgrade

For Mac OS X and Windows, we recommend using Anaconda. To obtain Mayavi for Anaconda you
can write

conda install mayavi

Mayavi has a MATLAB-like interface called mlab. We can do

import mayavi.mlab as plt
from mayavi import mlab

and have plt (as usual) or mlab as a kind of MATLAB visualization access inside our program (just
more powerful and with higher visual quality).

The official documentation of the mlab module is provided in two places, one for the basic functionality
and one for further functionality. Basic figure handling is very similar to the one we know from
Matplotlib. Just as for Matplotlib, all plotting commands you do in mlab will go into the same
figure, until you manually change to a new figure.

Back to our application, the following code for the user action function with plotting in Mayavi is
relevant to add.
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try:

import mayavi.mlab as mlab
except:

pass

def solver(...):

def gaussian(...):

if plot_method == 3:
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
plt.ion()
fig = plt.figure()
u_surf = None

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting.
if t[n] ==

time.sleep(2)
if plot_method ==
st.mesh(x, y, u, title='t=lg' % tlnl, zlim=[-1,1],
caxis=[-1,1])
elif plot_method == 2:
st.surfc(xv, yv, u, title='t=lg' % tln], zlim=[-1, 1],
colorbar=True, colormap=st.hot(), caxis=[-1,1],
shading='flat')
elif plot_method == 3:
print 'Experimental 3D matplotlib...not recommended'
elif plot_method == 4:
mlab.clf()
extentl = (0, 20, 0, 20,-2, 2)
s = mlab.surf(x , y, u,
colormap="'Blues',
warp_scale=5,extent=extentl)
mlab.axes(s, color=(.7, .7, .7), extent=extentl,
ranges=(0, 10, 0, 10, -1, 1),
xlabel=""', ylabel='', zlabel='",
x_axis_visibility=False,
z_axis_visibility=False)
mlab.outline(s, color=(0.7, .7, .7), extent=extentl)
mlab.text(6, -2.5, '', z=-4, width=0.14)
mlab.colorbar(object=None, title=None,
orientation='horizontal',
nb_labels=None, nb_colors=None,
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label_fmt=None)
mlab.title('Gaussian t=Yg' % t[n])
mlab.view(142, -72, 50)
f = mlab.gcf()
camera = f.scene.camera
camera.yaw(0)

if plot_method > O:
time.sleep(0) # pause between frames
if save_plot:
filename = 'tmp_%04d.png' % n
if plot_method == 4:
mlab.savefig(filename) # time consuming!
elif plot_method in (1,2):

st.savefig(filename) # time consuming!

This is a point to get started — visualization is as always a very time-consuming and experimental
discipline. With the PNG files we can use ffmpeg to create videos.

1=9. 12652
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Figure 2.9.: Plot with Mayavi.
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MOVIE: [https://github.com/hplgit /fdm-book/blob/master/doc/pub/book /html/mov-
wave/mayavi/wave2D _u0_ gaussian/movie.mp4]

2.76. Exercise: Check that a solution fulfills the discrete model

Carry out all mathematical details to show that (2.113) is indeed a solution of the discrete model
for a 2D wave equation with « = 0 on the boundary. One must check the boundary conditions,
the initial conditions, the general discrete equation at a time level and the special version of this
equation for the first time level.

2.77. Project: Calculus with 2D mesh functions

The goal of this project is to redo Project Section 2.34 with 2D mesh functions (f; ;).

Differentiation. The differentiation results in a discrete gradient function, which in the 2D case
can be represented by a three-dimensional array df [d,i,j] where d represents the direction of the
derivative, and i, j is a mesh point in 2D. Use centered differences for the derivative at inner points
and one-sided forward or backward differences at the boundary points. Construct unit tests and
write a corresponding test function.

Integration. The integral of a 2D mesh function f;; is defined as

yi [
F; = / / f(z,y)dzdy,
Yo o

where f(z,y) is a function that takes on the values of the discrete mesh function f; ; at the mesh
points, but can also be evaluated in between the mesh points. The particular variation between
mesh points can be taken as bilinear, but this is not important as we will use a product Trapezoidal
rule to approximate the integral over a cell in the mesh and then we only need to evaluate f(x,y)
at the mesh points.

Suppose F; ; is computed. The calculation of F;,q ; is then

Ti41 Yj
Fip;=Fi; +/ / f(z,y)dydx

Ty Yo

1/ (v Yi
~ Az i, y)dy+ | f(zip1,y)dy
Yo Yo

The integrals in the y direction can be approximated by a Trapezoidal rule. A similar idea can be
used to compute F; j11. Thereafter, F; 1 ;11 can be computed by adding the integral over the final
corner cell to Fyy1; + F; j41 — Fj ;. Carry out the details of these computations and implement a
function that can return F; ; for all mesh indices ¢ and j. Use the fact that the Trapezoidal rule is
exact for linear functions and write a test function.
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2.78. Exercise: Implement Neumann conditions in 2D

Modify the wave2D_u0.py program, which solves the 2D wave equation uy = cQ(ugKC + uy,) with
constant wave velocity ¢ and v = 0 on the boundary, to have Neumann boundary conditions:
Ou/On = 0. Include both scalar code (for debugging and reference) and vectorized code (for
speed).

To test the code, use u = 1.2 as solution (I(z,y) = 1.2, V = f =0, and ¢ arbitrary), which should be
exactly reproduced with any mesh as long as the stability criterion is satisfied. Another test is to use
the plug-shaped pulse in the pulse function from Section Section 2.49 and the wavelD_dn_vc.py
program. This pulse is exactly propagated in 1D if cAt/Axz = 1. Check that also the 2D program can
propagate this pulse exactly in z direction (cAt/Ax = 1, Ay arbitrary) and y direction (cAt/Ay = 1,
Az arbitrary).

2.79. Exercise: Test the efficiency of compiled loops in 3D

Extend the wave2D_u0.py code and the Cython, Fortran, and C versions to 3D. Set up an efficiency
experiment to determine the relative efficiency of pure scalar Python code, vectorized code, Cython-
compiled loops, Fortran-compiled loops, and C-compiled loops. Normalize the CPU time for each
mesh by the fastest version.

2.80. Applications of wave equations

This section presents a range of wave equation models for different physical phenomena. Although
many wave motion problems in physics can be modeled by the standard linear wave equation, or a
similar formulation with a system of first-order equations, there are some exceptions. Perhaps the
most important is water waves: these are modeled by the Laplace equation with time-dependent
boundary conditions at the water surface (long water waves, however, can be approximated by a
standard wave equation, see Section Section 2.87). Quantum mechanical waves constitute another
example where the waves are governed by the Schrodinger equation, i.e., not by a standard wave
equation. Many wave phenomena also need to take nonlinear effects into account when the wave
amplitude is significant. Shock waves in the air is a primary example.

The derivations in the following are very brief. Those with a firm background in continuum mechanics
will probably have enough knowledge to fill in the details, while other readers will hopefully get some
impression of the physics and approximations involved when establishing wave equation models.

2.81. Waves on a string

Figure Figure 2.10 shows a model we may use to derive the equation for waves on a string. The string
is modeled as a set of discrete point masses (at mesh points) with elastic strings in between. The
string has a large constant tension 7'. We let the mass at mesh point x; be m;. The displacement of
this mass point in the y direction is denoted by u;(t).
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Tiy T Tit1

Figure 2.10.: Discrete string model with point masses connected by elastic strings.
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The motion of mass m; is governed by Newton’s second law of motion. The position of the mass at
time ¢ is x;2 + u;(t)J, where 4 and j are unit vectors in the z and y direction, respectively. The
acceleration is then v/ (¢)j. Two forces are acting on the mass as indicated in Figure Figure 2.10.
The force T~ acting toward the point z;_1 can be decomposed as

T~ = —T'sin¢i — T cos ¢7,

where ¢ is the angle between the force and the line x = z;. Let Au; = u; — u;—1 and let As; =

\/Au% + (z; — x;—1)? be the distance from mass m;_1 to mass m;. It is seen that cos ¢ = Au;/As;
and sin ¢ = (x; — x;,-1)/As or Ax/As; if we introduce a constant mesh spacing Az = z; — z;_1.
The force can then be written

Az Au;
T =-T , — T j
ASiz ASiJ
The force TT acting toward ;11 can be calculated in a similar way:
Ax Au; 1
T =T i+ T
Asiy1 Asiqq J

Newton’s second law becomes
miul (t)j = T +T,

which gives the component equations

Az Az
T& = Tm, (2.114)
Au; Au;
! — 1+1 B 7
mgu; (t) TASz’Jrl TAsi . (2.115)

A basic reasonable assumption for a string is small displacements u; and small displacement gradients
Au;/Ax. For small g = Au;/Ax we have that

Ao = /A + A% = Aay/1 7 + Aa(1 + Lg? + O(g") ~ Ax

Equation (2.114) is then simply the identity 7" = T', while (2.115) can be written as

Auiqq Ay
Az r Az’

which upon division by Az and introducing the density o; = m;/Axz becomes

miug (t) =T

1
Qiu;/(t) = TF (Uit1 — 2u; + ui—1) . (2.116)
x

We can now choose to approximate u by a finite difference in time and get the discretized wave
equation,
Oing (u?+ —2u —u ) = TA—:):2 (Wit1 — 2u; + ui—1) .
On the other hand, we may go to the continuum limit Az — 0 and replace u;(t) by u(x,t), o; by
o(), and recognize that the right-hand side of (2.116) approaches 9?u/dx? as Az — 0. We end up
with the continuous model for waves on a string:

0%u 0%u

— =T—. 2.117
“ o2 Ox? ( )
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Note that the density o may change along the string, while the tension 7' is a constant. With
variable wave velocity c(z) = \/T/o(x) we can write the wave equation in the more standard form

Pu 5,
— =c ()= . 2.118
92 ()52 (2.118)
Because of the way o enters the equations, the variable wave velocity does not appear inside the
derivatives as in many other versions of the wave equation. However, most strings of interest have

constant p.

The end points of a string are fixed so that the displacement w is zero. The boundary conditions
are therefore u = 0.

2.81.1. Damping

Air resistance and non-elastic effects in the string will contribute to reduce the amplitudes of the
waves so that the motion dies out after some time. This damping effect can be modeled by a term
bus on the left-hand side of the equation

0%u ou 0%u

—+b—=T—. 2.119

%92t T ox (2.119)

The parameter b > 0 is small for most wave phenomena, but the damping effect may become
significant in long time simulations.

2.81.2. External forcing

It is easy to include an external force acting on the string. Say we have a vertical force f;j acting
on mass m;, modeling the effect of gravity on a string. This force affects the vertical component of
Newton’s law and gives rise to an extra term f(z,t) on the right-hand side of (2.117). In the model
(2.118) we would add a term f(z,t) = f(z,t)/o(z).

2.81.3. Modeling the tension via springs

We assumed, in the derivation above, that the tension in the string, 7', was constant. It is easy to
check this assumption by modeling the string segments between the masses as standard springs,
where the force (tension T') is proportional to the elongation of the spring segment. Let k be the
spring constant, and set T; = kA/ for the tension in the spring segment between x; 1 and x;, where
A/ is the elongation of this segment from the tension-free state. A basic feature of a string is that
it has high tension in the equilibrium position v = 0. Let the string segment have an elongation
Aly in the equilibrium position. After deformation of the string, the elongation is A¢ = Afy + As;:
T; = k(Aly + As;) =~ k(Aly + Az). This shows that T; is independent of i. Moreover, the extra
approximate elongation Az is very small compared to Afy, so we may well set T; = T = kAfy. This
means that the tension is completely dominated by the initial tension determined by the tuning
of the string. The additional deformations of the spring during the vibrations do not introduce
significant changes in the tension.
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2.82. Elastic waves in a rod

Consider an elastic rod subject to a hammer impact at the end. This experiment will give rise to
an elastic deformation pulse that travels through the rod. A mathematical model for longitudinal
waves along an elastic rod starts with the general equation for deformations and stresses in an
elastic medium,

ouy =V - o+ of, (2.120)

where o is the density, u the displacement field, o the stress tensor, and f body forces. The latter
has normally no impact on elastic waves.

For stationary deformation of an elastic rod, aligned with the z axis, one has that o,, = Fu,,
with all other stress components being zero. The parameter E is known as Young’s modulus.
Moreover, we set u = u(z,t)¢ and neglect the radial contraction and expansion (where Poisson’s
ratio is the important parameter). Assuming that this simple stress and deformation field is a good
approximation, (2.120) simplifies to

0%u 0 ou
oy = (Eax) _ (2.121)

The associated boundary conditions are u or 0., = Fu, known, typically v = 0 for a fixed end and
o0z = 0 for a free end.

2.83. Waves on a membrane

Think of a thin, elastic membrane with shape as a circle or rectangle. This membrane can be brought
into oscillatory motion and will develop elastic waves. We can model this phenomenon somewhat
similar to waves in a rod: waves in a membrane are simply the two-dimensional counterpart. We
assume that the material is deformed in the z direction only and write the elastic displacement field
on the form u(x,y,t) = w(z,y,t)i. The z coordinate is omitted since the membrane is thin and
all properties are taken as constant throughout the thickness. Inserting this displacement field in
Newton’s 2nd law of motion (2.120) results in

02w 0 ow 0 ow
Pw 9 ( Ow\ 0 ( Jw\ 9.122
52 = oz (“ax>+ay (“ay) (2.122)

This is nothing but a wave equation in w(x,y,t), which needs the usual initial conditions on w
and w; as well as a boundary condition w = 0. When computing the stress in the membrane, one
needs to split o into a constant high-stress component due to the fact that all membranes are
normally pre-stressed, plus a component proportional to the displacement and governed by the wave
motion.

2.84. The acoustic model for seismic waves

Seismic waves are used to infer properties of subsurface geological structures. The physical model is
a heterogeneous elastic medium where sound is propagated by small elastic vibrations. The general
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mathematical model for deformations in an elastic medium is based on Newton’s second law,
ouy =V -0+ of, (2.123)

and a constitutive law relating o to u, often Hooke’s generalized law,
2
o=KV- -ul+GVu+ (Vu) - gv-uI). (2.124)

Here, u is the displacement field, o is the stress tensor, I is the identity tensor, ¢ is the medium’s
density, f are body forces (such as gravity), K is the medium’s bulk modulus and G is the shear
modulus. All these quantities may vary in space, while u and o will also show significant variation
in time during wave motion.

The acoustic approximation to elastic waves arises from a basic assumption that the second term in
Hooke’s law, representing the deformations that give rise to shear stresses, can be neglected. This
assumption can be interpreted as approximating the geological medium by a fluid. Neglecting also
the body forces f, (2.123) becomes

ouy = V(KV -u) (2.125)
Introducing p as a pressure via
p=—KV -, (2.126)
and dividing (2.125) by o, we get
1
Ut = ——Vp .
0

Taking the divergence of this equation, using V - u = —p/K from (2.126), gives the acoustic
approzimation to elastic waves:

1
p = KV - (va> - (2.127)

This is a standard, linear wave equation with variable coefficients. It is common to add a source
term s(z,y, z,t) to model the generation of sound waves:

1
pr =KV - (va> + . (2.128)

A common additional approximation of (2.128) is based on using the chain rule on the right-hand
side,
1 K 1 K
KV - (Vp) = —V’p+ KV () .Vpr~ —V?p,
% 1% 0 1%
under the assumption that the relative spatial gradient Vo~
results in the simplified equation

1 = _ 972V issmall. This approximation

K
pr = zVQp +s. (2.129)

The acoustic approximations to seismic waves are used for sound waves in the ground, and the
Earth’s surface is then a boundary where p equals the atmospheric pressure pg such that the
boundary condition becomes p = py.
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2.84.1. Anisotropy

Quite often in geological materials, the effective wave velocity ¢ = /K /p is different in different
spatial directions because geological layers are compacted, and often twisted, in such a way that the
properties in the horizontal and vertical direction differ. With z as the vertical coordinate, we can
introduce a vertical wave velocity ¢, and a horizontal wave velocity ¢, and generalize (2.129) to

Dit = C2pss + Co(Pux + Dyy) + 5. (2.130)

2.85. Sound waves in liquids and gases

Sound waves arise from pressure and density variations in fluids. The starting point of modeling
sound waves is the basic equations for a compressible fluid where we omit viscous (frictional) forces,
body forces (gravity, for instance), and temperature effects:

0t +V-(ou)=0, (2.131)
our + ou - Vu = —Vp, (2.132)
0=o(p). (2.133)

These equations are often referred to as the Euler equations for the motion of a fluid. The parameters
involved are the density g, the velocity u, and the pressure p. Equation (2.131) reflects mass balance,
(2.132) is Newton’s second law for a fluid, with frictional and body forces omitted, and (2.133) is a
constitutive law relating density to pressure by thermodynamic considerations. A typical model
for (2.133) is the so-called isentropic relation, valid for adiabatic processes where there is no heat

transfer:
P 1/v
0= 00 () . (2.134)
Po

Here, py and g are reference values for p and ¢ when the fluid is at rest, and ~ is the ratio of
specific heat at constant pressure and constant volume (v = 5/3 for air).

The key approximation in a mathematical model for sound waves is to assume that these waves are
small perturbations to the density, pressure, and velocity. We therefore write

p:p0+ﬁ7
0= 00 + 0,
u = u,

where we have decomposed the fields in a constant equilibrium value, corresponding to u = 0, and a
small perturbation marked with a hat symbol. By inserting these decompositions in (2.131) and
(2.132), neglecting all product terms of small perturbations and/or their derivatives, and dropping
the hat symbols, one gets the following linearized PDE system for the small perturbations in density,
pressure, and velocity:

Qt+Q0v'u:07
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oour = —Vp.
Now we can eliminate g; by differentiating the relation o(p),

pmmt (2) L (2
Y \Po Po YPo \Po

The product term p/7~1p, can be linearized as pé/ 7_1pt, resulting in
©0
0t~ —DPt-
YPo
We then get
pt+ypoV - u =0, (2.135)
1
u = ——Vp. (2.136)
©o

Taking the divergence of (2.136) and differentiating (2.135) with respect to time gives the possibility
to easily eliminate V - u; and arrive at a standard, linear wave equation for p:

Pt = 02V2p7

where ¢ = \/vpo/ 0o is the speed of sound in the fluid.

2.86. Spherical waves

Spherically symmetric three-dimensional waves propagate in the radial direction r only so that
u = u(r,t). The fully three-dimensional wave equation
0%u
—— =V (*Vu) +
=V AVt f
then reduces to the spherically symmetric wave equation

2
Ou 10 <c2(7")r26u

5Z =25 8T>—|—f(7“,t), re(0,R), t>0.

One can easily show that the function v(r,t) = ru(r, t) fulfills a standard wave equation in Cartesian
coordinates if ¢ is constant. To this end, insert u = v/r in

10 (4, 90u
2o (C0r )

dr Or Or? dr

to obtain

The two terms in the parenthesis can be combined to
0 ( 281})
r—|c— ],
or or
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which is recognized as the variable-coefficient Laplace operator in one Cartesian coordinate. The
spherically symmetric wave equation in terms of v(r,t) now becomes

v 9 [, Ov 1dc?
—=—|cfr)— | ———v+rf(r,t), r€(0,R), t>0.
ot? 8r<()3r) rdr+f(’) 0, )

In the case of constant wave velocity ¢, this equation reduces to the wave equation in a single
Cartesian coordinate called r:

0%v 5 0%

— =c"—+rf(r,t), re(0,R), t>0. 2.137
That is, any program for solving the one-dimensional wave equation in a Cartesian coordinate
system can be used to solve (2.137), provided the source term is multiplied by the coordinate, and
that we divide the Cartesian mesh solution by r to get the spherically symmetric solution. Moreover,
if r = 0 is included in the domain, spherical symmetry demands that du/0r = 0 at r = 0, which
means that

r
or
For this to hold in the limit » — 0, we must have v(0,t) = 0 at least as a necessary condition. In

most practical applications, we exclude r = 0 from the domain and assume that some boundary
condition is assigned at r = ¢, for some € > 0.

1
g::ﬂ( 81}—1}):0, r=20.

2.87. The linear shallow water equations

The next example considers water waves whose wavelengths are much larger than the depth and
whose wave amplitudes are small. This class of waves may be generated by catastrophic geophysical
events, such as earthquakes at the sea bottom, landslides moving into water, or underwater slides
(or a combination, as earthquakes frequently release avalanches of masses). For example, a subsea
earthquake will normally have an extension of many kilometers but lift the water only a few meters.
The wave length will have a size dictated by the earthquake area, which is much lager than the water
depth, and compared to this wave length, an amplitude of a few meters is very small. The water is
essentially a thin film, and mathematically we can average the problem in the vertical direction
and approximate the 3D wave phenomenon by 2D PDEs. Instead of a moving water domain in
three space dimensions, we get a horizontal 2D domain with an unknown function for the surface
elevation and the water depth as a variable coefficient in the PDEs.

Let n(x,y,t) be the elevation of the water surface, H(x,y) the water depth corresponding to a flat
surface (n = 0), u(z,y,t) and v(x,y,t) the depth-averaged horizontal velocities of the water. Mass
and momentum balance of the water volume give rise to the PDEs involving these quantities:

ne=—(Hu)y — (Hv)y (2.138)
U = _gny7 (2140)

where g is the acceleration of gravity. Equation (2.138) corresponds to mass balance while the other
two are derived from momentum balance (Newton’s second law).
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The initial conditions associated with (2.138)-(2.140) are n, u, and v prescribed at ¢ = 0. A
common condition is to have some water elevation n = I(x,y) and assume that the surface is at
rest: u = v = 0. A subsea earthquake usually means a sufficiently rapid motion of the bottom and

the water volume to say that the bottom deformation is mirrored at the water surface as an initial
lift I(z,y) and that u =v = 0.

Boundary conditions may be 7 prescribed for incoming, known waves, or zero normal velocity at
reflecting boundaries (steep mountains, for instance): un, + vn, = 0, where (ny, n,) is the outward
unit normal to the boundary. More sophisticated boundary conditions are needed when waves
run up at the shore, and at open boundaries where we want the waves to leave the computational
domain undisturbed.

Equations (2.138), (2.139), and (2.140) can be transformed to a standard, linear wave equation.
First, multiply (2.139) and (2.140) by H, differentiate (2.139)) with respect to x and (2.140) with
respect to y. Second, differentiate (2.138) with respect to ¢ and use that (Hu)z: = (Huy) * xx and
(Hv) x xyt = (Hv;), when H is independent of ¢. Third, eliminate (Hu;), and (Hv), with the aid
of the other two differentiated equations. These manipulations result in a standard, linear wave
equation for 7:

me = (9HNz)z + (9Hny)y =V - (gHVn). (2.141)

In the case we have an initial non-flat water surface at rest, the initial conditions become n = I(x,y)
and 7 = 0. The latter follows from (2.138) if u = v = 0, or simply from the fact that the vertical
velocity of the surface is 7, which is zero for a surface at rest.

The system (2.138)-(2.140) can be extended to handle a time-varying bottom topography, which is
relevant for modeling long waves generated by underwater slides. In such cases the water depth
function H is also a function of ¢, due to the moving slide, and one must add a time-derivative
term H; to the left-hand side of (2.138). A moving bottom is best described by introducing z = Hy
as the still-water level, z = B(xz,y,t) as the time- and space-varying bottom topography, so that
H = Hy — B(z,y,t). In the elimination of u and v one may assume that the dependence of H on t
can be neglected in the terms (Hu) % xxt and (Hv) % xyt. We then end up with a source term in
(2.141), because of the moving (accelerating) bottom:

e =V - (gHVT]) + By . (2142)

The reduction of (2.142) to 1D, for long waves in a straight channel, or for approximately plane
waves in the ocean, is trivial by assuming no change in y direction (0/9y = 0):

N = (gHng) * %3 + B «tt . (2.143)

2.87.1. Wind drag on the surface

Surface waves are influenced by the drag of the wind, and if the wind velocity some meters above the
surface is (U, V), the wind drag gives contributions CyvU? + V2U and CyvU? + V2V to (2.139)
and (2.140), respectively, on the right-hand sides.

166



2. Wave Equations

2.87.2. Bottom drag

The waves will experience a drag from the bottom, often roughly modeled by a term similar to the
wind drag: Cpvu? + v?u on the right-hand side of (2.139) and Cpvu? + v2v on the right-hand
side of (2.140). Note that in this case the PDEs (2.139) and (2.140) become nonlinear and the
elimination of u and v to arrive at a 2nd-order wave equation for 7 is not possible anymore.

2.87.3. Effect of the Earth’s rotation

Long geophysical waves will often be affected by the rotation of the Earth because of the Coriolis
force. This force gives rise to a term fv on the right-hand side of (2.139) and — fu on the right-hand
side of (2.140). Also in this case one cannot eliminate u and v to work with a single equation for 7.
The Coriolis parameter is f = 2€)sin ¢, where 2 is the angular velocity of the earth and ¢ is the
latitude.

2.88. Waves in blood vessels

The flow of blood in our bodies is basically fluid flow in a network of pipes. Unlike rigid pipes, the
walls in the blood vessels are elastic and will increase their diameter when the pressure rises. The
elastic forces will then push the wall back and accelerate the fluid. This interaction between the flow
of blood and the deformation of the vessel wall results in waves traveling along our blood vessels.

A model for one-dimensional waves along blood vessels can be derived from averaging the fluid
flow over the cross section of the blood vessels. Let x be a coordinate along the blood vessel and
assume that all cross sections are circular, though with different radii R(z,t). The main quantities
to compute is the cross section area A(x,t), the averaged pressure P(x,t), and the total volume
flux Q(z,t). The area of this cross section is

R(z,t)
A(z,t) = 27r/ rdr,
0

Let vy (x,t) be the velocity of blood averaged over the cross section at point z. The volume flux,
being the total volume of blood passing a cross section per time unit, becomes

Q(x,t) = A(z, t)vy(z, 1)

Mass balance and Newton’s second law lead to the PDEs

A 0Q

o5 T o =0 (2.144)
0Q v+20 (@ Aor nQ
= +7—|—16m<A +Qa$_ 27r(7+2)QA, (2.145)

where 7y is a parameter related to the velocity profile, o is the density of blood, and pu is the dynamic
viscosity of blood.
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We have three unknowns A, @, and P, and two equations (2.144) and (2.145). A third equation is
needed to relate the flow to the deformations of the wall. A common form for this equation is

oP 10Q
— +=—=0 2.146
ot " Cor (2.146)
where C is the compliance of the wall, given by the constitutive relation
0A O0A
C=—+—
ap ot
which requires a relationship between A and P. One common model is to view the vessel wall,
locally, as a thin elastic tube subject to an internal pressure. This gives the relation

P=R+ g f}f)AO(\/Z— VAo),

where Py and Ag are corresponding reference values when the wall is not deformed, h is the thickness
of the wall, and E and v are Young’s modulus and Poisson’s ratio of the elastic material in the wall.
The derivative becomes

2
04 2(1-1v%)A (1 —v?)Ag
C=op=—"p— VAg +2 — (P—Py).

Another (nonlinear) deformation model of the wall, which has a better fit with experiments, is

P = Pyexp (B(A/Ag — 1)),

where 3 is some parameter to be estimated. This law leads to

DA Ay

C=%p= 5P

Reduction to the standard wave equation. It is not uncommon to neglect the viscous term

on the right-hand side of (2.145) and also the quadratic term with Q? on the left-hand side. The
reduced equations (2.145) and (2.146) form a first-order linear wave equation system:

or _ 9Q
ot Ox’
9Q  Aop

YT
These can be combined into standard 1D wave PDE by differentiating the first equation with respect
to t and the second with respect to z,

0 (cOF) - 0 (49)
ot ot) 0z \opdzx)’

°Q _ ,0°Q A
a2~ C a2 T oC’

where the A and C in the expression for ¢ are taken as constant reference values.

which can be approximated by
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2.89. Electromagnetic waves

Light and radio waves are governed by standard wave equations arising from Maxwell’s general
equations. When there are no charges and no currents, as in a vacuum, Maxwell’s equations take
the form

V-E =0,
V-B =0,
OB
VxE_—E,
OF
VXB*MOGOE;

where ¢y = 8.854187817620 - 10712 (F/m) is the permittivity of free space, also known as the electric
constant, and o = 1.2566370614 - 10~% (H/m) is the permeability of free space, also known as the
magnetic constant. Taking the curl of the two last equations and using the mathematical identity

Vx(VXE)=V(V-E)+V?E =—-V?E when V-E =0,

gives the wave equation governing the electric and magnetic field:

2

8@723 = *V?E, (2.147)
2

% = *V’B, (2.148)

with ¢ = 1/,/ug€g as the velocity of light. Each component of E and B fulfills a wave equation and
can hence be solved independently.

2.90. Exercise: Simulate waves on a non-homogeneous string

Simulate waves on a string that consists of two materials with different density. The tension in
the string is constant, but the density has a jump at the middle of the string. Experiment with
different sizes of the jump and produce animations that visualize the effect of the jump on the wave
motion.

] According to Section Section 2.81,

the density enters the mathematical model as ¢ in puy = T'uy,, where T is the string tension.
Modity, e.g., the wavelD_uOv.py code to incorporate the tension and two density values. Make
a mesh function rho with density values at each spatial mesh point. A value for the tension may
be 150 N. Corresponding density values can be computed from the wave velocity estimations
in the guitar function in the wavelD_uOv.py file.
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2.91. Exercise: Simulate damped waves on a string

Formulate a mathematical model for damped waves on a string. Use data from Section Section 2.20,
and tune the damping parameter so that the string is very close to the rest state after 15 s. Make a
movie of the wave motion.

2.92. Exercise: Simulate elastic waves in a rod

A hammer hits the end of an elastic rod. The exercise is to simulate the resulting wave motion
using the model (2.121) from Section Section 2.82. Let the rod have length L and let the boundary
x = L be stress free so that o,, = 0, implying that du/dz = 0. The left end = = 0 is subject to a
strong stress pulse (the hammer), modeled as

S, 0<t <ty
O'acx(t) = { 0, >t °

The corresponding condition on u becomes u, = S/E for t < t, and zero afterwards (recall that
0zz = Fug). This is a non-homogeneous Neumann condition, and you will need to approximate this
condition and combine it with the scheme (the ideas and manipulations follow closely the handling
of a non-zero initial condition u; = V' in wave PDEs or the corresponding second-order ODEs for
vibrations).

2.93. Exercise: Simulate spherical waves

Implement a model for spherically symmetric waves using the method described in Section Sec-
tion 2.86. The boundary condition at 7 = 0 must be du/0r = 0, while the condition at » = R can
either be u = 0 or a radiation condition as described in Problem Section 2.57. The u = 0 condition
is sufficient if R is so large that the amplitude of the spherical wave has become insignificant. Make
movie(s) of the case where the source term is located around r = 0 and sends out pulses

Fr,t) = Qexp(—%)sinwt, sinwt > 0
’ 0, sinwt < 0

Here, () and w are constants to be chosen.

@ Use the program wavelD_uOv.py as a starting point. Let solver

compute the v function and then set v = v/r. However, u = v/r for r = 0 requires special
treatment. Ome possibility is to compute u[1:] = v[1:]/r[1:] and then set u[0]=u[1].
The latter makes it evident that Ou/dr = 0 in a plot.
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2.94. Problem: Earthquake-generated tsunami over a subsea hill

A subsea earthquake leads to an immediate lift of the water surface, see Figure Figure 2.11. The
lifted water surface splits into two tsunamis, one traveling to the right and one to the left, as
depicted in Figure Figure 2.12. Since tsunamis are normally very long waves, compared to the depth,
with a small amplitude, compared to the wave length, a standard wave equation is relevant:

Mt = (QH(x)ﬁx)x,

where 7 is the elevation of the water surface, g is the acceleration of gravity, and H(z) is the still
water depth.

Figure 2.11.: Sketch of initial water surface due to a subsea earthquake.

Figure 2.12.: An initial surface elevation is split into two waves.
To simulate the right-going tsunami, we can impose a symmetry boundary at x = 0: dn/0z = 0.

We then simulate the wave motion in [0, L]. Unless the ocean ends at # = L, the waves should
travel undisturbed through the boundary x = L. A radiation condition as explained in Problem
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Section 2.57 can be used for this purpose. Alternatively, one can just stop the simulations before the
wave hits the boundary at x = L. In that case it does not matter what kind of boundary condition
we use at z = L. Imposing n = 0 and stopping the simulations when |nl'| > ¢, i = N, — 1, is a
possibility (e is a small parameter).

The shape of the initial surface can be taken as a Gaussian function,

z— I, 2
I(J:;IOaIaaImaIs) =1Ip+Isexp | — Ji )
s

with I, = 0 reflecting the location of the peak of I(x) and I, being a measure of the width of the
function I(z) (I5 is v/2 times the standard deviation of the familiar normal distribution curve).

Now we extend the problem with a hill at the sea bottom, see Figure Figure 2.13. The wave speed
c=+/gH(z) = \/g(Hy — B(z)) will then be reduced in the shallow water above the hill.

v

Figure 2.13.: Sketch of an earthquake-generated tsunami passing over a subsea hill.

One possible form of the hill is a Gaussian function,

— B.\?
B($7 307 Baa Bm7 Bs) = BO + Ba, exp <— (w B m) ), (2149)
S

but many other shapes are also possible, e.g., a “cosine hat” where

_ Bm
B(x; By, Ba, By, Bs) = Bo + Bg cos (”5623 ) (2.150)

when x € [B,, — Bs, B, + Bs] while B = By outside this interval.

Also an abrupt construction may be tried:
B(x; By, Ba, Bm, Bs) = Bo + Ba, (2.151)

for = € [B,, — Bs, By, + Bs| while B = By outside this interval.
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The wavelD_dn_vc.py program can be used as starting point for the implementation. Visualize
both the bottom topography and the water surface elevation in the same plot. Allow for a flexible
choice of bottom shape: (2.149), (2.150), (2.151), or B(x) = By (flat).

The purpose of this problem is to explore the quality of the numerical solution 7" for different
shapes of the bottom obstruction. The “cosine hat” and the box-shaped hills have abrupt changes
in the derivative of H(x) and are more likely to generate numerical noise than the smooth Gaussian
shape of the hill. Investigate if this is true.

2.95. Problem: Earthquake-generated tsunami over a 3D hill

This problem extends Problem Section 2.94 to a three-dimensional wave phenomenon, governed by
the 2D PDE

Nt = (9HN)e + (gHny)y =V - (9HV7) . (2.152)

We assume that the earthquake arises from a fault along the line = 0 in the zy-plane so that the
initial lift of the surface can be taken as I(x) in Problem Section 2.94. That is, a plane wave is
propagating to the right, but will experience bending because of the bottom.

The bottom shape is now a function of z and y. An “elliptic” Gaussian function in two dimensions,
with its peak at (B, Bmy), generalizes (2.149):

— Bmz \? — By \?
S S

where b is a scaling parameter: b = 1 gives a circular Gaussian function with circular contour lines,
while b #£ 1 gives an elliptic shape with elliptic contour lines. To indicate the input parameters in
the model, we may write

B = B(x; By, Ba, B, Bmy, Bs, b) .

The “cosine hat” (2.150) can also be generalized to

- B - B
B = By + B, cos (Trx23$m> Cos <7Ty238my)’ (2.154)

when 0 < /22 + y2 < B, and B = By outside this circle.
A box-shaped obstacle means that
B(x; By, Ba, B, Bs,b) = By + Ba (2.155)
for x and y inside a rectangle
Bz — Bs <@ < Byg + Bs, By — bBs <y < By + bBs,

and B = By outside this rectangle. The b parameter controls the rectangular shape of the cross
section of the box.

Note that the initial condition and the listed bottom shapes are symmetric around the line y = By,,.
We therefore expect the surface elevation also to be symmetric with respect to this line. This
means that we can halve the computational domain by working with [0, L;] x [0, Bp,,]. Along the
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upper boundary, y = By, we must impose the symmetry condition dn/dn = 0. Such a symmetry
condition (—7n, = 0) is also needed at the z = 0 boundary because the initial condition has a
symmetry here. At the lower boundary y = 0 we also set a Neumann condition (which becomes
—ny = 0). The wave motion is to be simulated until the wave hits the reflecting boundaries where
dn/on = n, = 0 (one can also set 7 = 0 - the particular condition does not matter as long as the
simulation is stopped before the wave is influenced by the boundary condition).

Visualize the surface elevation. Investigate how different hill shapes, different sizes of the water gap
above the hill, and different resolutions Az = Ay = h and At influence the numerical quality of the
solution.

2.96. Problem: Investigate Mayavi for visualization

Play with Mayavi code for visualizing 2D solutions of the wave equation with variable wave velocity.
See if there are effective ways to visualize both the solution and the wave velocity scalar field at the
same time.

2.97. Problem: Investigate visualization packages

Create some fancy 3D visualization of the water waves and the subsea hill in Problem Section 2.95.
Try to make the hill transparent. Possible visualization tools are Mayavi, Paraview, and OpenDX.

2.98. Problem: Implement loops in compiled languages

Extend the program from Problem Section 2.95 such that the loops over mesh points, inside the
time loop, are implemented in compiled languages. Consider implementations in Cython, Fortran
via £2py, C via Cython, C via £2py, C/C++ via Instant, and C/C++ via scipy.weave. Perform
efficiency experiments to investigate the relative performance of the various implementations. It is
often advantageous to normalize CPU times by the fastest method on a given mesh.

2.99. Exercise: Simulate seismic waves in 2D

The goal of this exercise is to simulate seismic waves using the PDE model (2.130) in a 2D zz
domain with geological layers. Introduce m horizontal layers of thickness h;, i = 0,...,m — 1. Inside
layer number 7 we have a vertical wave velocity c,; and a horizontal wave velocity cp, ;. Make a
program for simulating such 2D waves. Test it on a case with 3 layers where

Cz0 =Cz1 =Cz2, Ch0=Ch2, Chl<KChp-

Let s be a localized point source at the middle of the Earth’s surface (the upper boundary) and
investigate how the resulting wave travels through the medium. The source can be a localized
Gaussian peak that oscillates in time for some time interval. Place the boundaries far enough from
the expanding wave so that the boundary conditions do not disturb the wave. Then the type of
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boundary condition does not matter, except that we physically need to have p = pg, where pg is the
atmospheric pressure, at the upper boundary.

2.100. Project: Model 3D acoustic waves in a room

The equation for sound waves in air is derived in Section Section 2.85 and reads
Pt = C2V2p7

where p(x,y, z,t) is the pressure and c is the speed of sound, taken as 340 m/s. However, sound is
absorbed in the air due to relaxation of molecules in the gas. A model for simple relaxation, valid
for gases consisting only of one type of molecules, is a term c?7,V?p; in the PDE, where 7, is the
relaxation time. If we generate sound from, e.g., a loudspeaker in the room, this sound source must
also be added to the governing equation.

The PDE with the mentioned type of damping and source then becomes
pit = AEVP + AV + f,

where f(x,y, z,t) is the source term.

The walls can absorb some sound. A possible model is to have a “wall layer” (thicker than the
physical wall) outside the room where ¢ is changed such that some of the wave energy is reflected
and some is absorbed in the wall. The absorption of energy can be taken care of by adding a
damping term bp; in the equation:

pet + bpy = AVP + CQTSVth +f.

Typically, b = 0 in the room and b > 0 in the wall. A discontinuity in b or ¢ will give rise to
reflections. It can be wise to use a constant ¢ in the wall to control reflections because of the
discontinuity between c in the air and in the wall, while b is gradually increased as we go into
the wall to avoid reflections because of rapid changes in b. At the outer boundary of the wall
the condition p = 0 or dp/0n = 0 can be imposed. The waves should anyway be approximately
dampened to p = 0 this far out in the wall layer.

There are two strategies for discretizing the V?p; term: using a center difference between times
n+ 1 and n — 1 (if the equation is sampled at level n), or use a one-sided difference based on levels
n and n — 1. The latter has the advantage of not leading to any equation system, while the former
is second-order accurate as the scheme for the simple wave equation pit = ¢>V?p. To avoid an
equation system, go for the one-sided difference such that the overall scheme becomes explicit and
only of first order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer. Test the solver with the
method of manufactured solutions. Make some demonstrations where the wall reflects and absorbs
the waves (reflection because of discontinuity in b and absorption because of growing b). Experiment
with the impact of the 75 parameter.
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2.101. Project: Solve a 1D transport equation

We shall study the wave equation
ut +cuy =0, x€(0,L], te(0,T], (2.156)
with initial condition
u(x,0) = I(z), =z €]0,L],

and one periodic boundary condition
u(0,t) = u(L,t).

This boundary condition means that what goes out of the domain at * = L comes in at o = 0.
Roughly speaking, we need only one boundary condition because the spatial derivative is of first
order only.

Physical interpretation. The parameter ¢ can be constant or variable, ¢ = ¢(z). The equation
(2.156) arises in transport problems where a quantity w, which could be temperature or concentration
of some contaminant, is transported with the velocity ¢ of a fluid. In addition to the transport
imposed by “travelling with the fluid’’, v may also be transported by diffusion (such as heat
conduction or Fickian diffusion), but we have in the model u; + cu, assumed that diffusion effects
are negligible, which they often are.

a)

Show that under the assumption of a = const,
u(z,t) = I(x — ct) (2.157)

fulfills the PDE as well as the initial and boundary condition (provided I(0) = I(L)).

A widely used numerical scheme for (2.156) applies a forward difference in time and a backward
difference in space when ¢ > 0:
[Djfu+ c¢Dyu=0]". (2.158)

For ¢ < 0 we use a forward difference in space: [cD} u]?.
b)

Set up a computational algorithm and implement it in a function. Assume a is constant and
positive.

)

Test the implementation by using the remarkable property that the numerical solution is exact at
the mesh points if At = ¢ 'Ax.

d)

Make a movie comparing the numerical and exact solution for the following two choices of initial

conditions: )
I(z) = [sin G{)} (2.159)
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where n is an integer, typically n = 5, and

o 2
I(z) = exp (—(2:2/2)> . (2.160)

Choose At = ¢ 'Az,0.9¢ Az, 0.5¢ ' Ax.
e)

The performance of the suggested numerical scheme can be investigated by analyzing the numerical
dispersion relation. Analytically, we have that the Fourier component

u(x,t) _ ei(k:p—wt)7

is a solution of the PDE if w = kc. This is the analytical dispersion relation. A complete solution
of the PDE can be built by adding up such Fourier components with different amplitudes, where
the initial condition I determines the amplitudes. The solution u is then represented by a Fourier
series.

A similar discrete Fourier component at (zp,t,) is

ug _ ei(k:pr—dmAt) ’

where in general @ is a function of k, At, and Az, and differs from the exact w = kc.
Insert the discrete Fourier component in the numerical scheme and derive an expression for @, i.e.,
the discrete dispersion relation. Show in particular that if At/(cAz) = 1, the discrete solution

coincides with the exact solution at the mesh points, regardless of the mesh resolution (!). Show
that if the stability condition

At
<1,
cAx
the discrete Fourier component cannot grow (i.e., @ is real).

)

Write a test for your implementation where you try to use information from the numerical dispersion
relation.

We shall hereafter assume that ¢(z) > 0.

g)

Set up a computational algorithm for the variable coefficient case and implement it in a function.
Make a test that the function works for constant a.

h)

It can be shown that for an observer moving with velocity ¢(z), u is constant. This can be used to
derive an exact solution when a varies with x. Show first that

u(z,t) = f(C(x) —t), (2.161)

where 1
/ _

C (I) - c :E)v

f.

(
is a solution of (2.156) for any differentiable function
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@ Solution

Let € = C(x) —t. We have that

while 1
up = f/(§)C"(x) = f’(€)@,
implying that au, = f'(£). Then we have uy + cu, = —f'(§) + f/(§) =0

i)
Use the initial condition to show that an exact solution is
u(z,t) = I(C7(C(z) — ),

with C~! being the inverse function of C' = [ c!'dz. Since C(z) is an integral [(1/c)dz, C(z) is
monotonically increasing and there exists hence an inverse function C~! with values in [0, L].

@ Solution

In general we have u(x,t) = f(C(x) —t) and the solution is of this form with f(£) = I(C~1(¢)).
Moreover, at t = 0 we have I(C~(C(z))) = I(x), which is the required initial condition.

To compute (2.161) we need to integrate 1/¢ to obtain C' and then compute the inverse of C'.

The inverse function computation can be easily done if we first think discretely. Say we have some
function y = g(z) and seek its inverse. Plotting (z;,y;), where y; = g(z;) for some mesh points x;,
displays g as a function of x. The inverse function is simply x as a function of g, i.e., the curve with
points (y;, ;). We can therefore quickly compute points at the curve of the inverse function. One
way of extending these points to a continuous function is to assume a linear variation (known as
linear interpolation) between the points (which actually means to draw straight lines between the
points, exactly as done by a plotting program).

The function scipy.interpolate.interpld can take a set of points and return a continuous
function that corresponds to linear variation between the points. The computation of the inverse of
a function g on [0, L] can then be done by

def inverse(g, domain, resolution=101):
x = linspace(domain[0], domain[L], resolution)
y = g(x)
from scipy.interpolate import interpld
g_inverse = interpld(y, x, kind='linear', fill_value='extrapolate')
return g_inverse

To compute C(z) we need to integrate 1/c, which can be done by a Trapezoidal rule. Suppose we
have computed C(z;) and need to compute C(z;41). Using the Trapezoidal rule with m subintervals
over the integration domain [z;, z;11] gives

Tit1 dg 11 1 1 (i |
Clzip) = Cla) +/ — 5 o) + 5 (o)) Y ——. (2.162)
X (] ]

i c
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where h = (x;4+1 — x;)/m is the length of the subintervals used for the integral over [z;, x;y1]. We
observe that (2.162) is a difference equation which we can solve by repeatedly applying (2.162) for
i=0,1,...,N, — 1 if a mesh xg, 2, ..., 2y, is prescribed. Note that C'(0) = 0.

J)
Implement a function for computing C(x;) and one for computing C~!(x) for any x. Use these

two functions for computing the exact solution I(C~1(C(z) —t)). End up with a function
u_exact_variable_c(x, n, c, I) that returns the value of I(C~1(C(z) — t,)).

k)

Make movies showing a comparison of the numerical and exact solutions for the two initial conditions
(1) and (2.160). Choose At = Az/maxq r, c¢(x) and the velocity of the medium as

1. ¢(x) =1+ esin(knrz/L), € < 1,
2. ¢(x) =1+ I(z), where I is given by

(1) or (2.160).

The PDE u; + cuy = 0 expresses that the initial condition I(z) is transported with velocity c(x).

2.102. Problem: General analytical solution of a 1D damped wave
equation

2.103. For solution, see damped__wave_equation.pdf in joakibo on
bitbucket.

We consider an initial-boundary value problem for the damped wave equation:

ug + buy = Czuazx’ T e (Ov L)7 te (OaT}

u(0,t) =0,
u(L,t) =0,
u(z,0) = I(z),
ut(x,0) = V(x)

Here, b > 0 and c are given constants. The aim is to derive a general analytical solution of this
problem. Familiarity with the method of separation of variables for solving PDEs will be assumed.

a)

Seek a solution on the form u(x,t) = X (z)T'(t). Insert this solution in the PDE and show that it
leads to two differential equations for X and T

T +0T" + 2T =0, AX"+)2X =0,

with X (0) = X (L) = 0 as boundary conditions, and A as a constant to be determined.
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b)
Show that X (z) is on the form

Xp(x) =Cysinkx, k=—, n=12,...

where C), is an arbitrary constant.

c)

Under the assumption that (b/2)? < k2, show that T(¢) is on the form

1
T,(t) = e_%bt(an coswt + by sinwt), w=/k%— 162, n=12...

The complete solution is then

s 1

u(x,t) = Z sin kze 2% (A, coswt + By, sinwt),

n=1
where the constants A, and B,, must be computed from the initial conditions.
d)
Derive a formula for A,, from u(z,0) = I(z) and developing I(x) as a sine Fourier series on [0, L].
e)

Derive a formula for B,, from u;(z,0) = V(z) and developing V(x) as a sine Fourier series on
[0, L].

f

Calculate A,, and B,, from vibrations of a string where V' (z) = 0 and

I(z) = az/xo, x < xg,
| a(L —x)/(L —xp), otherwise

g)

Implement a function u_series(x, t, tol=1E-10) for the series for u(z,t), where tol is a tolerance
for truncating the series. Simply sum the terms until |a,| and |by| both are less than tol.

h)

What will change in the derivation of the analytical solution if we have u,(0,t) = u,(L, t) =0 as
boundary conditions? And how will you solve the problem with u(0,¢) = 0 and ux( ) =

2.104. Problem: General analytical solution of a 2D damped wave
equation

Carry out Problem Section 2.102 in the 2D case: wug + buy = ¢*(uge + Uyy), Where (z,y) €
(0, Ly) x (0, Ly). Assume a solution on the form u(z,y,t) = X (2)Y (y)T(t).
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2.105. Exercises: Wave Equations with Devito

These exercises explore wave equation solutions using the Devito DSL. They progress from basic
usage through verification techniques to more advanced applications.

2.105.1. Exercise 1: Standing Wave Simulation

Use the solve_wave_1d function to simulate a standing wave with:

e Domain: L =1, wave speed ¢ =1

o Initial condition: I(x) = sin(27zx) (two half-wavelengths)
o Initial velocity: V=10

o Boundary conditions: u(0,¢) = u(1,t) =0

a) Compute and plot the solution at ¢ = 0,0.25,0.5,0.75,1.0. How does the pattern differ from the
fundamental mode?

b) Derive the exact solution for this initial condition and compare with the numerical solution.
Compute the maximum error at ¢t = 1 for N, = 50, 100, 200.
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@ Solution

from src.wave import solve_wave_1d, exact_standing_wave
import numpy as np
import matplotlib.pyplot as plt

# Part (a)
def I(x):
return np.sin(2 * np.pi * x)

times = [0, 0.25, 0.5, 0.75, 1.0]
fig, axes = plt.subplots(l, 5, figsize=(15, 3))

for ax, T in zip(axes, times):
result = solve_wave_1d(L=1.0, c=1.0, Nx=100, T=T, C=0.9, I=I)
ax.plot(result.x, result.u)
ax.set_title(f't = {T}")
ax.set_ylim(-1.2, 1.2)

plt.tight_layout ()

# Part (b) - The exact solution for m=2 mode
# u(x,t) = sin(2*pi*x) * cos(2*pixt)
def u_exact(x, t):
return np.sin(2 * np.pi * x) * np.cos(2 * np.pi * t)

for Nx in [50, 100, 200]:
result = solve_wave_1d(L=1.0, c=1.0, Nx=Nx, T=1.0, C=0.9, I=I)
error = np.abs(result.u - u_exact(result.x, 1.0)).max()
print (£"Nx = {Nx:3d}: max error = {error:.2el}")

2.105.2. Exercise 2: Convergence Rate Verification

The theoretical convergence rate for the wave equation solver is O(At? + Ax?) = O(h?) when
At o< Azx.

a) Use convergence_test_wave_1d with grid sizes N, = 20,40, 80, 160, 320 and verify the observed
rate is close to 2.

b) Repeat with Courant number C' = 1. What happens to the errors? Explain why.
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@ Solution

from src.wave import convergence_test_wave_1d
import numpy as np

# Part (a)

grid_sizes, errors, rate = convergence_test_wave_1d(
grid_sizes=[20, 40, 80, 160, 320],
T=0.5,
C=0.9,

)

print(£"C = 0.9: Observed rate = {rate:.3f}")

# Compute individual rates
for i in range(l, len(errors)):
r = np.log(errors[i-1] / errors[i]) / np.log(2)
print(f" Nx {grid_sizes[i-1]1} -> {grid_sizes[i]}: rate = {r

# Part (b)
grid_sizes, errors, rate = convergence_test_wave_1d(
grid_sizes=[20, 40, 80, 160, 320],
T=0.5,
C=1.0,
)
print(f"\nC = 1.0: Observed rate = {rate:.3f}")
print (f"Errors: {errors}")

# At C=1, the numerical method is exact for the standing wave!
# Errors should be near machine precision.

:.3f1")

2.105.3. Exercise 3: Guitar String

Simulate a plucked guitar string with a triangular initial shape:

I(x) = {ax/xo T < X
a(L—x)/(L—1x9) x>

where L = 0.75 m, o = 0.8L, and a = 0.005 m.

a) For a guitar with fundamental frequency 440 Hz, compute the wave speed ¢ given that A = 2L.

b) Simulate one complete period and create an animation. Does the triangular shape remain sharp

as time progresses?

¢) Run with C' = 1 and observe the difference. Explain why the result is different.
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@ Solution

from src.wave import solve_wave_1d
import numpy as np

# Parameters

L=0.75
x0 = 0.8 x L
a = 0.005

freq = 440 # Hz

# Part (a)

wavelength = 2 * L

c = freq * wavelength

print (f"Wave speed c = {c} m/s")

# Period
period = 1 / freq
print (f"Period = {period*1000:.3f} ms")

# Part (b)
def I(x):
return np.where(x < x0, a * x / x0, a * (L - x) / (L - x0))

result = solve_wave_1d(
L=L, c=c, Nx=150, T=period,
C=0.9, I=I, save_history=True

# The triangular shape becomes "wavy" due to numerical dispersion
# Different Fourier components travel at slightly different speeds

# Part (c)

result_exact = solve wave_ 1d(
L=L, c=c, Nx=150, T=period,
C=1.0, I=I, save_history=True

# At C=1, D'Alembert's solution is exactly reproduced:
# The triangular pulse splits into two, bounces off walls, and
# recombines after one period to give the original shape.

2.105.4. Exercise 4: Source Wavelets

a) Use ricker_wavelet to create wavelets with peak frequencies fy = 10,25,50 Hz. Plot them and
their frequency spectra.
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b) What is the relationship between fy and the dominant wavelength A in a medium with ¢ = 1500
m/s?

c) For seismic imaging, we typically want the wavelet to have negligible amplitude at t = 0. What
constraint does this place on tg relative to fp?

@ Solution

from src.wave import ricker_wavelet, get_source_spectrum
import numpy as np
import matplotlib.pyplot as plt

# Part (a)
t = np.linspace(0, 0.5, 1001)
dt = t[1] - t[0]

fig, axes = plt.subplots(2, 3, figsize=(12, 6))

for i, fO in enumerate([10, 25, 50]):
wavelet = ricker_wavelet(t, f0=£f0)
freq, amp = get_source_spectrum(wavelet, dt)

axes[0, i].plot(t, wavelet)
axes[0, i].set_title(f'f0 = {f0} Hz')
axes[0, i].set_xlabel('Time (s)')

axes[1, i].plot(freq[:100], amp[:100])
axes[1, i].axvline(f0, color='r', linestyle='--"')
axes[1, i].set_xlabel('Frequency (Hz)')

# Part (b)
c = 1500 # m/s
for £f0 in [10, 25, 50]:

wavelength = ¢ / 0
print(£"f0 = {f0} Hz: wavelength = {wavelength} m")
# Part (c)

# The Ricker wavelet is centered at tO, and has amplitude ~O when
# |t - tO|l > 1/f0. For the wavelet to be ~0 at t=0, we need:
# t0 > 1/f0, typically tO = 1.5/f0 is used as default

2.105.5. Exercise 5: 2D Wave Propagation
a) Solve the 2D wave equation with an initial Gaussian pulse centered at (0.5,0.5):

I(z,y) = 6—100((1—0.5)2+(y—0.5)2)
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Plot the solution at t = 0,0.1,0.2,0.3 using contour plots.

b) How does the wave pattern differ from the 1D case? Explain the amplitude decay you observe.

@ Solution

from src.wave import solve_wave_2d
import numpy as np
import matplotlib.pyplot as plt

# Part (a)
def I(X, Y):
return np.exp(-100 * ((X - 0.5)**2 + (Y - 0.5)**2))

fig, axes = plt.subplots(l, 4, figsize=(16, 4))

for ax, T in zip(axes, [0, 0.1, 0.2, 0.3]):
result = solve_wave_2d(
Lx=1.0, Ly=1.0, Nx=100, Ny=100,
T=T, C=0.5, I=I

X, Y = np.meshgrid(result.x, result.y, indexing='ij')

c = ax.contourf(X, Y, result.u, levels=20, cmap='RdBu_r')
ax.set_title(f't = {T}")

ax.set_aspect('equal')

# Part (b)

# In 2D, the wave spreads as a circular wavefront. The amplitude

# decays as 1/sqrt(r) due to geometric spreading - the energy is

# distributed over an expanding circle rather than staying constant
# as in 1D.

2.105.6. Exercise 6: Reflection from Interface
Consider a 1D domain [0, 2] with a velocity interface at © = 1: ¢(x) =1 for x < 1 and ¢(z) = 2 for
x> 1.

a) Starting with a Gaussian pulse centered at = 0.3, simulate the wave propagation until ¢ = 2.0.

b) Identify the reflected and transmitted waves. Do the amplitudes match the theoretical reflection
(R =1/3) and transmission (T = 4/3) coefficients?

¢) What happens at the boundaries x = 0 and 2 = 2?7 Are there additional reflections?
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@ Solution
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# This requires implementing variable velocity, which is
# demonstrated in the wavelD_features.qmd chapter.
# A simplified approach using manual stencil computation:

import numpy as np
import matplotlib.pyplot as plt

L=2.0
Nx = 400
dx = L / Nx

x = np.linspace(0, L, Nx + 1)
# Velocity profile
c = np.where(x < 1.0, 1.0, 2.0)

c_max = 2.0

# Time stepping

C=0.5
dt = C * dx / c_max
T=2.0

Nt = int(T / dt)

# Initial condition

sigma = 0.1

x0 = 0.3

u_nml = np.exp(-((x - x0) / sigma)**2)
u_n = u_nml.copy()

u = np.zeros_like(u_n)

# Store snapshots
snapshots = []
times = []

for n in range(Nt):
# Update interior
for i in range(l, Nx):
C_local = c[i] * dt / dx
uli] = 2*%u n[i] - u nmi1[i] + C_local**2 * (u_n[i+1] - 2*u n[i] + u_n[i-1

# Dirichlet BCs
ul0] = 0
ulNx] =0

# Swap
u_nml, un, u =un, u, unnml

# Store snapshots
if n % 50 == 0:
snapshots.append(u_n.copy())
times.append(n * dt)
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2.105.7. Exercise 7: Manufactured Solution

Use the method of manufactured solutions to verify the solver. Choose u(z,t) = x(L — z)(1 +¢/2)
which satisfies zero Dirichlet boundary conditions.

a) Compute the required source term f(z,t) and initial conditions I(x), V(x).

b) Modify the solver (or use the source term capability) to solve with this f(x,t). Verify the
numerical solution matches the exact solution to machine precision.

@ Solution

Manufactured solution: u = x(L-x) (1 + t/2)
ut = x(L-x) * (1/2)

u_tt =0

ux=(L-2x)(1 + t/2)

u_xx = -2(1 + t/2)

PDE: u_tt = ¢c”2 *x u_xx + £
c’2 *x (-2)(1 + t/2) + £
2xc"2%(1 + t/2)

H OH HF OH HF H OH R
o
]

Hh
Il

def u_exact(x, t):
return x * (L - x) * (1 + 0.5 * t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5 * x * (L - x)

def f(x, t):
return 2 * c*x*x2 * (1 + 0.5 * t)

# The solution should be exact to machine precision because
# the discretization error is zero for quadratic solutions

2.105.8. Exercise 8: Wave Energy Conservation

The total energy of the wave system is:

E:;/OL {u?+02uﬂ dz

a) Implement a function to compute the discrete energy at each time step.
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b) Run a simulation with zero Dirichlet BCs and plot the energy versus time. Is energy conserved?

c) What happens to energy conservation if C' > 1?7

@ Solution

from src.wave import solve_wave_1d
import numpy as np

def compute_energy(u_history, x, dt, c):
"""Compute discrete energy at each time step."""
dx = x[1] - x[0]
Nt = u_history.shape[0]
energy = np.zeros(Nt)

for n in range(1l, Nt-1):
# u_t approximation (central difference)
u_t = (u_history[n+1] - u_history[n-1]) / (2 * dt)

# u_x approximation
u_x = np.zeros_like(u_history[n])
u_x[1:-1] = (u_history[n, 2:] - u_history[n, :-2]) / (2 * dx)

# Energy integral
energy[n] = 0.5 * dx * np.sum(u_t**2 + c**2 * u_x**2)

return energy

# Part (b)

result = solve _wave_1d(
L=1.0, c=1.0, Nx=100, T=5.0, C=0.9,
save_history=True

E = compute_energy(result.u_history, result.x, result.dt, 1.0)

import matplotlib.pyplot as plt
plt.plot(result.t_history[1:-1], E[1:-1])
plt.xlabel('Time')

plt.ylabel('Energy')

plt.title('Energy Conservation')

# Energy should be nearly constant for stable schemes

# Part (c)
# For C > 1, the scheme is unstable and energy grows exponentially
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2.105.9. Exercise 9: Numerical Dispersion

The numerical scheme introduces dispersion: different frequencies travel at different speeds.

a) Create an initial condition with multiple frequencies:

I(z) = sin(27z) 4 0.5 sin(67z)

Simulate for several periods and observe how the shape changes.

b) Run the same simulation with C' = 1. Is dispersion present?

@ Solution

from src.wave import solve_wave_1d
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(2 * np.pi * x) + 0.5 * np.sin(6 * np.pi * x)

# Part (a) - C < 1: dispersion present
result_a = solve_wave_1d(
L=1.0, ¢=1.0, Nx=100, T=10.0, C=0.8,
I=I, save_history=True

# Part (b) - C = 1: no dispersion
result_b = solve_wave_1d(
L=1.0, ¢c=1.0, Nx=100, T=10.0, C=1.0,
I=I, save_history=True

# Compare at final time
fig, (axl, ax2) = plt.subplots(l, 2, figsize=(12, 4))

axl.plot(result_a.x, I(result_a.x), 'k--', label='Initial')
axl.plot(result_a.x, result_a.u, 'r-', label=f't = {result_a.t}')
axl.set_title('C = 0.8 (dispersion present)')

axl.legend()

ax2.plot(result_b.x, I(result_b.x), 'k--', label='Initial')
ax2.plot(result_b.x, result_b.u, 'r-', label=f't = {result_b.t}')
ax2.set_title('C = 1.0 (dispersion-free)')

ax2.legend ()

# At C = 1, the solution returns exactly to the initial shape
# after one period, while at C < 1, the shape is distorted.
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2.105.10. Exercise 10: Extension to Higher Order

Devito supports higher-order spatial discretization through the space_order parameter.

a) Compare the errors at t = 1 for space_order = 2, 4, 6, 8 with N, = 50.

b) For which problems might higher spatial order be beneficial?

H OH HF H H OHF H H HF H H H R

Solution

Note: This requires modifying the solver to accept space_order
as a parameter. The key change is:

u = TimeFunction(name='u', grid=grid, time_order=2, space_order=order)

Higher order gives more accurate spatial derivatives but
requires wider stencils and more boundary handling.

Higher order is beneficial when:

1. The solution is smooth

2. Long propagation distances are needed

3. Minimizing numerical dispersion is important

4. Fewer grid points are desired for a given accuracy
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The famous diffusion equation, also known as the heat equation, reads

ou 9%u

ot~ “ox?

where u(z,t) is the unknown function to be solved for, x is a coordinate in space, and t is time.
The coefficient « is the diffusion coefficient and determines how fast u changes in time. A quick
short form for the diffusion equation is u; = gy,

Compared to the wave equation, uy = c*ugz, which looks very similar, the diffusion equation features
solutions that are very different from those of the wave equation. Also, the diffusion equation makes
quite different demands to the numerical methods.

Typical diffusion problems may experience rapid change in the very beginning, but then the evolution
of u becomes slower and slower. The solution is usually very smooth, and after some time, one
cannot recognize the initial shape of u. This is in sharp contrast to solutions of the wave equation
where the initial shape is preserved in homogeneous media — the solution is then basically a moving
initial condition. The standard wave equation u; = c?u,, has solutions that propagate with speed
¢ forever, without changing shape, while the diffusion equation converges to a stationary solution
u(z) as t — oo. In this limit, u; = 0, and u is governed by @”(x) = 0. This stationary limit of the
diffusion equation is called the Laplace equation and arises in a very wide range of applications
throughout the sciences.

It is possible to solve for u(x,t) using an explicit scheme, as we do in Section Section 3.1, but
the time step restrictions soon become much less favorable than for an explicit scheme applied to
the wave equation. And of more importance, since the solution w of the diffusion equation is very
smooth and changes slowly, small time steps are not convenient and not required by accuracy as
the diffusion process converges to a stationary state. Therefore, implicit schemes (as described in
Section Section 3.7) are popular, but these require solutions of systems of algebraic equations. We
shall use ready-made software for this purpose, but also program some simple iterative methods.
The exposition is, as usual in this book, very basic and focuses on the basic ideas and how to
implement. More comprehensive mathematical treatments and classical analysis of the methods are
found in lots of textbooks. A favorite of ours in this respect is the one by LeVeque (LeVeque 2007).
The books by Strikwerda (Strikwerda 2007) and by Lapidus and Pinder (Lapidus and Pinder 1982)
are also highly recommended as additional material on the topic.

3.1. An explicit method for the 1D diffusion equation

Explicit finite difference methods for the wave equation uy = c?ug; can be used, with small
modifications, for solving u; = aug, as well. The exposition below assumes that the reader is
familiar with the basic ideas of discretization and implementation of wave equations from Chapter
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Chapter 2. Readers not familiar with the Forward Euler, Backward Euler, and Crank-Nicolson (or
centered or midpoint) discretization methods in time should consult, e.g., Section 1.1 in (Langtangen
2016D).

3.2. The initial-boundary value problem for 1D diffusion

To obtain a unique solution of the diffusion equation, or equivalently, to apply numerical methods,
we need initial and boundary conditions. The diffusion equation goes with one initial condition
u(x,0) = I(z), where I is a prescribed function. One boundary condition is required at each point
on the boundary, which in 1D means that « must be known, u, must be known, or some combination
of them.

We shall start with the simplest boundary condition: © = 0. The complete initial-boundary value
diffusion problem in one space dimension can then be specified as

2
%:a%"i_.ﬂ .I‘E(O,L),tE(O,T]
u(z,0) = I(z), z € [0, L] (3.1)
u(0,t) = 0, t>0,
u(L,t) =0, t>0.

With only a first-order derivative in time, only one initial condition is needed, while the second-order
derivative in space leads to a demand for two boundary conditions. We have added a source term
f = f(x,t), which is convenient when testing implementations.

Diffusion equations like (3.1) have a wide range of applications throughout physical, biological,
and financial sciences. One of the most common applications is propagation of heat, where u(z,t)
represents the temperature of some substance at point xz and time ¢. Other applications are listed
in Section Section 3.66.

3.3. Forward Euler scheme

The first step in the discretization procedure is to replace the domain [0, L] x [0, 7] by a set of mesh
points. Here we apply equally spaced mesh points

x; =1Ax, 1=0,..., N,

and
th, =nAt, n=0,...,N;.

Moreover, u]' denotes the mesh function that approximates u(z;,t,) for ¢ = 0,..., N, and n =
0,...,N;. Requiring the PDE (3.1) to be fulfilled at a mesh point (z;,t,) leads to the equation

2

0 0
&u(xi, tn) = a@u(azi,tn) + flxg,ty), (3.2)
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The next step is to replace the derivatives by finite difference approximations. The computationally
simplest method arises from using a forward difference in time and a central difference in space:

[Djfu = aDyDyu+ f]1. (3.3)

Written out,

uil a“?ﬂ —2u tuiy
At Ax?

We have turned the PDE into algebraic equations, also often called discrete equations. The key

property of the equations is that they are algebraic, which makes them easy to solve. As usual, we

anticipate that v} is already computed such that u?“ is the only unknown in (3.4). Solving with

respect to this unknown is easy:

+fr (3.4)

wpth =l + F (ufyy — 2u +uly) + Atf7, (3.5)

where we have introduced the mesh Fourier number:

At

i F is the key parameter in the discrete diffusion equation

Note that F' is a dimensionless number that lumps the key physical parameter in the problem,
«, and the discretization parameters Ax and At into a single parameter. Properties of the
numerical method are critically dependent upon the value of F' (see Section Section 3.15 for
details).

The computational algorithm then becomes

1. compute u) = I(z;) for i = 0,..., N,
2. forn=0,1,..., Ny 1. apply (3.5) for all the internal spatial points i = 1,..., N, — 1 1. set
the boundary values u?H =0fori=0and =N,

The algorithm is compactly and fully specified in Python:

import numpy as np

x = np.linspace(0, L, Nx+1) # mesh points in space

dx = x[1] - x[0]

t = np.linspace(0, T, Nt+1) # mesh points in time

dt = t[1] - t[0]

F = axdt/dx**2

u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level

for i in range(0, Nx+1):
unli] = I(x[i])

for n in range(0, Nt):
for i in range(1l, Nx):
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uli] = u nf[i] + Fx(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt*f (x[i], t[nl])

ul0] = 0; wulNx] =0

unl:]=u

Note that we use a for a in the code, motivated by easy visual mapping between the variable name
and the mathematical symbol in formulas.

We need to state already now that the shown algorithm does not produce meaningful results unless
F <1/2. Why is explained in Section Section 3.15.

3.4. Implementation

The file diffulD_u0.py contains a complete function solver_FE_simple for solving the 1D diffusion
equation with v = 0 on the boundary as specified in the algorithm above:

import numpy as np
import scipy.sparse
import scipy.sparse.linalg

def solver_ FE_simple(I, a, f, L, dt, F, T):
Simplest expression of the computational algorithm
using the Forward Euler method and explicit Python loops.
For this method F <= 0.5 for stability.

import time

t0

time.perf_counter() # For measuring the CPU time

Nt = int(round(T / float(dt)))

t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]
u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)
for i in range(0, Nx + 1):
u_nli] = I(x[il)
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for n in range(0, Nt):
for i in range(l, Nx):
uli] = (
unli] + F * (unl[i - 1] - 2 * u_n[i] + u_n[i + 1]) + dt * f£(x[i]l, t[n])

ul0] =0
ulNx] =0

un, u=mu, un

tl = time.perf_counter()
return u_n, x, t, t1 - t0 # u_n holds latest u

def solver FE(I, a, f, L, dt, F, T, user_action=None, version="scalar"):
nnn

Vectorized implementation of solver_FE_simple.
nnn

import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))

t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space

dx = x[1] - x[0]

dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array
u_n = np.zeros(Nx + 1) # solution at t-dt

for i in range(0, Nx + 1):
u nli] = I(x[i])

if user_action is not None:
user_action(u n, x, t, 0)

for n in range(0, Nt):

if version == "scalar":
for i in range(1, Nx):
uli] = (
u_nli]

+ F *x (un[i - 1] - 2 * un[i] + u n[i + 1])
+dt * £(x[i], t[nl)
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elif version == "vectorized":
ul1:Nx] = (
u_n[1:Nx]

+ F * (u_n[0 : Nx - 1] - 2 * u_n[1:Nx] + u_n[2 :

+ dt * £(x[1:Nx], t[n])
)
else:
raise ValueError("version=Ys" % version)

ul0] = 0

u[Nx] =0

if user_action is not None:
user_action(u, x, t, n + 1)

= time.perf_counter ()
urn t1 - tO
ver_BE_simple(I, a, f, L, dt, F, T, user_action=None):

Simplest expression of the computational algorithm

for
and

imp

t0

Nt
B

dx
Nx
X

dx
dt

e e

o =
o

for

the Backward Euler method, using explicit Python loops
a dense matrix format for the coefficient matrix.

ort time
= time.perf_counter() # for measuring the CPU time
= int(round(T / float(dt)))

np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
= np.sqrt(a * dt / F)
= int(round(L / dx))

np.linspace(0, L, Nx + 1) # Mesh points in space
= x[1] - x[0]
= t[1] - t[0]

np.zeros(Nx + 1)

= np.zeros(Nx + 1)

np.zeros((Nx + 1, Nx + 1))

np.zeros(Nx + 1)

i in range(1l, Nx):

A[i 1) i - 1] = _F
Afi, 1 + 1] = -F
Afi, i1 =1 + 2 % F
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A[O, 0] = A[Nx, Nx] =1

for i in range(0, Nx + 1):
unli] = I(x[il)

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
for i in range(l, Nx):
blil = u_nfi] + dt * £(x[i], t[n + 11)
b[0] = b[Nx] = 0
ul:] = np.linalg.solve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

un, u=mu, un

tl = time.perf_counter()
return t1 - tO

solver BE(I, a, f, L, dt, F, T, user_action=None):
nmnn
Vectorized implementation of solver_BE_simple using also

a sparse (tridiagonal) matrix for efficiency.

import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))

t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space

dx = x[1] - x[0]

dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array at t[n+1]
u_n = np.zeros(Nx + 1) # solution at t[n]

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros (Nx)

b = np.zeros(Nx + 1)

diagonall[:] =1 + 2 x F
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lower[:] = -F # 1
upper[:] = -F # 1
diagonal[0] = 1
upper [0] = 0

diagonal[Nx] = 1
lower[-1] = 0

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

)

print (A.todense())

for i in range(0, Nx + 1):
u_nf[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
b=un+dt *x £(x[:]1, tln + 1])
b[0] = b[-1] = 0.0 # boundary conditions
ul:]

scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

tl = time.perf_counter()
return t1 - tO

def solver_theta(I, a, f, L, dt, F, T, theta=0.5, u_L=0, u_R=0, user_action=None):
win
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5).
Vectorized implementation and sparse (tridiagonal)
coefficient matrix.

import time

t0 = time.perf_counter() # for measuring the CPU time

Nt

int (round(T / float(dt)))
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t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space

dx = x[1] - x[0]

dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array at t[n+1]
u_n = np.zeros(Nx + 1) # solution at t[n]

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros (Nx)
b = np.zeros(Nx + 1)

F1 = F * theta

Fr = F * (1 - theta)
diagonal[:] =1 + 2 * F1
lower[:] = -F1 # 1
upper[:] = -F1 # 1
diagonal[0] = 1

upper[0] = 0

diagonal [Nx] = 1
lower[-1] = 0O

diags = [0, -1, 1]

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

for i in range(0, Nx + 1):
u nli] = I(x[i])

if user_action is not None:
user_action(u n, x, t, 0)

for n in range(0, Nt):

bl1:-1] = (
u_nf1:-1]
+ Fr * (un[:-2] - 2 * u_n[1:-1] + u_n[2:])
+ dt * theta * f(x[1:-1], t[n + 1])
+ dt * (1 - theta) * f(x[1:-1], t[n])

)

b[0] = u_L
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b[-1] = u_R # boundary conditions
ul:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

un, u=u, un

tl = time.perf_counter()
return tl1 - tO

viz(I, a, L, dt, F, T, umin, umax, scheme="FE", animate=True, framefiles=True):
def plot_u(u, %, t, n):
plt.plot(x, u, "r-", axis=[0, L, umin, umax], title="t=Jf" % t[nl)
if framefiles:
plt.savefig("tmp_frame’,04d.png" % n)
if t[n] ==
time.sleep(2)
elif not framefiles:
time.sleep(0.2)

user_action = plot_u if animate else lambda u, x, t, n: None

cpu = eval("solver_" + scheme) (I, a, L, dt, F, T, user_action=user_action)
return cpu

plug(scheme="FE", F=0.5, Nx=50):

L=1.0

a=1.0

T=0.1

dx = L / Nx

dt = F / a * dx**2

def I(x):
"""Plug profile as initial condition."""
if abs(x - L / 2.0) > 0.1:
return O
else:
return 1

cpu = viz(

202



3. Diffusion Equations

umin=-0.1,
umax=1.1,
scheme=scheme,
animate=True,
framefiles=True,

)

print ("CPU time:", cpu)

def gaussian(scheme="FE", F=0.5, Nx=50, sigma=0.05):

L=1.0
a=1.0
T=0.1
dx = L / Nx

dt = F / a *x dx**2

def I(x):
"""Gaussian profile as initial condition."""
return exp(-0.5 * ((x - L / 2.0) *x 2) / sigma**2)

u, cpu = viz(
I,
a,
L,
dt,
F,
T,
umin=-0.1,
umax=1.1,
scheme=scheme,
animate=True,
framefiles=True,
)
print ("CPU time:", cpu)

def expsin(scheme="FE", F=0.5, m=3):

L = 10.0
a=1
T=1.2

def exact(x, t):
return exp(-(m**2) * pi**2 * a / L*x2 * t) * sin(m * pi / L * x)

def I(x):
return exact(x, 0)

Nx = 80
dx L / Nx
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dt = F / a * dx**2
viz(I, a, L, dt, F, T, -1, 1, scheme=scheme, animate=True, framefiles=True)

def action(u, x, t, n):
e = abs(u - exact(x, t[n])).max()
errors.append(e)

errors = []

Nx_values = [10, 20, 40, 80, 160]

for Nx in Nx_values:
eval("solver_ " + scheme) (I, a, L, Nx, F, T, user_action=action)
dt =F *x (L / Nx) ** 2 / a
print(dt, errors([-1])

def test_solvers():
def u_exact(x, t):
return x * (L - x) * 5 x t # fulfills BC at x=0 and x=L

def I(x):
return u_exact(x, 0)

def f(x, t):
return 5 * x * (L - x) + 10 * a * t

a=3.5
L=1.5
Nx = 4
F=0.5
dx = L / Nx

dt = F / a *x dx**2

def compare(u, x, t, n): # user_action function
"""Compare exact and computed solution."""
u_e = u_exact(x, t[n])
diff = abs(u_e - u).max()
tol = le-14
assert diff < tol, "max diff: %g" % diff

import functools

s = functools.partial # object for calling a function w/args
solvers = [
s(solver_FE_simple, I=I, a=a, f=f, L=L, dt=dt, F=F, T=0.2),
s (
solver_FE,
I=I,
a=a,
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user_action=compare,
version="scalar",

solver_FE,
I=I,

user_action=compare,
version="vectorized",
),
s(solver_BE_simple, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, user_action=compare),
s(solver_BE, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, user_action=compare),
s(
solver_theta,
I=1,
a=a,

theta=0,
u_L=0,
u_R=0,
user_action=compare,
P
]
u, x, t, cpu = solvers[0] ()
u_e = u_exact(x, t[-11)
diff = abs(u_e - u).max()
tol = le-14
print(u_e)
print(u)
assert diff < tol, "max diff solver_FE_simple: %g" % diff

for solver in solvers:
solver ()
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if __name_ _
if len(sys.argv) < 2:

== "_ main__":
print("""Usage %s function argl arg2 arg3 ...""" % sys.argv[0])
sys.exit (0)

cnd = "%s(%s)" % (sys.argv[i]l, ", ".join(sys.argv[2:]))

print(cmd)

eval(cmd)

A faster alternative is available in the function solver_FE, which adds the possibility of solving the
finite difference scheme by vectorization. The vectorized version replaces the explicit loop

for i in range(l, Nx):

ulil = u_nli] + F¥(u_nl[i-1] - 2*%u_n[i] + u_nl[i+1]) \
+ dt*f(x[i], t[n])

by arithmetics on displaced slices of the u array:

ul1:Nx] = u n[1:Nx] + Fx(u_n[0:Nx-1] - 2*%u n[1:Nx] + u n[2:Nx+1]) \
+ dt*f(x[1:Nx], t[n])
ul1:-1] = u_n[1:-1] + Fx(u_n[0:-2] - 2*u_n[1:-1] + u_n[2:]1) \

+ dt*f(x[1:-1], t[nl)

For example, the vectorized version runs 70 times faster than the scalar version in a case with 100
time steps and a spatial mesh of 10° cells.

The solver_FE function also features a callback function such that the user can process the solution
at each time level. The callback function looks like user_action(u, x, t, n), where u is the
array containing the solution at time level n, x holds all the spatial mesh points, while t holds all
the temporal mesh points. The solver_FE function is very similar to solver_FE_simple above:

Functions for solving a 1D diffusion equations of simplest types
(constant coefficient, no source term):

u_t = a*u_xx on (0,L)

with boundary conditions u=0 on x=0,L, for t in (0,T].
Initial condition: u(x,0)=I(x).

The following naming convention of variables are used.

Name Description

Nx The total number of mesh cells; mesh points are numbered
from O to Nx.
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F The dimensionless number a*dt/dx**2, which implicitly
specifies the time step.

T The stop time for the simulation.
I Initial condition (Python function of x).
a Variable coefficient (constant).

L Length of the domain ([0,L]).

X Mesh points in space.

t Mesh points in time.

n Index counter in time.

u Unknown at current/new time level.
un u at the previous time level.

dx Constant mesh spacing in x.

dt Constant mesh spacing in t.

user_action is a function of (u, x, t, n), uli] is the solution at
spatial mesh point x[i] at time t[n], where the calling code
can add visualization, error computations, data analysis,

store solutions, etc.
nnn

import sys
import time

import matplotlib.pyplot as plt
import numpy as np

import scipy.sparse

import scipy.sparse.linalg

def solver_FE_simple(I, a, f, L, dt, F, T):
Simplest expression of the computational algorithm
using the Forward Euler method and explicit Python loops.
For this method F <= 0.5 for stability.

import time

t0 = time.perf_counter() # For measuring the CPU time

Nt = int(round(T / float(dt)))

t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space

dx = x[1] - x[0]

dt = t[1] - t[0]
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u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)

for i in range(0, Nx + 1):
unli] = I(x[i])

for n in range(0, Nt):
for i in range(l, Nx):
uli]l = (
unfil] + F * (un[i - 1] - 2 * u_n[i] + un[i + 1]) + dt * f(x[i]l, t[nl)

ul0] =0
ulNx] =0

un, u=u, un

tl = time.perf_counter()
return u_n, x, t, t1 - t0 # u_n holds latest u

def solver FE(I, a, f, L, dt, F, T, user_action=None, version="scalar"):

Vectorized implementation of solver_FE_simple.
nnn

import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))

t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space

dx = x[1] - x[0]

dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array
u_n = np.zeros(Nx + 1) # solution at t-dt

for i in range(0, Nx + 1):
u_nf[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
if version == '"scalar":
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for i in range(1l, Nx):
uli] = (
u_nli]
+ F *x (un[i - 1] - 2 * u_n[i] + u_n[i + 1])
+dt * £f(x[i], t[nl)

)
elif version == "vectorized":
ull:Nx] = (
u_n[1:Nx]

+ F * (u_n[0 : Nx - 1] - 2 * u_n[1:Nx] + u_n[2 : Nx + 1])
+ dt * £(x[1:Nx], t[n])
)
else:
raise ValueError("version=Y,s" % version)

uf0] = 0

ul[Nx] = 0

if user_action is not None:
user_action(u, x, t, n + 1)

un, u=u, un

tl = time.perf_counter ()
return tl1 - tO

3.5. Verification

3.5.1. Exact solution of discrete equations

Before thinking about running the functions in the previous section, we need to construct a suitable
test example for verification. It appears that a manufactured solution that is linear in time and at
most quadratic in space fulfills the Forward Euler scheme exactly. With the restriction that u =0
for x = 0, L, we can try the solution

u(z,t) = 5te(L — x).
Inserted in the PDE, it requires a source term
f(z,t) = 10t + 52(L — z) .

With the formulas from Appendix Section 6.3 we can easily check that the manufactured u fulfills
the scheme:

(D u = aDyDyu + f]* = [x(L — z)Df t = 5taDyDy(zL — %)+
10t + 5z(L — )]
= [5z(L — x) = 5ta(—2) + 10at + 5z(L — x)]7,
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which is a 0=0 expression. The computation of the source term, given any u, is easily automated
with sympy:

import sympy as sym
X, t, a, L = sym.symbols('x t a L")
u = x*x(L-x)*5*t

def pde(u):
return sym.diff(u, t) - a*sym.diff(u, x, x)

f = sym.simplify(pde(u))

Now we can choose any expression for u and automatically get the suitable source term f. However,
the manufactured solution u will in general not be exactly reproduced by the scheme: only constant
and linear functions are differentiated correctly by a forward difference, while only constant, linear,
and quadratic functions are differentiated exactly by a [D;D,ul? difference.

The numerical code will need to access the u and £ above as Python functions. The exact solution
is wanted as a Python function u_exact(x, t), while the source term is wanted as f(x, t). The
parameters a and L in u and £ above are symbols and must be replaced by float objects in a Python
function. This can be done by redefining a and L as float objects and performing substitutions of
symbols by numbers in u and £. The appropriate code looks like this:

a =0.5
L=1.5
u_exact = sym.lambdify(

[x, t], u.subs('L', L).subs('a', a), modules='numpy')
f = sym.lambdify(

[x, t], f.subs('L', L).subs('a', a), modules='numpy')
I = lambda x: u_exact(x, 0)

Here we also make a function I for the initial condition.

The idea now is that our manufactured solution should be exactly reproduced by the code (to
machine precision). For this purpose we make a test function for comparing the exact and numerical
solutions at the end of the time interval:

def test_solver_FE():

dx = L/3 # 3 cells
F=0.5
dt = Fxdx**2

u, X, t, cpu = solver_FE_simple(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2)
u_e = u_exact(x, t[-11)
diff = abs(u_e - u).max()
tol = 1E-14
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assert diff < tol, 'max diff solver_FE_simple: %g' % diff

u, X, t, cpu = solver_FE(
I=1I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version='scalar')
u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, 'max diff solver_FE, scalar: %g' % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version='vectorized')
u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, 'max diff solver_FE, vectorized: %g' % diff

1 The critical value F = 0.5

We emphasize that the value F=0.5 is critical: the tests above will fail if F has a larger value.
This is because the Forward Euler scheme is unstable for F' > 1/2.

The reader may wonder if F' = 1/2 is safe or if F' < 1/2 should be required. Experiments show
that F' = 1/2 works fine for u; = auy,, so there is no accumulation of rounding errors in this
case and hence no need to introduce any safety factor to keep F' away from the limiting value
0.5.

3.5.2. Checking convergence rates

If our chosen exact solution does not satisfy the discrete equations exactly, we are left with
checking the convergence rates, just as we did previously for the wave equation. However, with
the Euler scheme here, we have different accuracies in time and space, since we use a second order
approximation to the spatial derivative and a first order approximation to the time derivative. Thus,
we must expect different convergence rates in time and space. For the numerical error,

E = CtAtT + CxA.’Ep,

we should get convergence rates r = 1 and p = 2 (Cy and C, are unknown constants). As previously,
in Section Section 2.10.1, we simplify matters by introducing a single discretization parameter h:

h=At, Az=Kh"?,

where K is any constant. This allows us to factor out only one discretization parameter h from the
formula:

E = Cih+ Co(Kh'/P)P = Ch", C =C;+CK".

The computed rate r should approach 1 with increasing resolution.
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It is tempting, for simplicity, to choose K = 1, which gives Az = h"/P, expected to be v/At. However,
we have to control the stability requirement: F' < %, which means

alt
<

1
<= = Az >+V2ah'/?
255 T ah™’=,

implying that K = v/2« is our choice in experiments where we lie on the stability limit F' = 1/2.

3.6. Numerical experiments

When a test function like the one above runs silently without errors, we have some evidence for a
correct implementation of the numerical method. The next step is to do some experiments with
more interesting solutions.

We target a scaled diffusion problem where z/L is a new spatial coordinate and at/L? is a new
time coordinate. The source term f is omitted, and u is scaled by max,co 1) |I(x)| (see Section 3.2
in (Langtangen and Pedersen 2016) for details). The governing PDE is then

o _ o
ot 0x?’

in the spatial domain [0, L], with boundary conditions u(0) = u(1) = 0. Two initial conditions will
be tested: a discontinuous plug,

] 0, |[z—L/2|>0.1
I(z) = { 1, otherwise

and a smooth Gaussian function,
I(z) = ¢ 22 @L/2)?

The functions plug and gaussian in diffulD_u0.py run the two cases, respectively:

def plug(scheme="FE", F=0.5, Nx=50):

L=1.0
a=1.0
T=20.1
dx = L / Nx

dt = F / a *x dx**2

def I(x):
"""Plug profile as initial condition.
if abs(x - L / 2.0) > 0.1:
return 0
else:

return 1

cpu = viz(

I,
a,
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umin=-0.1,
umax=1.1,
scheme=scheme,
animate=True,
framefiles=True,

)

print ("CPU time:", cpu)

def gaussian(scheme="FE", F=0.5, Nx=50, sigma=0.05):

L=1.0

a=1.0

T=0.1

dx = L / Nx

dt = F / a * dx**2

def I(x):
"""Gaussian profile as initial condition.
return exp(-0.5 * ((x - L / 2.0) ** 2) / sigma**2)

u, cpu = viz(
I,
a,
L,
dt,
F,
T,
umin=-0.1,
umax=1.1,
scheme=scheme,
animate=True,
framefiles=True,
)
print ("CPU time:", cpu)

These functions make use of the function viz for running the solver and visualizing the solution
using a callback function with plotting:

def viz(I, a, L, dt, F, T, umin, umax, scheme="FE", animate=True, framefiles=True):
def plot_u(u, x, t, n):
plt.plot(x, u, "r-", axis=[0, L, umin, umax], title="t=Jf" % t[nl)
if framefiles:
plt.savefig("tmp_frame%04d.png" % n)
if t[n] ==
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time.sleep(2)
elif not framefiles:
time.sleep(0.2)

user_action = plot_u if animate else lambda u, x, t, n: None

cpu = eval("solver_" + scheme)(I, a, L, dt, F, T, user_action=user_action)
return cpu

Notice that this viz function stores all the solutions in a list solutions in the callback function.
Modern computers have hardly any problem with storing a lot of such solutions for moderate values
of N, in 1D problems, but for 2D and 3D problems, this technique cannot be used and solutions
must be stored in files.

Our experiments employ a time step At = 0.0002 and simulate for ¢ € [0,0.1]. First we try the
highest value of F': F' = 0.5. This resolution corresponds to N, = 50. A possible terminal command
is

Terminal> python -c 'from diffulD_u0 import gaussian
gaussian("solver_FE", F=0.5, dt=0.0002)'

The u(x,t) curve as a function of z is shown in Figure Figure 3.1 at four time levels.

We see that the curves have saw-tooth waves in the beginning of the simulation. This non-physical
noise is smoothed out with time, but solutions of the diffusion equations are known to be smooth,
and this numerical solution is definitely not smooth. Lowering F' helps: F < 0.25 gives a smooth
solution, see Figure Figure 3.2.

Increasing F' slightly beyond the limit 0.5, to F' = 0.51, gives growing, non-physical instabilities, as
seen in Figure Figure 3.3.

Instead of a discontinuous initial condition we now try the smooth Gaussian function for I(x). A
simulation for F' = 0.5 is shown in Figure Figure 3.4. Now the numerical solution is smooth for all
times, and this is true for any F' < 0.5.

Experiments with these two choices of I(z) reveal some important observations:

e The Forward Euler scheme leads to growing solutions if F' > %

o I(z) as a discontinuous plug leads to a saw tooth-like noise for F' = %, which is absent for
F<i

e The smooth Gaussian initial function leads to a smooth solution for all relevant F' values
(F <3)

3.7. Implicit methods for the 1D diffusion equation

Simulations with the Forward Euler scheme show that the time step restriction, F' < %, which means
At < Ax?/(2a), may be relevant in the beginning of the diffusion process, when the solution changes
quite fast, but as time increases, the process slows down, and a small At may be inconvenient. With
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Figure 3.1.: Forward Euler scheme for F' = 0.5.
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Figure 3.2.: Forward Euler scheme for F' = 0.25.
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Figure 3.3.: Forward Euler scheme for F' = 0.51.
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Figure 3.4.: Forward Euler scheme for F' = 0.5.
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implicit schemes, which lead to coupled systems of linear equations to be solved at each time level,
any size of At is possible (but the accuracy decreases with increasing At). The Backward Euler
scheme, derived and implemented below, is the simplest implicit scheme for the diffusion equation.

3.8. Backward Euler scheme

In (3.2), we now apply a backward difference in time, but the same central difference in space:

[D; uw= DyDyu+ f]7, (3.6)
which written out reads
ul — un Lk g ukoki 41— 2ul +ul
p— - . 3-7
I @ Ax? i (37)

Now we assume u?_l is already computed, but that all quantities at the “new” time level n are

unknown. This time it is not possible to solve with respect to ] because this value couples to its
neighbors in space, u;' ; and uf’, |, which are also unknown. Let us examine this fact for the case
when N, = 3. Equation (3.7) written for i = 1,..., Nz — 1 = 1,2 becomes

uft —ulxxl u' x %2 — 2ut + uf 4
A 3.8
At o A2 + fl ( )

ulf —u" %2 u” * %3 — 2ul + ul n
— 3.9

The boundary values ug and uj are known as zero. Collecting the unknown new values v} and u3
on the left-hand side and multiplying by At gives

(14 2F)u™ + %1 — Fu™ % %2 = w1 + Atf, (3.10)
—Ful + (1 +2F)ulf = uy~ ' + Atfy. (3.11)

This is a coupled 2 x 2 system of algebraic equations for the unknowns «} and u5. The equivalent
matrix form is
142F —F uf \ [ uT AL
< —F  142F ) < ul ) - ( uhy -+ ALfR )

1 Terminology: implicit vs. explicit methods

Discretization methods that lead to a coupled system of equations for the unknown function at
a new time level are said to be implicit methods. The counterpart, explicit methods, refers to
discretization methods where there is a simple explicit formula for the values of the unknown
function at each of the spatial mesh points at the new time level. From an implementational
point of view, implicit methods are more comprehensive to code since they require the solution
of coupled equations, i.e., a matrix system, at each time level. With explicit methods we have
a closed-form formula for the value of the unknown at each mesh point.
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Very often explicit schemes have a restriction on the size of the time step that can be relaxed
by using implicit schemes. In fact, implicit schemes are frequently unconditionally stable,
so the size of the time step is governed by accuracy and not by stability. This is the great
advantage of implicit schemes.

In the general case, (3.7) gives rise to a coupled (N, — 1) x (N, — 1) system of algebraic equations
for all the unknown «}' at the interior spatial points ¢ = 1,..., N, — 1. Collecting the unknowns on
the left-hand side, (3.7) can be written

—Ful |+ (14 2F)u™ * i — Fu s %i + 1 = w7}, (3.12)

fori=1,..., N, — 1. One can either view these equations as a system where the u]' values at the
internal mesh points, ¢ = 1,..., N, — 1, are unknown, or we may append the boundary values g
and uf; to the system. In the latter case, all uj for i =0,..., N, are considered unknown, and we
must add the boundary equations to the N, — 1 equations in (3.12):

ug =0, (3.13)
uy =0. (3.14)
A coupled system of algebraic equations can be written on matrix form, and this is important if we

want to call up ready-made software for solving the system. The equations (3.12) and (3.13)—(3.14)
correspond to the matrix equation

AU =b
where U = (ug, ..., u} ), and the matrix A has the following structure:
Agp Ao 0 0
Arpg Ain Aip :
0 Ay Asp As3
: - - ) 0 :
A=1| e e e : (3.15)

0 A1 A Aiin

0
AN, —1,N,
. D A 0 An, N1 An,n,

The nonzero elements are given by

Am'_l =-F (316)

Aii=142F (3.17)

Ai,i+1 =-F (318)

in the equations for internal points, i = 1,..., N, — 1. The first and last equation correspond to the

boundary condition, where we know the solution, and therefore we must have
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App =1, (3.19)
Aoq =0, (3.20)
AN, N,—1 =0, (3.21)
AN,.N, = 1. (3.22)
The right-hand side b is written as
bo
b1
b= b,
by,
with
by =0, (3.23)
bi=ul"t, i=1,...,N,—1, (3.24)
by, =0. (3.25)

We observe that the matrix A contains quantities that do not change in time. Therefore, A can be
formed once and for all before we enter the recursive formulas for the time evolution. The right-hand
side b, however, must be updated at each time step. This leads to the following computational
algorithm, here sketched with Python code:

x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]

t = np.linspace(0, T, N+1) # mesh points in time

u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level
A = np.zeros((Nx+1, Nx+1))

b = np.zeros(Nx+1)

for i in range(l, Nx):
Ali,i-1] = -F
Ali,i+1] = -F
A[i,i] = 1 + 2%F

A[0,0] = A[Nx,Nx] =1

for i in range(0, Nx+1):
u nli] = I(x[i])

import scipy.linalg
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for n in range(0, Nt):
for i in range(l, Nx):
b[i] = -u_n[i]
b[0] = b[Nx] = 0
ul:] = scipy.linalg.solve(A, b)

unl:] =u

Regarding verification, the same considerations apply as for the Forward Euler method (Section
Section 3.5.1).

3.9. Sparse matrix implementation

We have seen from (3.15) that the matrix A is tridiagonal. The code segment above used a full,
dense matrix representation of A, which stores a lot of values we know are zero beforehand, and
worse, the solution algorithm computes with all these zeros. With N, + 1 unknowns, the work
by the solution algorithm is %(Nx + 1) and the storage requirements (N, + 1)2. By utilizing the
fact that A is tridiagonal and employing corresponding software tools that work with the three
diagonals, the work and storage demands can be proportional to N, only. This leads to a dramatic
improvement: with N, = 200, which is a realistic resolution, the code runs about 40,000 times faster
and reduces the storage to just 1.5%! It is no doubt that we should take advantage of the fact that
A is tridiagonal.

The key idea is to apply a data structure for a tridiagonal or sparse matrix. The scipy.sparse
package has relevant utilities. For example, we can store only the nonzero diagonals of a matrix.
The package also has linear system solvers that operate on sparse matrix data structures. The code
below illustrates how we can store only the main diagonal and the upper and lower diagonals.

main np.zeros (Nx+1)
lower = np.zeros(Nx)

upper = np.zeros (Nx)
b np.zeros (Nx+1)

main[:] = 1 + 2xF
lower[:] = -F
upper[:] = -F
main[0] = 1
main[Nx] = 1

A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format='csr')

print A.todense() # Check that A is correct
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for i in range(O,Nx+1):
u nli] = I(x[i])

for n in range(0, Nt):
b =un
b[0] = b[-1] = 0.0 # boundary conditions
ul:] = scipy.sparse.linalg.spsolve(A, b)
unl:] =u

The scipy.sparse.linalg.spsolve function utilizes the sparse storage structure of A and performs,
in this case, a very efficient Gaussian elimination solve.

The program diffulD_u0.py contains a function solver_BE, which implements the Backward Euler
scheme sketched above. As mentioned in Section Section 3.3, the functions plug and gaussian run
the case with I(x) as a discontinuous plug or a smooth Gaussian function. All experiments point to
two characteristic features of the Backward Euler scheme: 1) it is always stable, and 2) it always
gives a smooth, decaying solution.

3.10. Crank-Nicolson scheme

The idea in the Crank-Nicolson scheme is to apply centered differences in space and time, combined
with an average in time. We demand the PDE to be fulfilled at the spatial mesh points, but midway
between the points in the time mesh:

o 2
au(xi’ tn-l—%) = awu(%ﬁ tn-&—%) + f(.%'z, tn-l—%)v

fori=1,...,N;—landn=0,..., Ny — 1.
With centered differences in space and time, we get

1
m
K3

[Diw = aDyDyu + f]

On the right-hand side we get an expression

1 n+i 1 . 1 . n+3
Ax2 U2 =20 T ki u" T ki 1)+ f, 2
x

+

This expression is problematic since u? is not one of the unknowns we compute. A possibility is

1
n+3 . .
to replace u; * by an arithmetic average:

TLJrl 1 . .
u; ° z§(u”**z+u”+l**z) )

In the compact notation, we can use the arithmetic average notation u':

1
mt
(2

[Dyu = aD, D, " + f]
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1
n+z5
We can also use an average for f;  *:
n+%
i .

[Dyu = aD, D, + f']

After writing out the differences and average, multiplying by At, and collecting all unknown terms
on the left-hand side, we get

1 1
u”+1**i—§F(u”+1>|<>»<z'—1—2u"+1**i+u”+1**2’—|—1):u"**i—f—QF(U"*M—I—2u”**i+u"**i+1)

1 1
+fiT S (3.26)

Also here, as in the Backward Euler scheme, the new unknowns «*! « i — 1, u™*! « xi, and u};]

are coupled in a linear system AU = b, where A has the same structure as in (3.15), but with
slightly different entries:

1
Aiio1 = —§F (3.27)
1
Aijit1 = <$ia (3:29)
in the equations for internal points, ¢ = 1,..., N, — 1. The equations for the boundary points
correspond to
App =1, (3.30)
App =0, (3.31)
AN, .N,—1 =0, (3.32)
An, N, = 1. (3.33)
The right-hand side b has entries
bp = 0, (3.34)
1
bi:u?*1+§(fﬁ+f;l+1), i=1,...,N, — 1, (3.35)
by, =0. (3.36)

When verifying some implementation of the Crank-Nicolson scheme by convergence rate testing,
one should note that the scheme is second order accurate in both space and time. The numerical

error then reads
E = CtAtr + CIA‘%‘T,
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where r = 2 (C; and C, are unknown constants, as before). When introducing a single discretization
parameter, we may now simply choose

h=Azx = At,

which gives
E=Ch"+C,h" = (Ct + Cx)hr,

where r should approach 2 as resolution is increased in the convergence rate computations.

3.11. The unifying 6 rule

For the equation

ou
E - G(U),
where G(u) is some spatial differential operator, the #-rule looks like
up Tt — +1
i Lo n 1— ny
= 0G () + (1= O)G()

The important feature of this time discretization scheme is that we can implement one formula and
then generate a family of well-known and widely used schemes:

e 0 =0 gives the Forward Euler scheme in time
e 0 =1 gives the Backward Euler scheme in time
e 0= % gives the Crank-Nicolson scheme in time

In the compact difference notation, we write the 6 rule as
[Dyu = anDmu}”Jre )

We have that t,19 = 0t, 11 + (1 — 0)ty,.

Applied to the 1D diffusion problem, the 8-rule gives

At Ax? Ax?
O+ (1—0)f)

n+1 n n+1 n+1 : n+1 . n n n
u; = Ul Ui — 2U * %4 + U ki — 1 ur = 2ut +ul
l——()z(@Zl _|_(1_9)11 v i—1

.This scheme also leads to a matrix system with entries
Aijio1=—-F0, A; =14+2F0 A1z =—F0,
while right-hand side entry b; is

2u +

L AP+ 4+ AL(1—0) fP.

The corresponding entries for the boundary points are as in the Backward Euler and Crank-Nicolson
schemes listed earlier.
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Note that convergence rate testing with implementations of the theta rule must adjust the error
expression according to which of the underlying schemes is actually being run. That is, if § = 0 (i.e.,
Forward Euler) or # = 1 (i.e., Backward Euler), there should be first order convergence, whereas
with 8 = 0.5 (i.e., Crank-Nicolson), one should get second order convergence (as outlined in previous
sections).

[Dyu = aDy Dy}

3.12. Experiments

We can repeat the experiments from Section Section 3.6 to see if the Backward Euler or Crank-
Nicolson schemes have problems with sawtooth-like noise when starting with a discontinuous initial
condition. We can also verify that we can have F' > %, which allows larger time steps than in the
Forward Euler method.
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Figure 3.5.: Backward Euler scheme for F' = 0.5.

The Backward Euler scheme always produces smooth solutions for any F'. Figure Figure 3.5 shows
one example. Note that the mathematical discontinuity at ¢ = 0 leads to a linear variation on a
mesh, but the approximation to a jump becomes better as N, increases. In our simulation, we
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specify At and F, and set N, to L/\/aAt/F. Since N, ~ v/F, the discontinuity looks sharper in
the Crank-Nicolson simulations with larger F.

The Crank-Nicolson method produces smooth solutions for small F', F' < %, but small noise gets
more and more evident as F' increases. Figures Figure 3.6 and Figure 3.7 demonstrate the effect for
F =3 and F' = 10, respectively. Section Section 3.15 explains why such noise occur.
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Figure 3.6.: Crank-Nicolson scheme for F' = 3.

3.13. The Laplace and Poisson equation

The Laplace equation, V2u = 0, and the Poisson equation, —V?u = f, occur in numerous applications
throughout science and engineering. In 1D these equations read v”(z) = 0 and —u”(z) = f(x),
respectively. We can solve 1D variants of the Laplace equations with the listed software, because
we can interpret u,, = 0 as the limiting solution of u; = au,, when u reaches a steady state limit
where u; — 0. Similarly, Poisson’s equation —u,, = f arises from solving u; = uz, + f and letting
t — 0o so uy — 0.

Technically in a program, we can simulate ¢t — oo by just taking one large time step: At — oco. In
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Figure 3.7.: Crank-Nicolson scheme for F' = 10.
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the limit, the Backward Euler scheme gives

L ot g ot kg — 1

_ Wi — fotl
Az? v

which is nothing but the discretization [~ D,D,u = f]? =0 of —uz, = f.

The result above means that the Backward Euler scheme can solve the limit equation directly and
hence produce a solution of the 1D Laplace equation. With the Forward Euler scheme we must do
the time stepping since At > Ax?/q is illegal and leads to instability. We may interpret this time
stepping as solving the equation system from —u,, = f by iterating on a pseudo time variable.

3.14. Solving the Diffusion Equation with Devito

Having established the finite difference discretization of the diffusion equation, we now implement
the Forward Euler scheme using Devito. The symbolic approach allows us to express the PDE
directly and let Devito generate optimized code.

3.14.1. From Discretization to Devito
Recall the Forward Euler scheme for the diffusion equation:

nt+l _ . n n n n
uT =+ F (ui — 20 +uil)

where the Fourier number F = aAt/Ax? must satisfy F' < 0.5 for stability.

In Devito, we express this as the PDE u; = auy, and let the framework derive the update formula
automatically.

3.14.2. The Devito Implementation

from devito import Grid, TimeFunction, Eq, solve, Operator, Constant
import numpy as np

# Domain and discretization

L=1.0 # Domain length

Nx = 100 # Grid points

a=1.0 # Diffusion coefficient

F=0.5 # Fourier number

dx = L / Nx

dt = F * dx*x2 / a # Time step from stability condition

# Create Devito grid
grid = Grid(shape=(Nx + 1,), extent=(L,))
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# Time-varying temperature field
# time_order=1 for first-order time derivative
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

3.14.3. Key Differences from the Wave Equation

Compare this to the wave equation setup:

Parameter Wave Equation Diffusion Equation
time_order 2 (for ugy) 1 (for uy)

Time derivative .dt2 .dt

Time levels 3 (u L, untth) 2 (u, umtl)

Stability number Courant: C' = cAt/Az <1 Fourier: F = aAt/Az? < 0.5

3.14.4. Symbolic PDE Definition

With time_order=1, Devito provides the .dt derivative:

# Diffusion coefficient as a Devito constant
a_const = Constant(name='a_const')

# PDE: ut = a * uxx => ut-a*uzxx-=0
pde = u.dt - a_const * u.dx2

# Solve for u at the forward time level
stencil = Eq(u.forward, solve(pde, u.forward))

When we print the stencil, we see:

print(stencil)
# Eq(u(t + dt, x), dt*a_const*u(t, x).dx2 + u(t, x))

This is exactly the Forward Euler update: u"*! = u" + At - o - u”,.

3.14.5. Boundary Conditions
For homogeneous Dirichlet conditions u(0,t) = u(L,t) = 0:
t_dim = grid.stepping_dim

bc_left = Eq(ult_dim + 1, 0], 0)
bc_right = Eq(ult_dim + 1, Nx], 0)
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3.14.6. Complete Solver

The src.diffu module provides solve_diffusion_1d:

from src.diffu import solve_diffusion_1d
import numpy as np

# Initial condition: sinusoidal temperature profile
def I(x):
return np.sin(np.pi * x)

result = solve diffusion_1d(
L=l O # Domain length

a=1.0, # Diffusion coefficient

Nx=100, # Grid points

T=0.1, # Final time

F=0.5, # Fourier number (at stability limit)
I=1, # Initial condition

print (f"Final time: {result.t:.4f}")

print (f"Max temperature: {result.u.max():.6f}")
3.14.7. Verification with Exact Solution

For the initial condition I(z) = sin(7wa/L), the exact solution is:

u(x,t) = e a(m/L)%t sin(mz/L)

This exponentially decaying sinusoid can verify our implementation:

from src.diffu import exact_diffusion_sine

# Compare numerical and exact solutions

u_exact = exact_diffusion_sine(result.x, result.t, L=1.0, a=1.0)
error = np.max(np.abs(result.u - u_exact))

print (f"Maximum error: {error:.2el}")

3.14.8. Convergence Testing

We verify second-order spatial accuracy:
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from src.diffu import convergence_test_diffusion_1d

grid_sizes, errors, rate = convergence_test_diffusion_1d(
grid_sizes=[10, 20, 40, 80],
T=0.1,
F=0.5,

print (f"Observed convergence rate: {rate:.2f}") # Should approach 2.0

With F fixed, refining the grid means Az — Az/2 and At — At/4 (since F = aAt/Az?). The
spatial error O(Az?) dominates, giving second-order convergence.

3.14.9. Visualizing the Solution Evolution

import matplotlib.pyplot as plt

result = solve diffusion_1d(
L=1.0, a=1.0, Nx=100, T=0.5, F=0.5,
save_history=True,

# Plot at several times
times_to_plot = [0, 0.1, 0.2, 0.3, 0.5]
plt.figure(figsize=(10, 6))

for t in times_to_plot:
idx = int(t / result.dt)
if idx < len(result.t_history):
plt.plot(result.x, result.u_history[idx],
label=f't = {result.t_historyl[idx]:.2f}"')

plt.xlabel('x")

plt.ylabel('u(x, t)")

plt.title('Diffusion of a Sinusoidal Profile')
plt.legend ()

plt.grid(True)

The solution shows the characteristic behavior of the heat equation: the sinusoidal profile decays
exponentially in time while maintaining its shape.

3.14.10. The Fourier Number and Physical Interpretation

The Fourier number F' = aAt/Az? has a physical interpretation. It represents the ratio of the
diffusion time scale to the computational time step:
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e Large F: Heat diffuses quickly relative to the time step
e Small F': Slow diffusion, finer time resolution

The stability limit F' < 0.5 means we cannot take time steps larger than half the time for heat to
diffuse across one grid cell.

3.14.11. Handling Different Initial Conditions

The diffusion equation smooths out discontinuities over time. Let’s compare a smooth Gaussian
and a discontinuous “plug”:

from src.diffu import gaussian_initial_condition, plug_initial_condition

# Gaussian: smooth initial condition
result_gaussian = solve_diffusion_1d(
L=1.0, Nx=100, T=0.1, F=0.5,
I=lambda x: gaussian_initial_condition(x, L=1.0, sigma=0.05),

# Plug: discontinuous initial condition
result_plug = solve_diffusion_1d(
L=1.0, Nx=100, T=0.1, F=0.5,
I=lambda x: plug_initial_condition(x, L=1.0, width=0.1),

For smooth initial conditions, the Forward Euler scheme with F' = 0.5 works well. For discontinuous
initial conditions, a smaller Fourier number (F' < 0.25) may be needed to avoid oscillations.

3.14.12. Summary

Key points for the diffusion equation with Devito:

Use time_order=1 for the first-order time derivative

The .dt attribute provides the time derivative

The Fourier number F' = aAt/Az? must satisfy F' < 0.5

The exact sinusoidal solution provides excellent verification

Smooth initial conditions work well at F' = 0.5; discontinuous conditions may need smaller F

Gl L=

The Forward Euler scheme is simple and explicit, but the time step restriction can be severe for
accuracy. In the next section, we discuss implicit methods that remove this restriction.
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3.15. Analysis of schemes for the diffusion equation

The numerical experiments in Sections Section 3.6 and Section 3.12 reveal that there are some
numerical problems with the Forward Euler and Crank-Nicolson schemes: sawtooth-like noise is
sometimes present in solutions that are, from a mathematical point of view, expected to be smooth.
This section presents a mathematical analysis that explains the observed behavior and arrives at
criteria for obtaining numerical solutions that reproduce the qualitative properties of the exact
solutions. In short, we shall explain what is observed in Figures Figure 3.13.7.

3.16. Properties of the solution

A particular characteristic of diffusive processes, governed by an equation like
U = QUgy, (3.37)

is that the initial shape u(z,0) = I(z) spreads out in space with time, along with a decaying
amplitude. Three different examples will illustrate the spreading of u in space and the decay in
time.

3.16.1. Similarity solution

The diffusion equation (3.37) admits solutions that depend on n = (z — ¢)/v/4at for a given value
of ¢. One particular solution is
u(z,t) = aerf(n) + b, (3.38)

where

erf(n) = \/27? /071 e~ dc, (3.39)

is the error function, and a and b are arbitrary constants. The error function lies in (—1,1), is odd
around 1 = 0, and goes relatively quickly to £1:

ghm _erf(n) = -1,
nlLIglo erf(n) = 1,
erf(n) = —erf(—),
erf(0) = 0,
erf(2) = 0.99532227,
erf(3) = 0.99997791

As t — 0, the error function approaches a step function centered at x = ¢. For a diffusion problem
posed on the unit interval [0, 1], we may choose the step at z = 1/2 (meaning ¢ = 1/2), a = —1/2,

b=1/2. Then
1 z—1 1 -2
) ==|1—erf 2 ) ) = erf 2, 3.40
u(x,t) 2( er <\/@>> 2erc(\/m> (3.40)
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where we have introduced the complementary error function erfc(n) = 1 — erf(n). The solution
(3.40) implies the boundary conditions

w(0,8) = + (1 _ erf(\_/i/;t)) , (3.41)

u(l,t) = % (1 — erf <1/2>) . (3.42)

dat
For small enough ¢, u(0,t) ~ 1 and u(1,t) ~ 0, but as t — oo, u(x,t) — 1/2 on [0, 1].

[\)

3.16.2. Solution for a Gaussian pulse

The standard diffusion equation u; = au,, admits a Gaussian function as solution:

() = —— B Chalo (3.43)
u(x, —\/Mexp 1ol . .

At ¢t = 0 this is a Dirac delta function, so for computational purposes one must start to view the
solution at some time ¢t = t. > 0. Replacing t by t. 4+ ¢ in (3.43) makes it easy to operate with a
(new) ¢ that starts at t = 0 with an initial condition with a finite width. The important feature of
(3.43) is that the standard deviation o of a sharp initial Gaussian pulse increases in time according
to o = v/2at, making the pulse diffuse and flatten out.

3.16.3. Solution for a sine component

Also, (3.37) admits a solution of the form
u(z,t) = Qe "sin (kx) . (3.44)
The parameters Q and k can be freely chosen, while inserting (3.44) in (3.37) gives the constraint
a=—ak®.

A very important feature is that the initial shape I(x) = @ sin (kz) undergoes a damping exp (—ak?t),
meaning that rapid oscillations in space, corresponding to large k, are very much faster dampened
than slow oscillations in space, corresponding to small k. This feature leads to a smoothing of the
initial condition with time. (In fact, one can use a few steps of the diffusion equation as a method
for removing noise in signal processing.) To judge how good a numerical method is, we may look at
its ability to smoothen or dampen the solution in the same way as the PDE does.

The following example illustrates the damping properties of (3.44). We consider the specific
problem

U = Uzy, x € (0,1), t € (0,7T],
u(0,t) =u(l,t) =0, te (0,77,
u(x,0) = sin(mx) 4+ 0.1sin(1007x)
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.The initial condition has been chosen such that adding two solutions like (3.44) constructs an
analytical solution to the problem:

w(z,t) =e ™ sin(mx) + 0.1e~m10% sin(1007z) . (3.45)

Figure Figure 3.8 illustrates the rapid damping of rapid oscillations sin(1007x) and the very much
slower damping of the slowly varying sin(mz) term. After about ¢ = 0.5 - 10~* the rapid oscillations
do not have a visible amplitude, while we have to wait until ¢ ~ 0.5 before the amplitude of the
long wave sin(mz) becomes very small.

t=0.00E+00 t=4.67E-05

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X X
t=2.33E-01 t=4.67E-01

1.0} 1 10}

08f 1 0.8}

06} 1 0.6}

=} 3

04t 1 0.4}

02f 1 0.2}

0.0 A 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0

X X

Figure 3.8.: Evolution of the solution of a diffusion problem: initial condition (upper left), 1/100
reduction of the small waves (upper right), 1/10 reduction of the long wave (lower left),
and 1/100 reduction of the long wave (lower right).

3.17. Analysis of discrete equations

A counterpart to (3.44) is the complex representation of the same function:

u(x,t) = Qe e
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where i = y/—1 is the imaginary unit. We can add such functions, often referred to as wave
components, to make a Fourier representation of a general solution of the diffusion equation:

u(x,t) = Z bpe kteike (3.46)
keK

where K is a set of an infinite number of k values needed to construct the solution. In practice,
however, the series is truncated and K is a finite set of k values needed to build a good approximate
solution. Note that (3.45) is a special case of (3.46) where K = {m, 1007}, by = 1, and bjgor = 0.1.

The amplitudes by of the individual Fourier waves must be determined from the initial condition.
At t = 0 we have u = >, by exp (ikz) and find K and by such that

I(z) = Z betke .

keK

(The relevant formulas for by come from Fourier analysis, or equivalently, a least-squares method for
approximating I(x) in a function space with basis exp (ikz).)

Much insight about the behavior of numerical methods can be obtained by investigating how a wave
component exp (—ak?t) exp (ikz) is treated by the numerical scheme. It appears that such wave
components are also solutions of the schemes, but the damping factor exp (—ak?t) varies among
the schemes. To ease the forthcoming algebra, we write the damping factor as A™. The exact
amplification factor corresponding to A is Ae = exp (—ak?At).

3.18. Analysis of the finite difference schemes

We have seen that a general solution of the diffusion equation can be built as a linear combination

of basic components
e—akgteikx

A fundamental question is whether such components are also solutions of the finite difference
schemes. This is indeed the case, but the amplitude exp (—ak?t) might be modified (which also
happens when solving the ODE counterpart v’ = —au). We therefore look for numerical solutions
of the form

ull = AN = Areike, (3.47)

where the amplification factor A must be determined by inserting the component into an actual
scheme. Note that A™ means A raised to the power of n, n being the index in the time mesh, while
the superscript n in ug just denotes u at time .

3.18.1. Stability

The exact amplification factor is Ae = exp (—a?k?At). We should therefore require |A| < 1 to have
a decaying numerical solution as well. If —1 < A < 0, A" will change sign from time level to time
level, and we get stable, non-physical oscillations in the numerical solutions that are not present in
the exact solution.
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3.18.2. Accuracy

To determine how accurately a finite difference scheme treats one wave component (3.47), we see
that the basic deviation from the exact solution is reflected in how well A™ approximates Ag, or
how well A approximates A.. We can plot A and the various expressions for A, and we can make
Taylor expansions of A/Ae to see the error more analytically.

3.18.3. Truncation error

As an alternative to examining the accuracy of the damping of a wave component, we can perform
a general truncation error analysis as explained in Chapter 7. Such results are more general, but
less detailed than what we get from the wave component analysis. The truncation error can almost
always be computed and represents the error in the numerical model when the exact solution is
substituted into the equations. In particular, the truncation error analysis tells the order of the
scheme, which is of fundamental importance when verifying codes based on empirical estimation of
convergence rates.

3.19. Analysis of the Forward Euler scheme

The Forward Euler finite difference scheme for u; = au,, can be written as
[Dfu = aDyDyuly .

Inserting a wave component (3.47) in the scheme demands calculating the terms

(iRadT [k A — gikade gn AT_tl 7
and
A"D.D, [e“‘“”]q _gn (_eikqAx A‘; sin? (kgx)> .
Inserting these terms in the discrete equation and dividing by A"etkaAT Jaads to
A-1 4, (kA
NN (2) ,

and consequently
A=1-4Fsin’p
where
0l
Az?
is the numerical Fourier number, and p = kAx/2. The complete numerical solution is then

uy = (1 — 4F sin? p)n gtkanz

#4# Stability We easily see that A < 1. However, the A can be less than —1, which will lead to
growth of a numerical wave component. The criterion A > —1 implies

4F sin?(p/2) < 2.
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The worst case is when sin?(p/2) = 1, so a sufficient criterion for stability is
1
F S 5)

or expressed as a condition on At:
Az?
At< =2
2a
Note that halving the spatial mesh size, Ax — %Am, requires At to be reduced by a factor of 1/4.

The method hence becomes very expensive for fine spatial meshes.

3.19.1. Accuracy

Since A is expressed in terms of F' and the parameter we now call p = kAx /2, we should also express
Ae by F and p. The exponent in Ae is —ak?At, which equals —Fk%?Az? = —F4p?. Consequently,

Ae = exp (—ak?At) = exp (—4Fp?).

All our A expressions as well as Ae are now functions of the two dimensionless parameters F' and
p.

Computing the Taylor series expansion of A/Ae in terms of F' can easily be done with aid of
Sympy:

def A_exact(F, p):
return exp(-4*F*p**2)

def A_FE(F, p):
return 1 - 4xF*sin(p)**2

from sympy import *

F, p = symbols('F p')

A _err FE = A_FE(F, p)/A_exact(F, p)
print A_err_FE.series(F, 0, 6)

The result is 4
= 1 —4F sin?p + 2Fp? — 16F%p? sin® p + 8F%p* + - -

€

Recalling that F' = aAt/Az?, p = kAz/2, and that sin? p < 1, we realize that the dominating terms
in A/Ae are at most

At
“A?
### Truncation error We follow the theory explained in Chapter 7. The recipe is to set up the
scheme in operator notation and use formulas from Section 7.7 to derive an expression for the
residual. The details are documented in Section 7.27. We end up with a truncation error

R = O(At) + O(Az?).
Although this is not the true error ue(z;,t,) — u, it indicates that the true error is of the form

E = C,At + O, Ax?

1—4 + aAt — 402 At + PAPAZ? + -

for two unknown constants C; and C,.
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3.20. Analysis of the Backward Euler scheme

Discretizing u; = auy, by a Backward Euler scheme,
[D; u = aD;Dyuly,

and inserting a wave component (3.47), leads to calculations similar to those arising from the
Forward Euler scheme, but since

cikadT D= gl — Anikata 1 —Alel’
we get
1—At 4 5 (kAx
“Ar —a@ sin (2> p
and then

A= (1+4F sin® p)il . (3.48)

The complete numerical solution can be written

Uy = (1 + 4F sin? p) " gkaba]

##4# Stability We see from (3.48) that 0 < A < 1, which means that all numerical wave components
are stable and non-oscillatory for any At > 0.

3.20.1. Truncation error

The derivation of the truncation error for the Backward Euler scheme is almost identical to that for
the Forward Euler scheme. We end up with

R = O(At) + O(Az?).

3.21. Analysis of the Crank-Nicolson scheme

The Crank-Nicolson scheme can be written as

1
n+3

[Diu = aD,D,u"], 2,

or
+3 1
Dy ? = So (IDaDauly + (D, Dyl ™)
Inserting (3.47) in the time derivative approximation leads to
1 1
, . A2 — A2 . A-1
D, A" ikgAzin+i _ An+l ikqAx — A" ikqAx )
(D AT He At ¢ At

Inserting (3.47) in the other terms and dividing by A"e?*927 gives the relation

A-1 1 4 (kA
AL ——iaAmzsm ( 5 )(l—i—A),
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and after some more algebra,
_1-2F sin? p
14 2Fsin?p’
The exact numerical solution is hence
. n
u 1-2F 51n2p pikgAx
7 1+ 2Fsin?p ’

##4# Stability The criteria A > —1 and A < 1 are fulfilled for any At > 0. Therefore, the solution
cannot grow, but it will oscillate if 1 — 2F sin? < 0. To avoid such non-physical oscillations, we must
demand F' < %

3.21.1. Truncation error

The truncation error is derived in Section 7.27:

nti
R = 0(A22) + O(AL) .

#4 Analysis of the Leapfrog scheme {#sec-diffu-pdel-analysis-leapfrog}

An attractive feature of the Forward Euler scheme is the explicit time stepping and no need for
solving linear systems. However, the accuracy in time is only O(At). We can get an explicit
second-order scheme in time by using the Leapfrog method:

[Dayu = aDy Dau + f17) .

Written out,
Yyl n1 2aAt
q g Ax?

We need some formula for the first step, u(ll, but for that we can use a Forward Euler step.

(ugyr — 2ug +ug_q) + fzg:tn) -

Unfortunately, the Leapfrog scheme is always unstable for the diffusion equation. To see this, we
insert a wave component A”e*** and get
A— AL 4,
— = —a——sin“p,
At A2 P
or
A2+ 4Fsin’pA—1=0,

A= —2Fsin?p+/4F2sin*p + 1.

Both roots have |A| > 1 so the amplitude always grows, which is not in accordance with the physics
of the problem. However, for a PDE with a first-order derivative in space, instead of a second-order
one, the Leapfrog scheme performs very well. Details are provided in Section Section 4.4.1.

which has roots
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3.22. Summary of accuracy of amplification factors

We can plot the various amplification factors against p = kAx/2 for different choices of the F'
parameter. Figures Figure 3.9, Figure 3.10, and Figure 3.11 show how long and small waves are
damped by the various schemes compared to the exact damping. As long as all schemes are stable,
the amplification factor is positive, except for Crank-Nicolson when F' > 0.5.

The effect of negative amplification factors is that A™ changes sign from one time level to the next,
thereby giving rise to oscillations in time in an animation of the solution. We see from Figure
Figure 3.9 that for F' = 20, waves with p > 7/4 undergo a damping close to —1, which means that
the amplitude does not decay and that the wave component jumps up and down (flips amplitude) in
time. For F' = 2 we have a damping of a factor of 0.5 from one time level to the next, which is very
much smaller than the exact damping. Short waves will therefore fail to be effectively dampened.
These waves will manifest themselves as high frequency oscillatory noise in the solution.

A value p = /4 corresponds to four mesh points per wave length of €*** while p = 7/2 implies
only two points per wave length, which is the smallest number of points we can have to represent

the wave on the mesh.

To demonstrate the oscillatory behavior of the Crank-Nicolson scheme, we choose an initial condition
that leads to short waves with significant amplitude. A discontinuous I(z) will in particular serve
this purpose: Figures Figure 3.6 and Figure 3.7 correspond to F' = 3 and F' = 10, respectively, and
we see how short waves pollute the overall solution.

3.23. Analysis of the 2D diffusion equation

Diffusion in several dimensions is treated later, but it is appropriate to include the analysis here.
We first consider the 2D diffusion equation

U = a(Ugz + Uyy),
which has Fourier component solutions of the form
u(a:, v, t) _ Aefathei(k:szrkyy)’

and the schemes have discrete versions of this Fourier component:

nT _ Agnei(kﬁqu—‘rkyrAy) )

Uq,

##+4# The Forward Euler scheme For the Forward Euler discretization,

[Dj"u = a(DyDyu + DyDyu)]?

q7r’
we get
&E—1 4 (kxAx) 4 (k:yAy>
= -« sin — a——= sin .
At Ax? 2 Ay? 2
Introducing
kg Az _ k,Ay
p:E - 2 9 py - 2 I
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we can write the equation for £ more compactly as

5;1 = -« sin? p, — ai sin? p
At Ax? Ay? v
and solve for &:
¢ =1—4F,sin’p, — 4F, sin’p,, . (3.49)

The complete numerical solution for a wave component is

ul, = A(1 — 4F, sin® p, — 4F, sin? p,)"el(Featetkyray) (3.50)

ar —
For stability we demand —1 < £ <1, and —1 < £ is the critical limit, since clearly £ < 1, and the
worst case happens when the sines are at their maximum. The stability criterion becomes

1
F+Fy <. (3.51)

For the special, yet common, case Ax = Ay = h, the stability criterion can be written as

h2
At < —
= 2o’

where d is the number of space dimensions: d = 1,2, 3.

3.23.1. The Backward Euler scheme

The Backward Euler method,

[Dy u = a(DyDyu+ DyDyu)ly

q7r ’

results in
1—¢ = —4F,sin’p, — 4F, sin? Dy,

and
§= (1 +4F; Sin2pz + 4Fy Sin2py)_1’

which is always in (0, 1]. The solution for a wave component becomes

ug, = A(1+4F; sin’ p,, + 4F, sin’ py)*"ei(kquHkyTAy) . (3.52)

3.23.2. The Crank-Nicolson scheme

With a Crank-Nicolson discretization,

+1 1 1
[Dyalyr? = Sla(DeDyu+ Dy Dyl + Sla(DeDu+ DyDyw)ly,

we have, after some algebra,

1 =2(F, sin? p, + F sin® py)

&= 1+ 2(Fysin?p; + Fysinp,)
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The fraction on the right-hand side is always less than 1, so stability in the sense of non-growing
wave components is guaranteed for all physical and numerical parameters. However, the fraction
can become negative and result in non-physical oscillations. This phenomenon happens when

1
F, sin® Pr + Fy sin? Dy > R

A criterion against non-physical oscillations is therefore
1

which is the same limit as the stability criterion for the Forward FEuler scheme.

The exact discrete solution is

. : n
g (L2 sin® po + Fosin® py) \ " i qneh,ray) (3.53)
q,r — in2 in2 ‘ .
1 + 2(F, sin® p, + Fy sin® py)

3.24. Explanation of numerical artifacts

The behavior of the solution generated by Forward Euler discretization in time (and centered
differences in space) is summarized at the end of Section Section 3.6. Can we, from the analysis
above, explain the behavior?

We may start by looking at Figure Figure 3.3 where F' = 0.51. The figure shows that the solution is
unstable and grows in time. The stability limit for such growth is F' = 0.5 and since the F' in this
simulation is slightly larger, growth is unavoidable.

Figure Figure 3.1 has unexpected features: we would expect the solution of the diffusion equation
to be smooth, but the graphs in Figure Figure 3.1 contain non-smooth noise. Turning to Figure
Figure 3.4, which has a quite similar initial condition, we see that the curves are indeed smooth.
The problem with the results in Figure Figure 3.1 is that the initial condition is discontinuous.
To represent it, we need a significant amplitude on the shortest waves in the mesh. However, for
F = 0.5, the shortest wave (p = 7/2) gives the amplitude in the numerical solution as (1 — 4F)",
which oscillates between negative and positive values at subsequent time levels for F' > %. Since the
shortest waves have visible amplitudes in the solution profile, the oscillations becomes visible. The
smooth initial condition in Figure Figure 3.4, on the other hand, leads to very small amplitudes
of the shortest waves. That these waves then oscillate in a non-physical way for F' = 0.5 is not a
visible effect. The oscillations in time in the amplitude (1 — 4F)™ disappear for F' < %, and that is
why also the discontinuous initial condition always leads to smooth solutions in Figure Figure 3.2,
where F' = %.

Turning the attention to the Backward Euler scheme and the experiments in Figure Figure 3.5, we
see that even the discontinuous initial condition gives smooth solutions for F' = 0.5 (and in fact all
other F values). From the exact expression of the numerical amplitude, (1 +4F sin? p)~!, we realize
that this factor can never flip between positive and negative values, and no instabilities can occur.
The conclusion is that the Backward Euler scheme always produces smooth solutions. Also, the
Backward Euler scheme guarantees that the solution cannot grow in time (unless we add a source
term to the PDE, but that is meant to represent a physically relevant growth).
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Finally, we have some small, strange artifacts when simulating the development of the initial plug
profile with the Crank-Nicolson scheme, see Figure Figure 3.7, where F' = 3. The Crank-Nicolson
scheme cannot give growing amplitudes, but it may give oscillating amplitudes in time. The critical
factor is 1 — 2F sin? p, which for the shortest waves (p = 7/2) indicates a stability limit F = 0.5.
With the discontinuous initial condition, we have enough amplitude on the shortest waves so their
wrong behavior is visible, and this is what we see as small instabilities in Figure Figure 3.7. The
only remedy is to lower the F' value.

3.25. Exercise: Explore symmetry in a 1D problem

This exercise simulates the exact solution (3.43). Suppose for simplicity that ¢ = 0.

a)

Formulate an initial-boundary value problem that has (3.43) as solution in the domain [—L, L]. Use
the exact solution (3.43) as Dirichlet condition at the boundaries. Simulate the diffusion of the
Gaussian peak. Observe that the solution is symmetric around z = 0.

b)

Show from (3.43) that uy(c,t) = 0. Since the solution is symmetric around z = ¢ = 0, we can solve
the numerical problem in half of the domain, using a symmetry boundary condition u, =0 at x = 0.
Set up the initial-boundary value problem in this case. Simulate the diffusion problem in [0, L] and
compare with the solution in a).

@ Solution

U = QULT,

u,(0,t) =0,

u(L,t) =

1 x2
exp| — | .
Varat P 4ot

3.26. Exercise: Investigate approximation errors from a u, = 0 boundary
condition

We consider the problem solved in Exercise Section 3.25 part b). The boundary condition wu,(0,t) =0
can be implemented in two ways: 1) by a standard symmetric finite difference [Dagu]!’ = 0, or 2)
by a one-sided difference [DTu = 0] = 0. Investigate the effect of these two conditions on the
convergence rate in space.

@ If you use a Forward Euler scheme, choose a discretization parameter

h = At = Ax? and assume the error goes like E ~ h". The error in the scheme is O(At, Az?)
so one should expect that the estimated r approaches 1. The question is if a one-sided difference
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approximation to u,(0,t) = 0 destroys this convergence rate.

3.27. Exercise: Experiment with open boundary conditions in 1D

We address diffusion of a Gaussian function as in Exercise Section 3.25, in the domain [0, L], but
now we shall explore different types of boundary conditions on z = L. In real-life problems we do
not know the exact solution on x = L and must use something simpler.

a)

Imagine that we want to solve the problem numerically on [0, L], with a symmetry boundary
condition u, = 0 at x = 0, but we do not know the exact solution and cannot of that reason
assign a correct Dirichlet condition at x = L. One idea is to simply set u(L,t) = 0 since this
will be an accurate approximation before the diffused pulse reaches x = L and even thereafter it
might be a satisfactory condition if the exact u has a small value. Let ue be the exact solution
and let u be the solution of u; = aug, with an initial Gaussian pulse and the boundary conditions
uz(0,t) = u(L,t) = 0. Derive a diffusion problem for the error e = ue — u. Solve this problem
numerically using an exact Dirichlet condition at z = L. Animate the evolution of the error and
make a curve plot of the error measure

Is this a suitable error measure for the present problem?
b)

Instead of using u(L,t) = 0 as approximate boundary condition for letting the diffused Gaussian
pulse move out of our finite domain, one may try u,(L,t) = 0 since the solution for large ¢ is quite
flat. Argue that this condition gives a completely wrong asymptotic solution as ¢ — 0. To do
this, integrate the diffusion equation from 0 to L, integrate u,, by parts (or use Gauss’ divergence
theorem in 1D) to arrive at the important property

d rL
$/0 u(z,t)dr =0,

implying that fOL udx must be constant in time, and therefore

/OL u(z, t)de = /OL I(z)dz .

The integral of the initial pulse is 1.

)

Another idea for an artificial boundary condition at x = L is to use a cooling law
—aug = q(u — ug), (3.54)

where ¢ is an unknown heat transfer coefficient and ug is the surrounding temperature in the
medium outside of [0, L]. (Note that arguing that ug is approximately u(L,t) gives the u, = 0
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condition from the previous subexercise that is qualitatively wrong for large ¢.) Develop a diffusion
problem for the error in the solution using (3.54) as boundary condition. Assume one can take
ug = 0 “outside the domain” since ue — 0 as z — oo. Find a function ¢ = ¢(¢) such that the
exact solution obeys the condition (3.54). Test some constant values of ¢ and animate how the
corresponding error function behaves. Also compute E(t) curves as defined above.

3.28. Exercise: Simulate a diffused Gaussian peak in 2D /3D

a)

Generalize (3.43) to multi dimensions by assuming that one-dimensional solutions can be multiplied
to solve u; = aV2u. Set ¢ = 0 such that the peak of the Gaussian is at the origin.

b)

One can from the exact solution show that u; =0 onx =0, uy =0ony =0, and u, =0 on z = 0.
The approximately correct condition © = 0 can be set on the remaining boundaries (say z = L,
y= L, z= L), cf. Exercise Section 3.27. Simulate a 2D case and make an animation of the diffused
Gaussian peak.

)

The formulation in b) makes use of symmetry of the solution such that we can solve the problem in the
first quadrant (2D) or octant (3D) only. To check that the symmetry assumption is correct, formulate
the problem without symmetry in a domain [—L, L] X [L, L] in 2D. Use u = 0 as approximately
correct boundary condition. Simulate the same case as in b), but in a four times as large domain.
Make an animation and compare it with the one in b).

3.29. Exercise: Examine stability of a diffusion model with a source term

Consider a diffusion equation with a linear u term:
U = Qg + Pu.

a)

Derive in detail the Forward Euler, Backward Euler, and Crank-Nicolson schemes for this type of
diffusion model. Thereafter, formulate a 6-rule to summarize the three schemes.

b)

Assume a solution like (3.44) and find the relation between a, k, o, and .

@ Insert (3.44) in the PDE problem.

)

Calculate the stability of the Forward Euler scheme. Design numerical experiments to confirm the
results.
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Hint

Insert the discrete counterpart to (3.44) in the numerical scheme. Run experiments at the
stability limit and slightly above.

d)
Repeat c¢) for the Backward Euler scheme.

o)

Repeat ¢) for the Crank-Nicolson scheme.

f)

How does the extra term bu impact the accuracy of the three schemes?

@ For analysis of the accuracy,

compare the numerical and exact amplification factors, in graphs and/or by Taylor series
expansion.

3.30. Diffusion with variable coefficient

Diffusion in heterogeneous media normally implies a non-constant diffusion coefficient o = a(x). A
1D diffusion model with such a variable diffusion coefficient reads

= (atwg) + @0, weO.L), e ©.1] (3.55)
u(z,0) = I(z), x €0, L], (3.56)
u(0,) = Up, t>0, (3.57)
u(Lt) = Up, £> 0, (3.59)

A short form of the diffusion equation with variable coefficients is u; = (quy ), + f.

3.31. Discretization

We can discretize the diffusion equation u; = (cuy), + f by a f-rule in time and centered differences
in space:

n+%
;

[Dw]; 2 = 0[Dy(@ Dyu) + fI7 + (1 — 0)[ Dy (@ Dyu) + f17 .

Written out, this becomes
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n+l _ 7
i A i :eAxQ (aH%(u”H**i—l—l—u"H**i) —ozifé(u"Jrl**i—u”H**i—l))—l—
1
(1—9)p(ai+;(u”**i+1—u”**i)—aifl(u”**i—u”**i—1))—i—
x 2 2

Of T+ (1—0)fr

7

where, e.g., an arithmetic mean can to be used for a;  1:
2

CYH_% = 5(0@ + iy1) -

## Implementation {#sec-diffu-varcoeff-impl}

Suitable code for solving the discrete equations is very similar to what we created for a constant
a. Since the Fourier number has no meaning for varying «, we introduce a related parameter

D = At/Ax?.

def solver_theta(I, a, L, Nx, D, T, theta=0.5, u_L=1, u_R=0,
user_action=None) :
x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
dt D*xdx**2
Nt = int(round(T/float(dt)))
t = linspace(0, T, Nt+1) # mesh points in time

u = zeros(Nx+1) # solution array at t[n+1]
u_n = zeros(Nx+1) # solution at t[n]

D1 = 0.5*D*theta

Dr = 0.5%D*(1-theta)

diagonal = zeros(Nx+1)

lower = zeros (Nx)
upper = zeros (Nx)
b = zeros (Nx+1)

diagonal[1:-1] = 1 + D1x(a[2:] + 2*a[1:-1] + al[:-2])

lower[:-1] = -Dlx(al1l:-1] + a[:-2])
upper[1:] = -D1x(a[2:] + a[1:-1])
diagonall[0] = 1

upper [0] = O

diagonal [Nx] = 1
lower[-1] = 0

A = scipy.sparse.diags(

diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
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shape=(Nx+1, Nx+1),
format="'csr')

for i in range(0,Nx+1):
unli] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
b[1:-1] = u_n[1:-1] + Drx*(
(a[2:] + al[1:-1])*(u_n[2:] - u_n[1:-1]) -
(a[1:-1] + al0:-2])*(u_n[1:-1] - u_n[:-2]))
b[0] = u_L(t[n+1])
b[-1] = u_R(t[n+1])
ul:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n+l)

un, u=1u, un

The code is found in the file diffulD_vc.py.

3.32. Stationary solution

As t — o0, the solution of the variable-coefficient diffusion problem will approach a stationary limit
where du/0t = 0. The governing equation is then

d du

with boundary conditions u(0) = Uy and u(L) = Up. It is possible to obtain an exact solution
of (3.59) for any «. Integrating twice and applying the boundary conditions to determine the
integration constants gives

Jo (a(8)) g

u(x) =Uyp+ (Up — Up)sF——— . (3.60)
Jo (a(€))~1d¢
3.33. Piecewise constant medium
Consider a medium built of M layers. The layer boundaries are denoted by, ..., by, where by = 0

and by; = L. If the layers potentially have different material properties, but these properties are
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constant within each layer, we can express « as a piecewise constant function according to

a, bp <z < by,

Oé(.%') = g, b <z < bi+1, (3.61)

ap—1, by—1 <z <by.

The exact solution (3.60) in case of such a piecewise constant « function is easy to derive. Assume
that x is in the m-th layer: @ € [by, by41]. In the integral [;(a(€))™'d€ we must integrate through
the first m — 1 layers and then add the contribution from the remaining part x — b,, into the m-th
layer:

>0 (bir — bj) /a(by) + (z — by ) [ (bm)
S (bja — by)/a(by)

u(@) = Uy + (Ur, — Up) (3.62)

Remark. It may sound strange to have a discontinuous « in a differential equation where one
is to differentiate, but a discontinuous « is compensated by a discontinuous u, such that awu, is
continuous and therefore can be differentiated as (v )s.

3.34. Implementation of diffusion in a piecewise constant medium

Programming with piecewise function definitions quickly becomes cumbersome as the most naive
approach is to test for which interval z lies, and then start evaluating a formula like (3.62). In
Python, vectorized expressions may help to speed up the computations. The convenience classes
PiecewiseConstant and IntegratedPiecewiseConstant in the Heaviside module were made to
simplify programming with functions like (3.61) and expressions like (3.62). These utilities not only
represent piecewise constant functions, but also smoothed versions of them where the discontinuities
can be smoothed out in a controlled fashion.

The PiecewiseConstant class is created by sending in the domain as a 2-tuple or 2-list and a data
object describing the boundaries by, ..., bys and the corresponding function values ag, ..., —1.
More precisely, data is a nested list, where data[i] [0] holds b; and data[i] [1] holds the corre-
sponding value «;, for i =0,..., M — 1. Given b; and «; in arrays b and a, it is easy to fill out the
nested list data.

In our application, we want to represent o and 1/« as piecewise constant functions, in addition to
the u(x) function which involves the integrals of 1/a. A class creating the functions we need and a
method for evaluating u, can take the form

class Seriallayers:
b: coordinates of boundaries of layers, b[0] is left boundary
and b[-1] is right boundary of the domain [0,L].
a: values of the functions in each layer (len(a) = len(b)-1).
U_0: u(x) value at left boundary x=0=b[0].
U_L: u(x) value at right boundary x=L=b[0].
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def __init__(self, a, b, U_0, U_L, eps=0):
self.a, self.b = np.asarray(a), np.asarray(b)
self.eps = eps # smoothing parameter for smoothed a
self.U_0, self.U_ L = U_0, U_L

[[bi, ai] for bi, ai in zip(self.b, self.a)]
[(b[0], bl[-1]]

self.a_func = PiecewiseConstant(domain, a_data, eps)

a_data
domain

inv_a_data = [[bi, 1./ai] for bi, ai in zip(self.b, self.a)]
self.inv_a_func = \
PiecewiseConstant (domain, inv_a_data, eps)
self.integral of_inv_a_func = \
IntegratedPiecewiseConstant (domain, inv_a_data, eps)
self.inv_a_OL = self.integral of_inv_a_func(b[-1])

def __call__(self, x):
solution = self.U_0 + (self.U_L-self.U_0)x*\
self.integral_of_inv_a_func(x)/self.inv_a_OL
return solution

A visualization method is also convenient to have. Below we plot u(z) along with a(z) (which works
well as long as max a(x) is of the same size as max u = max(Up, Up)).

class Seriallayers:

def plot(self):
x, y_a = self.a_func.plot()
X = np.asarray(x); y_a = np.asarray(y_a)
y_u = self.u_exact(x)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x, y_u, 'b")
plt.hold('on') # Matlab style
plt.plot(x, y_a, 'r')
ymin = -0.1
ymax = 1.2*max(y_u.max(), y_a.max())
plt.axis([x[0], x[-1], ymin, ymax])
plt.legend(['solution $u$', 'coefficient $a$'], loc='upper left')
if self.eps > O:
plt.title('Smoothing eps: %s' % self.eps)
plt.savefig('tmp.pdf')
plt.savefig('tmp.png')
plt.show()
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Figure Figure 3.12 shows the case where

b = [0, 0.25, 0.5, 1] # material boundaries
a = [0.2, 0.4, 4] # material values
U 0=0.5; UL-=5 # boundary conditions

— solution u

— coefficient a

Figure 3.12.: Solution of the stationary diffusion equation corresponding to a piecewise constant
diffusion coefficient.

By adding the eps parameter to the constructor of the Seriallayers class, we can experiment
with smoothed versions of a and see the (small) impact on u. Figure Figure 3.13 shows the result.

3.35. Axi-symmetric diffusion

Suppose we have a diffusion process taking place in a straight tube with radius R. We assume
axi-symmetry such that u is just a function of r and ¢, with r being the radial distance from the
center axis of the tube to a point. With such axi-symmetry it is advantageous to introduce cylindrical
coordinates r, 0, and z, where z is in the direction of the tube and (r, ) are polar coordinates in a
cross section. Axi-symmetry means that all quantities are independent of 6. From the relations
x = cosf, y =sinf, and z = z, between Cartesian and cylindrical coordinates, one can (with some
effort) derive the diffusion equation in cylindrical coordinates, which with axi-symmetry takes the

ou 18( ( )8u>+8<( )@u>+f( n
— = —— [ ralr. z)— — |l al\r,2)— T,z .
ot ror " or 0z "0z T
Let us assume that u does not change along the tube axis so it suffices to compute variations in a

cross section. Then du/0z = 0 and we have a 1D diffusion equation in the radial coordinate r and
time . In particular, we shall address the initial-boundary value problem

form
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Smoothing eps: 0.05

— solution u

— coefficient a

Figure 3.13.: Solution of the stationary diffusion equation corresponding to a smoothed piecewise
constant diffusion coefficient.

% = %;« (m(r)g:f) + f(t), 7€ (0,R), te(0,T], (3.63)
%(O,t) =0, te(0,7], (3.64)

u(R,t) =0, "t € (0,T], (3.65)

u(r,0) = I(r), rel0,R)]. (3.66)

The condition (3.64) is a necessary symmetry condition at » = 0, while (3.65) could be any Dirichlet
or Neumann condition (or Robin condition in case of cooling or heating).

The finite difference approximation will need the discretized version of the PDE for » = 0 (just as
we use the PDE at the boundary when implementing Neumann conditions). However, discretizing
the PDE at r = 0 poses a problem because of the 1/r factor. We therefore need to work out the
PDE for discretization at » = 0 with care. Let us, for the case of constant o, expand the spatial

derivative term to
9%u 10u

a7 ta——.
or? ror
The last term faces a difficulty at » = 0, since it becomes a 0/0 expression caused by the symmetry
condition at » = 0. However, L’Hospital’s rule can be used:

10u  0%u
im-— = —.
r=0r dr  Or?
The PDE at r = 0 therefore becomes

ou d%u

o = 2055~ f(t). (3.67)
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For a variable coefficient a(r) the expanded spatial derivative term reads

2u u
o(r) 92+~ (afr) +ral (1) L.

We are interested in this expression for r = 0. A necessary condition for u to be axi-symmetric is
that all input data, including «, must also be axi-symmetric, implying that o/(0) = 0 (the second
term vanishes anyway because of 7 = 0). The limit of interest is

1 ou d%u
i T, =05 -
The PDE at r = 0 now looks like
ou 9%u
T 9 Z - .

so there is no essential difference between the constant coefficient and variable coefficient cases.

The second-order derivative in (3.67) and (3.68) is discretized in the usual way.

0? ult — 2u™ %0 + u % x—1
2awu(ro,tn) ~ [2aD,D,u]} = 202 A2 .

The fictitious value u”; can be eliminated using the discrete symmetry condition
[Doyu =0]y = u”; =ul,

which then gives the modified approximation to the term with the second-order derivative of u in r
at r =0: " d
uy — Yo

Ar?
The discretization of the term with the second-order derivative in r at any internal mesh point is
straightforward:

4o

10 ou\1" 1

—— (ra— ~ [r " D.(raDu)|"

[r or ( 8T>L [ a ruli
T A2 (ri+%ai+%(ui+l —uj') — Ti_l%_%(uz‘ - ui—l)) .

To complete the discretization, we need a scheme in time, but that can be done as before and does

not interfere with the discretization in space.

3.36. Spherically-symmetric diffusion

3.36.1. Discretization in spherical coordinates

Let us now pose the problem from Section Section 3.35 in spherical coordinates, where u only
depends on the radial coordinate r» and time ¢. That is, we have spherical symmetry. For simplicity
we restrict the diffusion coefficient a to be a constant. The PDE reads

=L (n5r) + 1

ot ror
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for r € (0,R) and t € (0,7]. The parameter v is 2 for spherically-symmetric problems and 1 for
axi-symmetric problems. The boundary and initial conditions have the same mathematical form as
in (3.63)-(3.66).

Since the PDE in spherical coordinates has the same form as the PDE in Section Section 3.35, just
with the v parameter being different, we can use the same discretization approach. At the origin
r = 0 we get problems with the term

v ou
r ot’
but L’Hospital’s rule shows that this term equals y9%u/0r?, and the PDE at r = 0 becomes
ou 0%u
— = Da— — f(t).
=y g — 1)

The associated discrete form is then
1 & 1
[Diu = 5(y+ DaD,D,a' + Fre,

for a Crank-Nicolson scheme.

3.36.2. Discretization in Cartesian coordinates

The spherically-symmetric spatial derivative can be transformed to the Cartesian counterpart by
introducing
v(r,t) = ru(r,t).

Inserting u = v/r in

yields

dr Or +QW

The two terms in the parenthesis can be combined to

2 a2)
or \ or) "

The PDE for v takes the form
ov 0 ( (%) 1 do

ot or

ozar ———v+rf(rt), re(0,R), te(0,T].

rdr

For « constant we immediately realize that we can reuse a solver in Cartesian coordinates to compute
v. With variable «, a “reaction” term v/r needs to be added to the Cartesian solver. The boundary
condition du/dr = 0 at r = 0, implied by symmetry, forces v(0,t) = 0, because

1
8u:(6v ):0, r=20.

r——u
or r2\' or
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3.37. Diffusion in 2D

We now address diffusion in two space dimensions:

ou @ d%u
0x?2  0x2

5 = - ) + f(z,y), (3.69)

in a domain
(z,y) € (0,Ly) x (0,Ly), t € (0,T],

with v = 0 on the boundary and u(zx,y,0) = I(z,y) as initial condition.

3.38. Discretization

For generality, it is natural to use a 6-rule for the time discretization. Standard, second-order
accurate finite differences are used for the spatial derivatives. We sample the PDE at a space-time
point (i,7,n + %) and apply the difference approximations:

[Dyu]™*2 = 0a(DyDyu + DyDyu) + f" '+

(1 — 0)[ Dy Dyt + DyDyu) + f]7 . (3.70)
Written out,
o, j —u™ ki,
At B
9(a(u”+1 sk — 1,7 — 2uH s xi, § + uﬁ'ﬁj N u" T xod, j — 1 — 20" ki, j 4 u%’il) g
Ax? Ay? I
(1- 6)(a(un k1 — 1,5 — 2u™ * ¥, j +ulyq i u" kxi, g — 1 —2u" x %1, j -l—usz) )
A2 Ay? irj
(3.71)

We collect the unknowns on the left-hand side

u;’bj—l _0 (Fac(u”H sxi— 1,5 — 20" wxi, j + u?_:'llj) + Fy(unJrl sk, j — 1 —2u™ T sexi, j + u?;}l)) =

(1-20) (Fx(u” ooxd — 1, § = 2u™ w0, j g ) + Fy(u #od, j — 1 —2u" % %i, j + uﬁjﬂ)) +
OALF™ s, + (1 — O)ALf™ % i, j + uf,
(3.72)

where

_alt _aAt
A2 Y Ay

are the Fourier numbers in z and y direction, respectively.

Fy
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(0,2): 8 (1,2): 9 (2,2):10
(0,1): 4 (1,1): 5 (2,1): 6
(0,0): 0 (1,0):1 (2,0): 2

Figure 3.14.: 3x2 2D mesh.
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3.39. Numbering of mesh points versus equations and unknowns

The equations (3.72) are coupled at the new time level n + 1. That is, we must solve a system of
(linear) algebraic equations, which we will write as Ac = b, where A is the coefficient matrix, c is
the vector of unknowns, and b is the right-hand side.

Let us examine the equations in Ac = b on a mesh with N, = 3 and N, = 2 cells in the respective
spatial directions. The spatial mesh is depicted in Figure Figure 3.14. The equations at the boundary
just implement the boundary condition v = 0:

n+l _  n+l n+l _  n+l _  n+l _
Ugo = Urp = Ugp =U3zg = Up1 =

n+l _  n+l n+l _  n+l _  n+l _
Uz = Ugp = Uz = Ugg = U3z =0.

We are left with two interior points, with i =1, j = 1 and ¢ = 2, j = 1. The corresponding equations
are

uzl;rl -0 (Fgc(u”Jrl ki — 1,5 — 20" woxi, § + u;fll]) + Fy(u’H'1 ek, j — 1 — 20" soxi, j + uf;rjl)) =

(1-9) (Fm(u" woxd — 1,7 = 2u™ * 0, j Huyg 5) + Fy(u™ # i, § — 1 —2u™ % %i, j + uﬁjﬂ)) +
OALF™ L wwi, j+ (1 — O)ALf™ % %i, j + (P

There are in total 12 unknowns u"'H for i =0,1,2,3 and j = 0,1,2. To solve the equations, we
need to form a matrix system Ac = b In that system, the solution vector ¢ can only have one index.
Thus, we need a numbering of the unknowns with one index, not two as used in the mesh. We
introduce a mapping m(i, j) from a mesh point with indices (i, j) to the corresponding unknown p
in the equation system:

p=mlij) = j(N, +1) +i.

When ¢ and j run through their values, we see the following mapping to p:

(0,0) -0, (0,1)—1, (0,2)—2, (0,3)—
(1,0) » 4, (1,1)—5, (1,2)—=6, (1,3)—
(2,0) =8, (2,1) =9, (2,2)—10, (2 )—>11.

That is, we number the points along the x axis, starting with y = 0, and then progress one “horizontal”
mesh line at a time. In Figure Figure 3.14 you can see that the (7, j) and the corresponding single
index (p) are listed for each mesh point.

We could equally well have numbered the equations in other ways, e.g., let the j index be the fastest
varying index: p = m(s,j) = (N, + 1) + j.

Let us form the coefficient matrix A, or more precisely, insert a matrix element (according Python’s
convention with zero as base index) for each of the nonzero elements in A (the indices run through
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the values of p, i.e., p=10,...,11):

(0,0) 0 0 0 0 0 0 0 0 0 0
0 (1,1) 0 0 0 0 0 0 0 0 0 0
0 0 (2,2) 0 0 0 0 0 0 0 0 0
0 0 0 (3,3) 0 0 0 0 0 0 0 0
0 0 0 0 (4,4) 0 0 0 0 0 0 0
0 (5,1) 0 0 (5,4) (5,5) (5,6) 0 0 (5,9) 0 0
0 0 (6,2) 0 0 (6,5) (6,6) (6,7) 0 0 (6,10) 0
0 0 0 0 0 0 0 (7,7) 0 0 0 0
0 0 0 0 0 0 0 0 (8,8) 0 0 0
0 0 0 0 0 0 0 0 0 (9,9) 0 0
0 0 0 0 0 0 0 0 0 (10, 10) 0
0 0 0 0 0 0 0 0 0 (11,11)

Here is a more compact visualization of the coefficient matrix where we insert dots for zeros and
bullets for non-zero elements:

It is clearly seen that most of the elements are zero. This is a general feature of coefficient matrices
arising from discretizing PDEs by finite difference methods. We say that the matrix is sparse.

Let A, 4 be the value of element (p, ¢) in the coeflicient matrix A, where p and ¢ now correspond
to the numbering of the unknowns in the equation system. We have A,, = 1 for p = ¢ =
0,1,2,3,4,7,8,9,10, 11, corresponding to all the known boundary values. Let p be m(i, j), i.e., the
single index corresponding to mesh point (7, j). Then we have

Ap(ig)m(ig) = App = 1+ 0(Fy + Fy), (3.73)
Apm(i-1,5) = App-1 = —OFz, (3.74)
Apm(i+1j) = Appr1 = —OF%, (3.75)
Apm(ij—1) = App—(N,+1) = —0F,, (3.76)
Apm(ij+1) = Appr(n,+1) = —OFy, (3.77)

for the equations associated with the two interior mesh points. At these interior points, the single
index p takes on the specific values p = 5, 6, corresponding to the values (1,1) and (1,2) of the pair

(4,5)-

The above values for A, , can be inserted in the matrix:

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 —0F, 0 0 —6F, 1+20F, —0F, 0 0 —0F, 0 0
0 0 —0F, 0 0 —0F, 1+4+20F, —60F, 0 0 —0F, 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
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The corresponding right-hand side vector in the equation system has the entries b,, where p numbers
the equations. We have

bp = b1 = by = b3 = by = by = bg = bg = b1g = b11 =0,

for the boundary values. For the equations associated with the interior points, we get for p = 5,6,
corresponding to ¢ = 1,2 and j = 1:

by =ul'; + (1 0) (Fx(u" woxi — 1, § — 20" woi, o+ ullyy ) + Fy(u" xoxi, j — 1 — 2u™ %, j + ugfjﬂ)) n
OALF™ T wxi, j+ (1 — O)AtF™ % xi, j .
Recall that p = m(i,j) = j(N; + 1) + j in this expression.

We can, as an alternative, leave the boundary mesh points out of the matrix system. For a mesh
with N, = 3 and N, = 2 there are only two internal mesh points whose unknowns will enter the
matrix system. We must now number the unknowns at the interior points:

p=0—-DWVe—1) +14,

fori=1,...,Ny—1,j=1,...,N,— 1.

We can continue with illustrating a bit larger mesh, N, = 4 and N, = 3, see Figure Figure 3.15.
The corresponding coefficient matrix with dots for zeros and bullets for non-zeroes looks as follows
(values at boundary points are included in the equation system):

1 The coefficient matrix is banded

Besides being sparse, we observe that the coefficient matrix is banded: it has five distinct
bands. We have the diagonal A;;, the subdiagonal A;_; ;, the superdiagonal A;;;1, a lower
diagonal A;;_(ng41), and an upper diagonal A; ;. (nz41). The other matrix entries are known
to be zero. With N, +1 = N, +1 = N, only a fraction 5N 2 of the matrix entries are nonzero,
so the matrix is clearly very sparse for relevant N values. The more we can compute with the
nonzeros only, the faster the solution methods will potentially be.
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(0,3): 15 (1,3): 16 (2,3): 17 (3.3): 18
(0,2):10 (1,2):11 (2,2):12 (3,2):13
{0,1): 5 (1,1): 6 (2,1): 7 {3,1): 8
{0,0): 0 (1,0):1 (2,0): 2 {3.0): 3

Figure 3.15.: 4x3 2D mesh.
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3. Diffusion Equations
3.40. Algorithm for setting up the coefficient matrix

We looked at a specific mesh in the previous section, formulated the equations, and saw what
the corresponding coefficient matrix and right-hand side are. Now our aim is to set up a general
algorithm, for any choice of N, and N,, that produces the coefficient matrix and the right-hand
side vector. We start with a zero matrix and vector, run through each mesh point, and fill in the
values depending on whether the mesh point is an interior point or on the boundary.

e fori=0,...,N,
o for j=0,...,Ny

—p=J(Nys+1)+i

— if point (4, j) is on the boundary:
* App=1,0,=0

— else:

* fill Ap,m(ifl,j)v Ap,m(iJrl,j)a Ap,m(i,j)7 Ap,m(i,jfl)v Ap,m(i,j+1)a and by

To ease the test on whether (7, ;) is on the boundary or not, we can split the loops a bit, starting
with the boundary line j = 0, then treat the interior lines 1 < j < N, and finally treat the boundary
line j = Ny:

e fori=0,...,N,

e boundary j=0: p=j(Ny,+ 1)+, App =1
o for j=0,...,Ny

e boundary i =0: p=j(Nz+ 1)+, 4y, =1
o fori=1,...,N, — 1

— interior point p = j(N, +1) +1

— Bl Ay inii-19)s Ap ity Apmiig) Apmii-1)> Apm(ij+1), and by
o boundary i = Ny: p=j(Ny+1)+1i, 4,, =1
e fori=0,...,N,
e boundary j = Ny: p=j(Na+1)+1i, App =1

The right-hand side is set up as follows.

e fori=0,...,N,

e boundary j =0: p=j(N,+1)+14,b,=0
o for j=0,..., N,

e boundary i =0: p=j(Nz+1)+14,b,=0
o fori=1,..., N, —1

— interior point p = j(Ny + 1) +1
— fill b,

o boundary i = Ny: p=j(Ny+1)+14,b,=0
° fOI‘i:O,...,Nx
e boundary j = Ny: p=j(Ny+1)+1i,b,=0
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3. Diffusion Equations
3.41. Implementation with a dense coefficient matrix

The goal now is to map the algorithms in the previous section to Python code. One should, for
computational efficiency reasons, take advantage of the fact that the coeflicient matrix is sparse
and/or banded, i.e., take advantage of all the zeros. However, we first demonstrate how to fill an
N x N dense square matrix, where N is the number of unknowns, here N = (N, + 1)(N, + 1). The
dense matrix is much easier to understand than the sparse matrix case.

import numpy as np

def solver_dense(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5, user_action=None):
Solve u_t = ax(u_xx + u_yy) + £, u(x,y,0)=I(x,y), with u=0
on the boundary, on [0,Lx]x[0,Lylx[0,T], with time step dt,

using the theta-scheme.
nmmnn

x = np.linspace(0, Lx, Nx+1) # mesh points in x dir
y = np.linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]

dy = y[1] - yl[o]

dt = float(dt) # avoid integer division
Nt = int(round(T/float(dt)))

t = np.linspace(0, Nt*dt, Nt+1) # mesh points in time

Fx = axdt/dx**2

Fy = axdt/dy**2

The u™*! x 4, j and u™ * *i, j mesh functions are represented by their spatial values at the mesh
points:

np.zeros ((Nx+1, Ny+1)) # unknown u at new time level
np.zeros ((Nx+1, Ny+1)) # u at the previous time level

s 8
=]
nn

It is a good habit (for extensions) to introduce index sets for all mesh points:

Ix = range(0, Nx+1)
It = range(0, Ny+1)
It = range(0, Nt+1)

The initial condition is easy to fill in:
for i in Ix:

for j in It:
u_nli,jl = Ix[i], y[jD)
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The memory for the coefficient matrix and right-hand side vector is allocated by
N = (Nx+1)*(Ny+1) # no of unknowns

A = np.zeros((N, N))
b = np.zeros(N)

The filling of A goes like this:

m = lambda i, j: j*(Nx+1) + i
j=0

for i in Ix:

p=m(i,j); Alp, pl =1

for j in It[1:-1]:
i=0; p=mdi,j); Alp, p] =1 # Boundary

for i in Ix[1:-1]: # Interior points
p = m(i,j)
Alp, m(i,j-1)] = - thetaxFy
Alp, m(i-1,j)] = - theta*Fx

Alp, pl = 1 + 2xtheta*(Fx+Fy)
Alp, m(i+1,3)] theta*Fx
Alp, m(4i,j+1)] theta*Fy
i =Nx; p=m(i,j); Alp, p] =1 # Boundary
j =Ny
for i in Ix:
p =mwm(i,j); Alp, pl] =1

Since A is independent of time, it can be filled once and for all before the time loop. The right-hand
side vector must be filled at each time level inside the time loop:

import scipy.linalg

for n in It[0:-1]:

j=0
for i in Ix:
p =m(i,j); blp]l =0 # Boundary

for j in It[1:-1]:
i=0; p=m(i,j); blp]l =0 # Boundary
for i in Ix[1:-1]: # Interior points
p = m(di,j)
blpl = u_nfli,jl + \
(1-theta)*(
Fxx(u_n[i+1,j] - 2*u_n[i,j] + u_nl[i-1,3j]1) +\
Fyx(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-11))\
+ theta*dt*f (i*dx, j*dy, (n+1)*dt) + \
(1-theta)*dt*f (i*dx, j*dy,n*dt)
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i =Nx; p=mn(i,j); blp]l] = 0 # Boundary

j =Ny
for i in Ix:
p=m(i,j); blpl =0 # Boundary

c = scipy.linalg.solve(A, b)
for i in Ix:
for j in It:
uli,jl = cm(i,jd]

un, u=u, un

We use solve from scipy.linalg and not from numpy.linalg. The difference is stated below.

i scipy.linalg versus numpy.linalg

Quote from the SciPy documentation:

scipy.linalg contains all the functions in numpy.linalg plus some other more advanced
ones not contained in numpy.linalg.

Another advantage of using scipy.linalg over numpy.linalg is that it is always compiled
with BLAS/LAPACK support, while for NumPy this is optional. Therefore, the SciPy version
might be faster depending on how NumPy was installed.

Therefore, unless you don’t want to add SciPy as a dependency to your NumPy program, use
scipy.linalg instead of numpy.linalg.

The code shown above is available in the solver_dense function in the file diffu2D_u0. py, differing
only in the boundary conditions, which in the code can be an arbitrary function along each side of
the domain.

We do not bother to look at vectorized versions of filling A since a dense matrix is just used of
pedagogical reasons for the very first implementation. Vectorization will be treated when A has a
sparse matrix representation, as in Section Section 3.44.

1 How to debug the computation of A and b

A good starting point for debugging the filling of A and b is to choose a very coarse mesh, say
N, = N, = 2, where there is just one internal mesh point, compute the equations by hand,
and print out A and b for comparison in the code. If wrong elements in A or b occur, print out
each assignment to elements in A and b inside the loops and compare with what you expect.

To let the user store, analyze, or visualize the solution at each time level, we include a callback
function, named user_action, to be called before the time loop and in each pass in that loop. The
function has the signature

user_action(u, x, xv, y, yv, t, n)
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where u is a two-dimensional array holding the solution at time level n and time t[n]. The z and y
coordinates of the mesh points are given by the arrays x and y, respectively. The arrays xv and yv
are vectorized representations of the mesh points such that vectorized function evaluations can be
invoked. The xv and yv arrays are defined by

xv = x[:,np.newaxis]
yv

y [np.newaxis, :]

One can then evaluate, e.g., f(x,y,t) at all internal mesh points at time level n by first evaluating
f at all points,

f_a = f(xv, yv, t[n])

and then use slices to extract a view of the values at the internal mesh points: f_a[1:-1,1:-1].
The next section features an example on writing a user_action callback function.

3.42. Verification: exact numerical solution

A good test example to start with is one that preserves the solution u = 0, i.e., f =0 and I(z,y) = 0.
This trivial solution can uncover some bugs.

The first real test example is based on having an exact solution of the discrete equations. This
solution is linear in time and quadratic in space:

w(z,y,t) = 5te(Ly — x)y(y — Ly) .
Inserting this manufactured solution in the PDE shows that the source term f must be
f(x,y,t) =52(Ly — x)y(y — Ly) + 100t (2(Le — x) +y(y — Ly)) -

We can use the user_action function to compare the numerical solution with the exact solution at
each time level. A suitable helper function for checking the solution goes like this:

def quadratic(theta, Nx, Ny):

def u_exact(x, y, t):
return 5*txx* (Lx-x)*y*(Ly-y)
def I(x, y):
return u_exact(x, y, 0)
def f(x, y, t):
return 5*x*(Lx-x)*y*(Ly-y) + 10%axt*(y*(Ly-y)+x*(Lx-x))

Lx = 0.75
Ly = 1.5
a=3.5b

dt = 0.5
T =2
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def assert_no_error(u, x, xv, y, yv, t, n):
"""Assert zero error at all mesh points."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()

tol = 1E-12
msg = 'diff=Yg, step %d, time=Yg' % (diff, n, t[n])
print msg

assert diff < tol, msg

solver_ dense(
I, a, £, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert no_error)

A true test function for checking the quadratic solution for several different meshes and 6 values
can take the form

def test_quadratic():
for theta in [1, 0.5, 0]:
for Nx in range(2, 6, 2):
for Ny in range(2, 6, 2):
print 'testing for %dx%d mesh' % (Nx, Ny)
quadratic(theta, Nx, Ny)

3.43. Verification: convergence rates

For 2D verification with convergence rate computations, the expressions and computations just
build naturally on what we saw for 1D diffusion. Truncation error analysis and other forms of error
analysis point to a numerical error formula like

E = C,AY + C,A2? + CyAy?,

where p, Cy, C,, and Cy are constants. Often, the analysis of a Crank-Nicolson method can show
that p = 2, while the Forward and Backward Euler schemes have p = 1.

When checking the error formula empirically, we need to reduce it to a form £ = Ch”" with a single
discretization parameter A and some rate r to be estimated. For the Backward Euler method, where
p =1, we can introduce a single discretization parameter according to

h=Az?=Ay?, h=K 1At
where K is a constant. The error formula then becomes
E =CKh+ Cyh+Cyh=Ch, C=CK+Cy+C,.

The simplest choice is obviously K = 1. With the Forward Euler method, however, stability requires
At = hK < h/(4a), so K < 1/(4a).
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For the Crank-Nicolson method, p = 2, and we can simply choose
h = Ax = Ay = At,

since there is no restriction on At in terms of Az and Ay.

A frequently used error measure is the £2 norm of the error mesh point values. Section Section 2.10.1
and the formula (2.21) shows the error measure for a 1D time-dependent problem. The extension to
the current 2D problem reads

N¢ No Ny 2

E= | AtAcAy S 30 (uelwi,yjo tn) — ul;)?

n=0i=0 j=0
One attractive manufactured solution is

ue = e P sin(kyz) sin(kyy), ks ky =

T 7T
) T
Ly L,

where p can be arbitrary. The required source term is
f = (akZ +ky) — p)ue.

The function convergence_rates in diffu2D_u0.py implements a convergence rate test. Two
potential difficulties are important to be aware of:

1. The error formula is assumed to be correct when h — 0, so for coarse meshes the estimated
rate r may be somewhat away from the expected value. Fine meshes may lead to prohibitively
long execution times.

2. Choosing p = a (k2 + k‘g) in the manufactured solution above seems attractive (f = 0), but
leads to a slower approach to the asymptotic range where the error formula is valid (i.e., r
fluctuates and needs finer meshes to stabilize).

3.44. Implementation with a sparse coefficient matrix

We used a sparse matrix implementation in Section Section 3.9 for a 1D problem with a tridiagonal
matrix. The present matrix, arising from a 2D problem, has five diagonals, but we can use the same
sparse matrix data structure scipy.sparse.diags.

3.44.1. Understanding the diagonals

Let us look closer at the diagonals in the example with a 4 x 3 mesh as depicted in Figure Figure 3.15
and its associated matrix visualized by dots for zeros and bullets for nonzeros. From the example
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mesh, we may generalize to an N, x N, mesh.

0 = m(0,0) .

1=m(1,0) s

2 = m(2,0) .

3 =m(3,0) .

Ng = m(Ng,0) . . . . ° .

Nz +1=m(0,1) L e e

(Nz +1)+1=m(1,1) . ° . . . ° . . . . . .

(Nz +1)+2=m(2,1) . . . . . . e o o . . .
(Nz +1)+3=m(3,1) . . . ° . . . . ° . . . . .
(Ngz +1) 4+ Ny = m(Ng, 1) . . . . . . . . . . .

2(Ng + 1) = m(0, 2) e .

2(Ng +1)+1=m(1,2) . . . . . . °« - . - e e e
2(Ngz + 1) +2=m(2,2) . . . . . . . . . . . e o o
2(Ngz +1) +3=m(3,2) . . . . . . . . ° . . . ° .
2(Ngz + 1) + Ny = m(Ng, 2)

Ny(Ng + 1) = m(0, Ny)

Ny<N:c + 1) +1= m(la Ny)

Ny(Ng +1) +2=m(2,Ny)

Ny(N:c + 1) +3 = m(3, Ny)

Ny(Nz + 1) + Ng = m(Nm,Ny)

The main diagonal has N = (N, + 1)(N, + 1) elements, while the sub-

and super-diagonals have

N — 1 elements. By looking at the matrix above, we realize that the lower diagonal starts in row
N, + 1 and goes to row N, so its length is N — (NN, + 1). Similarly, the upper diagonal starts at row
0 and lasts to row N — (N, + 1), so it has the same length. Based on this information, we declare

the diagonals by

main = np.zeros(N) # diagonal

lower = np.zeros(N-1) # subdiagonal
upper = np.zeros(N-1) # superdiagonal
lower2 = np.zeros(N-(Nx+1)) # lower diagonal
upper2 = np.zeros(N-(Nx+1)) # upper diagonal
b = np.zeros(N) # right-hand side

3.44.2. Filling the diagonals

We run through all mesh points and fill in elements on the various diagonals. The line of mesh points
corresponding to j = 0 are all on the boundary, and only the main diagonal gets a contribution:

lambda i, j: j*(Nx+1) + i
0; main[m(0,j) :m(Nx+1,j)] = 1 # j=0 boundary line

o g
I n

Then we run through all interior j = const lines of mesh points. The first and the last point on

each line, ¢ = 0 and ¢ = N, correspond to boundary points:

for j in It[1:-1]: # Interior mesh lines j=1,...,Ny-1

1
1 # Boundary

i =0; main[m(i,j)]
i = Nx; main[m(i,j)]

For the interior mesh points ¢ = 1,..., N, — 1 on a mesh line y = const we can start with the main
diagonal. The entries to be filled go from ¢ = 1 to ¢ = N, — 1 so the relevant slice in the main vector

ism(1,3):m(Nx, j):
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main[m(1,j):m(Nx,j)] = 1 + 2xtheta*(Fx+Fy)

The upper array for the superdiagonal has its index 0 corresponding to row 0 in the matrix, and
the array entries to be set go from m(1,7) to m(N, —1,7):

upper [m(1,j) :m(Nx,j)] = - thetaxFx

The subdiagonal (lower array), however, has its index 0 corresponding to row 1, so there is an
offset of 1 in indices compared to the matrix. The first nonzero occurs (interior point) at a mesh
line j = const corresponding to matrix row m(1,7), and the corresponding array index in lower is
then m(1, ). To fill the entries from m(1,j) to m(N, — 1, j) we set the following slice in lower:

lower_offset = 1

lower [m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx

For the upper diagonal, its index 0 corresponds to matrix row 0, so there is no offset and we can set
the entries correspondingly to upper:

upper2[m(1,j) :m(Nx,j)] = - thetaxFy

The lower2 diagonal, however, has its first index 0 corresponding to row N, + 1, so here we need to
subtract the offset N, + 1:

lower2_offset = Nx+1

lower2[m(1,j)-lower2_offset:m(Nx, j)-lower2_offset] = - thetaxFy

We can now summarize the above code lines for setting the entries in the sparse matrix representation

of the coefficient matrix:

lower_offset = 1
lower2_offset = Nx+1
m = lambda i, j: j*x(Nx+1) + i

j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line

for j in It[1:-1]: # Interior mesh lines j=1,...,Ny-1
i=0; main[m(i,j)] = 1 # Boundary
i = Nx; main[m(i,j)] = 1 # Boundary
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy
lower [m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx
main[m(1,j):m(Nx,j)] = 1 + 2+theta*(Fx+Fy)
upper [m(1,j) :m(Nx,j)] = - thetaxFx
upper2[m(1,j) :m(Nx,j)] = - theta*Fy

j = Ny; main[m(0,j) :m(Nx+1,j)] = 1 # Boundary line

The next task is to create the sparse matrix from these diagonals:

272



import s
A = scip
diag
offs

shap
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cipy.sparse

y.sparse.diags(

onals=[main, lower, upper, lower2, upper?2],

ets=[0, -lower_offset, lower_offset,
-lower2 offset, lower2 offset],

e=(N, N), format='csr')

3.44.3. Filling the right-hand side; scalar version

Setting the entries in the right-hand side is easier, since there are no offsets in the array to take
into account. The right-hand side is in fact similar to the one previously shown, when we used a
dense matrix representation (the right-hand side vector is, of course, independent of what type of
representation we use for the coefficient matrix). The complete time loop goes as follows.

import s
for n in
j =

for

for

cipy.sparse.linalg
It[0:-1]:
0
i in Ix:
p =nm(i,j); blp]l =0 # Boundary
j in It[1:-1]:
i=0; p=mwm(i,j); blp]l =0 # Boundary
for i in Ix[1:-1]:
p = m(i,j) # Interior
blp] = u_nfi,j] + \
(1-theta)*(
Fxx(u_nl[i+1,j] - 2*u_nli,jl + u_n[i-1,3j1) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-11))\
+ theta*dt*f (i*dx, j*dy, (n+1)*dt) + \
(1-theta)*dt*f (i*dx, j*dy,n*dt)
i =Nx; p=m(i,j); blp] =0 # Boundary
Ny
i in Ix:
p =m(i,j); blpl =0 # Boundary
scipy.sparse.linalg.spsolve(A, b)

i in Ix:
for j in It:
uli,jl = cm(i,jd]
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3.44.4. Filling the right-hand side; vectorized version

Since we use a sparse matrix and try to speed up the computations, we should examine the loops
and see if some can be easily removed by vectorization. In the filling of A we have already used
vectorized expressions at each j = const line of mesh points. We can very easily do the same in the
code above and remove the need for loops over the i index:

for n in It[0:-1]:

f_a_npl = f(xv, yv, t[n+1])
f_an = f(xv, yv, tln])

j = 0; b[m(0,j) :m(Nx+1,j)] =0 # Boundary
for j in It[1:-1]:
i=0; p=m(i,j); blpl] = 0 # Boundary
i =0Nx; p=m(i,j); blp]
imin = Ix[1]
imax = Ix[-1] # for slice, max i index is Ix[-1]-1
b[m(imin,j) :m(imax,j)] = u_n[imin:imax,j] + \
(1-theta) * (Fx*(
u_n[imin+1:imax+1, j]
2xu_n[imin:imax,j] + \
u_nl[imin-1:imax-1,j]) +
Fyx*(
u_nl[imin:imax,j+1] -
2xu_n[imin:imax,j] +
u_nlimin:imax,j-11)) + \
thetaxdt*f_a_npl[imin:imax,j] + \
(1-theta)*dt*f_a_n[imin:imax, j]

0 # Boundary

j = Ny; blm(0,j):m(Nx+1,j)] = O # Boundary
c = scipy.sparse.linalg.spsolve(A, b)
ul:,:] = c.reshape(Ny+1,Nx+1).T

un, u=u, un

The most tricky part of this code snippet is the loading of values from the one-dimensional array
¢ into the two-dimensional array u. With our numbering of unknowns from left to right along
“horizontal” mesh lines, the correct reordering of the one-dimensional array c as a two-dimensional
array requires first a reshaping to an (Ny+1,Nx+1) two-dimensional array and then taking the
transpose. The result is an (Nx+1,Ny+1) array compatible with u both in size and appearance of
the function values.

The spsolve function in scipy.sparse.linalg is an efficient version of Gaussian elimination suited
for matrices described by diagonals. The algorithm is known as sparse Gaussian elimination, and
spsolve calls up a well-tested C code called SuperL.U.
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The complete code utilizing spsolve is found in the solver_sparse function in the file
diffu2D_u0.py.

3.44.5. Verification

We can easily extend the function quadratic from Section Section 3.42 to include a test of the
solver_sparse function as well.

def quadratic(theta, Nx, Ny):

t, cpu = solver_sparse(
I, a, £, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)

3.45. The Jacobi iterative method

So far we have created a matrix and right-hand side of a linear system Ac = b and solved the system
for ¢ by calling an exact algorithm based on Gaussian elimination. A much simpler implementation,
which requires no memory for the coefficient matrix A, arises if we solve the system by iterative
methods. These methods are only approximate, and the core algorithm is repeated many times
until the solution is considered to be converged.

3.45.1. Numerical scheme and linear system

To illustrate the idea of the Jacobi method, we simplify the numerical scheme to the Backward
Euler case, # = 1, so there are fewer terms to write:

n+1 n+1 n+1 n+1 n+1 n+1 n+1 _
Ui = (Fz(“z‘—l,j =205 ) + Fy (i) — 2w +“m‘+1)> =

1
upy + AL

(3.78)

The idea of the Jacobi iterative method is to introduce an iteration, here with index r, where we

"+1 as unknown, but use values from the previous iteration for the other

in each iteration treat u; g
9.

n+1
unknowns Uiy'y a1

3.45.2. lterations

Let u?;rl’r be the approximation to uf;rl in iteration r, for all relevant 7 and j indices. We first
n+1

solve with respect to u; 5 to get the equation to solve:

ultt = (14 2F, +2F,)! (Fgc(uyjl{. +ul) + Fy(ulfh + u;jjjl)) +

n n+1

(3.79)
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The iteration is introduced by using iteration index r, for computed values, on the right-hand side
and 7 + 1 (unknown in this iteration) on the left-hand side:

_ 1 1
wl T = (14 26, 4+ 2B) 7 (Fa(uf ™ + ulf) + Byl i)

(3.80)
+ully + At
3.45.3. Initial guess
We start the iteration with the computed values at the previous time level:
" i, j = u ki, i=0,..., Ny, §=0,...,N,. (3.81)

3.45.4. Relaxation

A common technique in iterative methods is to introduce a relazation, which means that the new
approximation is a weighted mean of the approximation as suggested by the algorithm and the

previous approximation. Naming the quantity on the left-hand side of (3.80) as u?jl’*, a new
approximation based on relaxation reads
"I = o™ kg g+ (1 — w)u T R xd (3.82)

Under-relaxation means w < 1, while over-relaxation has w > 1.

3.45.5. Stopping criteria

The iteration can be stopped when the change from one iteration to the next is sufficiently small
(<€), using either an infinity norm,

n+1,r4+1 n+1,r

max‘u * %1, ] — U **i,j’ﬁe,

Y]
or an L? norm,

AzAy 2:(11”“”“rl wxi,j —u"T w52 | <e.
1,3
Another widely used criterion measures how well the equations are solved by looking at the residual
(essentially b — Ac" ™! if ¢"*! is the approximation to the solution in iteration r + 1). The residual,

defined in terms of the finite difference stencil, is

Rij = ultor (B (ulrtt — gqptbrtl g ukbrtly

n+1,r4+1 n+1,r4+1 n+1,r4+1
Fy(u 2y — 2ug; Ui ))— (3.83)

n n+1
ui; — At
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One can then iterate until the norm of the mesh function R; ; is less than some tolerance:

1

2
AzxAy Z Ri il <e.
i,J
##4# Code-friendly notation To make the mathematics as close as possible to what we will write in a
computer program, we may introduce some new notation: u; ; is a short notation for ut g g,
u™ % %i, j is a short notation for u™ ™" x i, j, and u(®) % xi, j denotes w17 % x4, j. That is, u**i, j is
the unknown, u; ; 1s its most recently computed approximation, and s counts time levels backwards
in time. The Jacobi method (3.80)) takes the following form with the new notation:

:(1+2F +2Fy)71((F( u; 1]+Uz+1j)+F( i,j— 1+uz]+l))+

( + Atfn—‘rl) (3'84)

3.45.6. Generalization of the scheme

We can also quite easily introduce the 6 rule for discretization in time and write up the Jacobi
iteration in that case as well:

:(1+26(F +F))71(9(F( Ui 1]+u2+1j)+F( ©,J— 1+u7,]+1))+

ull) ¢ OALFIF 4 (1 - 0)ALf+ (3.85)
(1 - 0)(Fu(ul,; — 2ul) +uf+>1j> + Fy(ul) = 2ul) +ul) ).

The final update of u applies relaxation:
wij =wu' *xi,j+ (1 —w)u™ *x*i,75.
## Implementation of the Jacobi method {#sec-diffu-2D-Jacobi-impl}

The Jacobi method needs no coefficient matrix and right-hand side vector, but it needs an array for
u in the previous iteration. We call this array u_, using the notation at the end of the previous
section (at the same time level). The unknown itself is called u, while u_n is the computed solution
one time level back in time. With a 6 rule in time, the time loop can be coded like this:

for n in It[0:-1]:
u_[:,:] = un # Start value
converged = False

r=20
while not converged:
if version == 'scalar':
j=20
for i in Ix:
uli,jl = U_Oy(t[n+1]) # Boundary

for j in It[1:-1]:
i=0; uli,jl
i = Nx; uli,j]

U_Ox(t[n+1]) # Boundary
U_Lx(t[n+1]) # Boundary
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for i in Ix[1:-1]:
u_new = 1.0/(1.0 + 2+theta*(Fx + Fy))*(thetax*(
Fxx(u_[i+1,j] + u_[i-1,3]) +
Fyx(u_[i,j+1] + u_[i,j-11)) + \
u_nli,jl + \
(1-theta)* (Fxx*(
u_nl[i+1,j] - 2%u_n[i,j] + u_nli-1,3j]) +
Fy*(
u_nli,j+1] - 2*%u_nli,j] + u_nli,j-11))\
+ theta*dt*f (i*dx, j*dy, (n+1)*dt) + \
(1-theta) *dt*f (i*dx, j*dy,n*dt))

uli,j] = omega*u_new + (1-omega)*u_[i,]]
j =Ny
for i in Ix:
uli,j]l = U_Ly(t[n+1]1) # Boundary
elif version == 'vectorized':

j =0; ul:,j] = U_Oy(tln+1]) # Boundary
i=0; uli,:] U_0x(t[n+1]) # Boundary
i = Nx; uli,:] U_Lx(t[n+1]) # Boundary
j = Ny; ul:,j] = U_Ly(t[n+1]) # Boundary
f_a_npl = £(xv, yv, tln+1])
f_an = f(xv, yv, tlnl)
u_new = 1.0/(1.0 + 2+theta*(Fx + Fy))*(theta*(Fxx*(
u [2:,1:-1] + u_[:-2,1:-1]) +
Fyx*(
u [1:-1,2:] + u_[1:-1,:-2])) +\
unf1:-1,1:-1] + \
(1-theta) * (Fx*(
unf2:,1:-1] - 2*u_n[1:-1,1:-1] + u_n[:-2,1:-1]) +\
Fyx*(
unf1:-1,2:1 - 2*u_n[1:-1,1:-1] + u_n[1:-1,:-2]1))\
+ theta*dt*f_a_np1[1:-1,1:-1] + \
(1-theta)*dt*f _a n[1:-1,1:-1])
ull:-1,1:-1] = omega*u_new + (l-omega)*u_[1:-1,1:-1]

r +=1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u [:,:] =u

The vectorized version should be quite straightforward to understand once one has an understanding
of how a standard 2D finite stencil is vectorized.

The first natural verification is to use the test problem in the function quadratic from Section
Section 3.42. This problem is known to have no approximation error, but any iterative method will
produce an approximate solution with unknown error. For a tolerance 10~* in the iterative method,
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we can, e.g., use a slightly larger tolerance 10~(*=1 for the difference between the exact and the
computed solution.

def quadratic(theta, Nx, Ny):

def assert_small_error(u, x, xv, y, yv, t, n):
"""Assert small error for iterative methods."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e) .max()
tol = 1E-4
msg = 'diff=Y%g, step %d, time=Y%g' % (diff, n, t[n])
assert diff < tol, msg

for version in 'scalar', 'vectorized':
for theta in 1, 0.5:
print 'testing Jacobi, %s version, theta=lg' % \
(version, theta)

t, cpu = solver_Jacobi(
I=I, a=a, f=f, Lx=Lx, Ly=Ly, Nx=Nx, Ny=Ny,
dt=dt, T=T, theta=theta,
U_0x=0, U_Oy=0, U_Lx=0, U_Ly=0,
user_action=assert_small_error,
version=version, iteration='Jacobi',
omega=1.0, max_iter=100, tol=1E-5)

Even for a very coarse 4 x 4 mesh, the Jacobi method requires 26 iterations to reach a tolerance of
10~°, which is quite many iterations, given that there are only 25 unknowns.

3.46. Test problem: diffusion of a sine hill

It can be shown that

e = Ae=om Lz +Ly ")t iy <7rx> sin 1y , (3.86)
L, L,

is a solution of the 2D homogeneous diffusion equation u; = o(uzz+uyy) in a rectangle [0, L] x [0, L],

for any value of the amplitude A. This solution vanishes at the boundaries, and the initial condition

is the product of two sines. We may choose A =1 for simplicity.

It is difficult to know if our solver based on the Jacobi method works properly since we are faced
with two sources of errors: one from the discretization, Fa, and one from the iterative Jacobi
method, F;. The total error in the computed u can be represented as

E,=Ex+ F;.

One error measure is to look at the maximum value, which is obtained for the midpoint x = L, /2
and y = L, /2. This midpoint is represented in the discrete u if N, and N, are even numbers.
We can then compute E,, as E, = | max ue — maxu|, when we know an exact solution wue of the
problem.
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What about FA? If we use the maximum value as a measure of the error, we have in fact analytical
insight into the approximation error in this particular problem. According to Section Section 3.23,
the exact solution (3.86) of the PDE problem is also an exact solution of the discrete equations,
except that the damping factor in time is different. More precisely, (3.52) and (3.53) are solutions
of the discrete problem for # = 1 (Backward Euler) and § = % (Crank-Nicolson), respectively. The
factors raised to the power n is the numerical amplitude, and the errors in these factors become

Fn — o—ak?t (1 — 2(F, sin® p, + Fsin? py) ) " 1
A = - 5

0=
1+ 2(Fy sin? p; + F,sin? py) 2’

EA = ekt _ (1 +4F, sin®p, + 4F, sin? py) ", O=1.

We are now in a position to compute F; numerically. That is, we can compute the error due to
iterative solution of the linear system and see if it corresponds to the convergence tolerance used in
the method. Note that the convergence is based on measuring the difference in two consecutive
approximations, which is not exactly the error due to the iteration, but it is a kind of measure, and
it should have about the same size as F;.

The function demo_classic_iterative in diffu2D_u0.py implements the idea above (also for the
methods in Section Section 3.48). The value of E; is in particular printed at each time level. By
changing the tolerance in the convergence criterion of the Jacobi method, we can see that E; is of the
same order of magnitude as the prescribed tolerance in the Jacobi method. For example: Ex ~ 1072
with N, = N, = 10 and @ = 1, as long as maxu has some significant size (maxu > 0.02). An
appropriate value of the tolerance is then 1073, such that the error in the Jacobi method does not
become bigger than the discretization error. In that case, F; is around 5 - 1073. The corresponding
number of Jacobi iterations (with w = 1) varies from 31 to 12 during the time simulation (for
maxu > 0.02). Changing the tolerance to 10™° causes many more iterations (61 to 42) without
giving any contribution to the overall accuracy, because the total error is dominated by Ea.

Also, with an N, = N, = 20, the spatial accuracy increases and many more iterations are needed
(143 to 45), but the dominating error is from the time discretization. However, with such a finer
spatial mesh, a higher tolerance in the convergence criterion 10~ is needed to keep E; ~ 1073.
More experiments show the disadvantage of the very simple Jacobi iteration method: the number of
iterations increases with the number of unknowns, keeping the tolerance fixed, but the tolerance
should also be lowered to avoid the iteration error to dominate the total error. A small adjustment
of the Jacobi method, as described in Section Section 3.48, provides a better method.

3.47. The relaxed Jacobi method and its relation to the Forward Euler
method

We shall now show that solving the Poisson equation —aV2u = f by the Jacobi iterative method is
in fact equivalent to using a Forward Euler scheme on u; = aV?u + f and letting t — oo.

A Forward Euler discretization of the 2D diffusion equation,

[Difu = a(DyDyu + DyDyu) + f]

n
2,37
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can be written out as

At
n+1 n n n n n n 2 p
ui’j — ui,j + ? (UZ'_LJ' "‘ ul_;'_l’] + ui,j—l + uz’J+1 - 4u2’] ‘I" h fZ,]) 9

where h = Az = Ay has been introduced for simplicity. The scheme can be reordered as
n+l _ 1 n n n n n 2
uiy = (1 -w)ui;+ 7w ( Ui, T Uiy + Uiy U — dug R fm‘) :

with
ar
ah?’

but this latter form is nothing but the relaxed Jacobi method applied to

w=4

[DyDyu+ DyDyu = —f]Zj .

From the equivalence above we know a couple of things about the Jacobi method for solving

—V2u = f:

1. The method is unstable if w > 1 (since the Forward Euler method is then unstable).
2. The convergence is really slow as the iteration index increases (coming from the fact that the
Forward Euler scheme requires many small time steps to reach the stationary solution).

These observations are quite disappointing: if we already have a time-dependent diffusion problem
and want to take larger time steps by an implicit time discretization method, we will with the Jacobi
method end up with something close to a slow Forward Euler simulation of the original problem at
each time level. Nevertheless, the are two reasons for why the Jacobi method remains a fundamental
building block for solving linear systems arising from PDEs: 1) a couple of iterations remove large
parts of the error and this is effectively used in the very efficient class of multigrid methods; and 2)
the idea of the Jacobi method can be developed into more efficient methods, especially the SOR
method, which is treated next.

3.48. The Gauss-Seidel and SOR methods

If we update the mesh points according to the Jacobi method (3.79) for a Backward Euler discretiza-

tion with a loop over i =1,...,N; — 1l and j = 1,..., N, — 1, we realize that when u""5" 1 x xi, j

n+1,r+1 n+1,r+1
* *i i

n+1,r

is computed, u — 1,7 and u; are already computed, so these new values can be

used rather than u xx1 — 1,7 and u i, 7 — 1 (respectively) in the formula for unjl ans

This idea gives rise to the Gauss-Seidel iteration method, which mathematically is just a small
adjustment of (3.79):

n+1,r

ul T = (14 2R, + 2F,)7Y((

i,j
Fo(u a0 + By (ul 2l T 4y + At .

(3.87)

Observe that the way we access the mesh points in the formula (3.87) is important: points with ¢ — 1
must be computed before points with ¢, and points with j — 1 must be computed before points with
j. Any sequence of mesh points can be used in the Gauss-Seidel method, but the particular math
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formula must distinguish between already visited points in the current iteration and the points not
yet visited.

The idea of relaxation (3.82) can equally well be applied to the Gauss-Seidel method. Actually, the
Gauss-Seidel method with an arbitrary 0 < w < 2 has its own name: the Successive Qver-Relazation
method, abbreviated as SOR.

The SOR method for a # rule discretization, with the shortened v and u~ notation, can be written

uf; = (14 20(F, 4+ Fy) " (0(Fu(uio1j + g ) + Fy(uij1 +u; )+
ul) FOALT 4 (1 - ) ALfT
(=) (Foluy ;= 2u( 4wy ) + Byl —2ufl) + i),
uj; = wug ;i + (1 —w)u (3.88)
The sequence of mesh points in (3.88) isi=1,...,N, —1,j=1,..., Ny, — 1 (but whether i runs
faster or slower than j does not matter).

3.49. Scalar implementation of the SOR method

Since the Jacobi and Gauss-Seidel methods with relaxation are so similar, we can easily make a
common code for the two:

for n in It[0:-1]:
u_[:,:] = un # Start value
converged = False

r=20
while not converged:
if version == 'scalar':
if iteration == 'Jacobi':
u__ = u_
elif iteration == 'SOR':
u__ =u
j=0

for i in Ix:
uli,j] = U_Oy(t[n+1]) # Boundary
for j in It[1:-1]:
i =0; uli,jl = U_Ox(t[n+1]) # Boundary
i = Nx; wuli,j] = U_Lx(t[nt+1]) # Boundary
for i in Ix[1:-1]:
u_new = 1.0/(1.0 + 2xtheta*(Fx + Fy))*(theta*(
Fx*(u_[i+1,j] + u__[i-1,3j1) +
Fyx(u_[i,j+1] + u__[i,j-11)) + \
u_nli,j] + (1-theta)x*(
Fxx (
u_nl[i+1,j] - 2+u_n[i,j] + u_nli-1,3j]) +

282



3. Diffusion Equations

Fy*(
u_nfli,j+1] - 2*%u_nli,j] + u_nli,j-11))\
+ thetaxdt*f (i*dx, j*dy, (n+1)*dt) + \
(1-theta) *dt*f (i*dx, j*dy,n*dt))
uli,j] = omegaxu_new + (l-omega)*u_[i,j]
j =Ny
for i in Ix:
uli,j] = U_Ly(t[n+1]) # boundary
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u [:,:] =u

un, u=u, un # Get ready for next iteration

The idea here is to introduce u__ to be used for already computed values (u) in the Gauss-Seidel/SOR
version of the implementation, or just values from the previous iteration (u_) in case of the Jacobi
method.

3.50. Vectorized implementation of the SOR method

Vectorizing the Gauss-Seidel iteration step turns out to be non-trivial. The problem is that vectorized
operations typically imply operations on arrays where the sequence in which we visit the elements
does not matter. In particular, this principle makes vectorized code trivial to parallelize. However,
in the Gauss-Seidel algorithm, the sequence in which we visit the elements in the arrays does matter,
and it is well known that the basic method as explained above cannot be parallelized. Therefore,
also vectorization will require new thinking.

The strategy for vectorizing (and parallelizing) the Gauss-Seidel method is to use a special numbering
of the mesh points called red-black numbering: every other point is red or black as in a checkerboard
pattern. This numbering requires N, and N, to be even numbers. Here is an example of a 6 x 6
mesh:

rbrbrbr
brbrbrhb
rbrbrbr
brbrbrhb
rbrbrbr
brbrbrhb
rbrbrbr

The idea now is to first update all the red points. Each formula for updating a red point involves
only the black neighbors. Thereafter, we update all the black points, and at each black point, only
the recently computed red points are involved.

The scalar implementation of the red-black numbered Gauss-Seidel method is really compact, since
we can update values directly in u (this guarantees that we use the most recently computed values).
Here is the relevant code for the Backward Euler scheme in time and without a source term:
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for sweep in 'red', 'black':
for j in range(1l, Ny, 1):
if sweep == 'red':
start = 1 if j % 2 == 1 else 2
elif sweep == 'black':

start = 2 if j % 2 == 1 else 1
for i in range(start, Nx, 2):
uli,jl = 1.0/(1.0 + 2x(Fx + Fy))=*(
Fxx(uli+1,j] + uli-1,j1) +
Fy*(uli,j+1] + uli,j-11) + u_nli,jD)

The vectorized version must be based on slices. Looking at a typical red-black pattern, e.g.,

rbrbrbr
brbrbrb
rbrbrbr
brbrbrhbd
rbrbrbr
brbrbrhbd
rbrbrbr

we want to update the internal points (marking boundary points with x):

X XXX XXX
Xrbrbrzx
xbrbrbzx
Xrbrbrzx
xbrbrbzx
Xrbrbrzx
X XXX XXX

It is impossible to make one slice that picks out all the internal red points. Instead, we need two
slices. The first involves points marked with R:

X XXX XXX
xRbRDbRZX
xbrbrbzx
xRbRDRZX
xbrbrbzx
xRbRDRZX
X XXX XXX

This slice is specified as 1::2 for 1 and 1::2 for j, or with slice objects:

i = slice(l, None, 2); j = slice(l, None, 2)

The second slice involves the red points with R:
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X XXX XXX
xrbrbrzx
xbRDRDZX
xrbrbrzx
x bRDbRDEX
xrbrbrzx
XX XXX XX

The slices are

i = slice(2, None, 2); j = slice(2, None, 2)

For the black points, the first slice involves the B points:

X X X XX XX
xrBrBrx
Xxbrbrbzx
xrBrBrx
xbrbrbzx
xrBrBrx
X X X XX XX

with slice objects

i = slice(2, None, 2); j = slice(l, None, 2)

The second set of black points is shown here:

X X X X X X X
Xrbrbrzx
x BrBrBx
XxXrbrbrzx
x BrBrBx
Xrbrbrzx
X X X XX XX

with slice objects

i = slice(l, None, 2); j = slice(2, None, 2)

That is, we need four sets of slices. The simplest way of implementing the algorithm is to make a
function with variables for the slices representing i, i — 1, i + 1, j, j — 1, and j + 1, here called ic
(“i center”), im1 (“i minus 17, ip1 (“i plus 17), jc, jml, and jp1, respectively.
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def update(u_, u_n, ic, iml, ipl, jc, jml, jpl):
return \
1.0/(1.0 + 2+thetax(Fx + Fy))*(thetax(
Fxx(u_[ipl,jc] + u_[iml,jc]l) +
Fyx(u_[ic,jp1] + u_[ic,jm1])) +\
u_nlic,jc] + (1-theta)*(
Fxx(u_n[ip1,jc] - 2*xu_n[ic,jc]l + u_n[iml,jcl) +\
Fyx(u_nlic,jpl] - 2*u_nlic,jc] + u_nlic,jm1]))+\
thetaxdt*f_a_npllic,jc] + \
(1-theta)*dt*f_a_nl[ic,jc])

The formula returned from update is to be compared with (3.88).

The relaxed Jacobi iteration can be implemented by

ic = jc = slice(1,-1)
iml = jml = slice(0,-2)
ipl = jpl = slice(2,None)

u_new([ic,jc] = update(
u_, u_n, ic, iml, ipl, jc, jml, jpl)
ulic,jc] = omega*u_newl[ic,jc] + (1-omega)*u_[ic, jc]

The Gauss-Seidel (or SOR) updates need four different steps. The ic and jc slices are specified
above. For each of these, we must specify the corresponding im1, ip1, jml, and jp1l slices. The
code below contains the details.

ic = slice(1,-1,2)

iml = slice(0,-2,2)

ipl = slice(2,None,?2)

jc = slice(1,-1,2)

jml = slice(0,-2,2)

jpl = slice(2,None,2)

u_new([ic,jc] = update(

u_new, u_n, ic, imi, ipl, jc, jml, jpl)

ic = slice(2,-1,2)

iml = slice(1,-2,2)

ipl = slice(3,None,?2)

jc = slice(2,-1,2)

jml = slice(1,-2,2)

jpl = slice(3,None,2)

u_newlic,jc] = update(

u_new, u_n, ic, imi, ipil, jc, jml, jpl)

ic = slice(2,-1,2)
iml = slice(1,-2,2)
ipl = slice(3,None,?2)
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jc = slice(1,-1,2)
jml = slice(0,-2,2)
jpl = slice(2,None,2)

u_newlic,jc] = update(
u_new, u_n, ic, imi, ipl, jc, jml, jpl)

-
(@]
]

slice(1,-1,2)

iml = slice(0,-2,2)

ipl = slice(2,None,?2)

jc = slice(2,-1,2)

jml = slice(1,-2,2)

jpl = slice(3,None,2)

u_new[ic,jc] = update(

u_new, u_n, ic, imi, ipl, jc, jml, jpl)

c = slice(1,-1)
ulc,c] = omega*u_new[c,c] + (1-omega)*u_[c,c]

The function solver_classic_iterative in diffu2D_uO.py contains a unified implementation
of the relaxed Jacobi and SOR methods in scalar and vectorized versions using the techniques
explained above.

3.51. Direct versus iterative methods

3.51.1. Direct methods

There are two classes of methods for solving linear systems: direct methods and iterative methods.
Direct methods are based on variants of the Gaussian elimination procedure and will produce an
exact solution (in exact arithmetics) in an a priori known number of steps. Iterative methods, on
the other hand, produce an approximate solution, and the amount of work for reaching a given
accuracy is usually not known.

The most common direct method today is to use the LU factorization procedure to factor the
coefficient matrix A as the product of a lower-triangular matrix L (with unit diagonal terms) and
an upper-triangular matrix U: A = LU. As soon as we have L and U, a system of equations
LUc = b is easy to solve because of the triangular nature of L and U. We first solve Ly = b for
y (forward substitution), and thereafter we find ¢ from solving Uc = y (backward substitution).
When A is a dense N x N matrix, the LU factorization costs %N 3 arithmetic operations, while the
forward and backward substitution steps each require of the order N? arithmetic operations. That
is, factorization dominates the costs, while the substitution steps are cheap.

Symmetric, positive definite coefficient matrices often arise when discretizing PDEs. In this case,
the LU factorization becomes A = LLT, and the associated algorithm is known as Cholesky
factorization. Most linear algebra software offers highly optimized implementations of LU and
Cholesky factorization as well as forward and backward substitution (scipy.linalg is the relevant
Python package).
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Finite difference discretizations lead to sparse coefficient matrices. An extreme case arose in Section
Section 3.8 where A was tridiagonal. For a tridiagonal matrix, the amount of arithmetic operations
in the LU and Cholesky factorization algorithms is just of the order IV, not N3. Tridiagonal matrices
are special cases of banded matrices, where the matrices contain just a set of diagonal bands. Finite
difference methods on regularly numbered rectangular and box-shaped meshes give rise to such
banded matrices, with 5 bands in 2D and 7 in 3D for diffusion problems. Gaussian elimination only
needs to work within the bands, leading to much more efficient algorithms.

If A;; = 0for j >i+pandj <i—p,pisthe half-bandwidth of the matrix. We have in
our 2D problem p = N, + 2, while in 3D, p = (N, + 1)(Ny + 1) + 2. The cost of Gaussian
elimination is then O(Np?), so with p < N, we see that banded matrices are much more efficient to
compute with. By reordering the unknowns in clever ways, one can reduce the work of Gaussian
elimination further. Fortunately, the Python programmer has access to such algorithms through the
scipy.sparse.linalg package.

Although a direct method is an exact algorithm, rounding errors may in practice accumulate and
pollute the solution. The effect grows with the size of the linear system, so both for accuracy and
efficiency, iterative methods are better suited than direct methods for solving really large linear
systems.

3.51.2. Ilterative methods

The Jacobi and SOR iterative methods belong to a class of iterative methods where the idea is to
solve Au = b by splitting A into two parts, A = M — N, such that solving systems Mu = c is easy
and efficient. With the splitting, we get a system

Mu = Nu+b,
which suggests an iterative method

Mu™t = Nu" +b, r=0,1,2,...,

1

where u” is a new approximation to u in the 7 + 1-th iteration. To initiate the iteration, we need
PP
0

a start vector u".

The Jacobi and SOR methods are based on splitting A into a lower tridiagonal part L, the diagonal
D, and an upper tridiagonal part U, such that A = L + D + U. The Jacobi method corresponds to
M =D and N = —L — U. The Gauss-Seidel method employs M = L + D and N = —U, while the
SOR method corresponds to

1 1—
M=-D+L, N=-—YD_U.
w w
The relaxed Jacobi method has similar expressions:
vM=1p N1z 1 v,
w w

With the matrix forms of the Jacobi and SOR methods as written above, we could in an implemen-
tation alternatively fill the matrix A with entries and call general implementations of the Jacobi or
SOR methods that work on a system Au = b. However, this is almost never done since forming the
matrix A requires quite some code and storing A in the computer’s memory is unnecessary. It is
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much easier to just apply the Jacobi and SOR ideas to the finite difference stencils directly in an
implementation, as we have shown in detail.

Nevertheless, the matrix formulation of the Jacobi and SOR methods have been important for
analyzing their convergence behavior. One can show that the error u” —wu fulfills " —u = G" (u® —u),
where G = M~!N and G* is a matrix exponential. For the method to converge, lim, ,« ||G|| = 0
is a necessary and sufficient condition. This implies that the spectral radius of G must be less than
one. Since G is directly related to the finite difference scheme for the underlying PDE problem,
one can in principle compute the spectral radius. For a given PDE problem, however, this is not a
practical strategy, since it is very difficult to develop useful formulas. Analysis of model problems,
usually related to the Poisson equation, reveals some trends of interest: the convergence rate of the
Jacobi method goes like h?, while that of SOR with an optimal w goes like h, where h is the spatial
spacing: h = Az = Ay. That is, the efficiency of the Jacobi method quickly deteriorates with the
increasing mesh resolution, and SOR is much to be preferred (even if the optimal w remains an
open question). We refer to Chapter 4 of (Saad 2003) for more information on the convergence
theory. One important result is that if A is symmetric and positive definite, then SOR will converge
for any 0 < w < 2.

The optimal w parameter can be theoretically established for a Poisson problem as

W, = 2z 0= cos(m/Ny) + (Az/Ay)? cos(m/Ny)
ST -0 1+ (Az/Ay)? '

This formula can be used as a guide also in other problems.

The Jacobi and the SOR methods have their great advantage of being trivial to implement, so they
are obviously popular of this reason. However, the slow convergence of these methods limits the
popularity to fairly small linear systems (i.e., coarse meshes). As soon as the matrix size grows, one
is better off with more sophisticated iterative methods like the preconditioned Conjugate gradient
method, which we now turn to.

Finally, we mention that there is a variant of the SOR method, called the Symmetric Successive
Over-relazation method, known as SSOR, where one runs a standard SOR sweep through the mesh
points and then a new sweep while visiting the points in reverse order.

3.52. The Conjugate gradient method

There is no simple intuitive derivation of the Conjugate gradient method, so we refer to the many
excellent expositions in the literature for the idea of the method and how the algorithm is derived.
In particular, we recommend the books (Barrett et al. 1994; Axelsson 1996; Saad 2003; Grief and
Ascher 2011). A brief overview is provided in the Wikipedia article. Here, we just state the pros
and cons of the method from a user’s perspective and how we utilize it in code.

The original Conjugate gradient method is limited to linear systems Au = b, where A is a symmetric
and positive definite matrix. There are, however, extensions of the method to non-symmetric
matrices.

A major advantage of all conjugate gradient methods is that the matrix A is only used in matrix-
vector products, so we do not need form and store A if we can provide code for computing a
matrix-vector product Au. Another important feature is that the algorithm is very easy to vectorize

289


https://en.wikipedia.org/wiki/Conjugate_gradient_method

3. Diffusion Equations

and parallelize. The primary downside of the method is that it converges slowly unless one has
an effective preconditioner for the system. That is, instead of solving Au = b, we try to solve
M~1Au = M~'b in the hope that the method works better for this preconditioned system. The
matrix M is the preconditioner or preconditioning matrix. Now we need to perform matrix-vector
products y = M~ Au, which is done in two steps: first the matrix-vector product v = Au is carried
out and then the system My = v must be solved. Therefore, M must be cheap to compute and
systems My = v must be cheap to solve.

A perfect preconditioner is M = A, but in each iteration in the Conjugate gradient method one
then has so solve a system with A as coefficient matrix! A key idea is to let M be some kind of
cheap approxzimation to A. The simplest preconditioner is to set M = D, where D is the diagonal of
A. This choice means running one Jacobi iteration as preconditioner. Exercise Section 3.70 shows
that the Jacobi and SOR methods can also be viewed as preconditioners.

Constructing good preconditioners is a scientific field on its own. Here we shall treat the topic just
very briefly. For a user having access to the scipy.sparse.linalg library, there are Conjugate
gradient methods and preconditioners readily available:

o For positive definite, symmetric systems: cg (the Conjugate gradient method)
o For symmetric systems: minres (Minimum residual method)

e For non-symmetric systems:

o gmres (GMRES: Generalized minimum residual method)

o bicg (BiConjugate gradient method)

o bicgstab (Stabilized BiConjugate gradient method)

o cgs (Conjugate gradient squared method)

o gmr (Quasi-minimal residual iteration)

o Preconditioner: spilu (Sparse, incomplete LU factorization)

The ILU preconditioner is an attractive all-round type of preconditioner that is suitable for most
problems on serial computers. A more efficient preconditioner is the multigrid method, and algebraic
multigrid is also an all-round choice as preconditioner. The Python package PyAMG offers efficient
implementations of the algebraic multigrid method, to be used both as a preconditioner and as a
stand-alone iterative method.

The matrix arising from implicit time discretization methods applied to the diffusion equation is
symmetric and positive definite. Thus, we can use the Conjugate gradient method (cg), typically
in combination with an ILU preconditioner. The code is very similar to the one we created when
solving the linear system by sparse Gaussian elimination, the main difference is that we now allow
for calling up the Conjugate gradient function as an alternative solver.

def solver_sparse(
I, a, £, Lx, Ly, Nx, Ny, dt, T, theta=0.5,
U_0x=0, U_Oy=0, U_Lx=0, U_Ly=0, user_action=None,
method='direct', CG_prec='ILU', CG_tol=1E-5):
Full solver for the model problem using the theta-rule
difference approximation in time. Sparse matrix with
dedicated Gaussian elimination algorithm (method='direct')
or ILU preconditioned Conjugate Gradients (method='CG' with
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tolerance CG_tol and preconditioner CG_prec ('ILU' or Nomne)).

A = scipy.sparse.diags(
diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,
-lower2 offset, lower2 offset],
shape=(N, N), format='csc')

if method == 'CG':
if CG_prec == 'ILU':
A_ilu = scipy.sparse.linalg.spilu(A) # SuperLU defaults

M = scipy.sparse.linalg.LinearOperator (
shape=(N, N), matvec=A_ilu.solve)
else:
M = None

CG_iter = [] # No of CG iterations at time level n

for n in It[0:-1]:

if method == 'direct':
c = scipy.sparse.linalg.spsolve(A, b)
elif method == 'CG':

x0 = u_n.T.reshape(N) # Start vector is u_n
CG_iter.append(0)

def CG_callback(c_k):
"""Trick to count the no of iteratiomns in CG."""
CG_iter[-1] += 1

c, info = scipy.sparse.linalg.cg(
A, b, x0=x0, tol=CG_tol, maxiter=N, M=M,
callback=CG_callback)

un, u=u, un

The number of iterations in the Conjugate gradient method is of interest, but is unfortunately not
available from the cg function. Therefore, we perform a trick: in each iteration a user function
CG_callback is called where we accumulate the number of iterations in a list CG_iter.

3.53. What is the recommended method for solving linear systems?

There is no clear answer to this question. If you have enough memory and computing time available,
direct methods such as spsolve are to be preferred since they are easy to use and finds almost an
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exact solution. However, in larger 2D and in 3D problems, direct methods usually run too slowly or
require too much memory, so one is forced to use iterative methods. The fastest and most reliable
methods are in the Conjugate Gradient family, but these require suitable preconditioners. ILU is an
all-round preconditioner, but it is not suited for parallel computing. The Jacobi and SOR iterative
methods are easy to implement, and popular for that reason, but run slowly. Jacobi iteration is not
an option in real problems, but SOR may be.

3.54. Random walk

Models leading to diffusion equations, see Section Section 3.66, are usually based on reasoning
with averaged physical quantities such as concentration, temperature, and velocity. The underlying
physical processes involve complicated microscopic movement of atoms and molecules, but an
average of a large number of molecules is performed in a small volume before the modeling starts,
and the averaged quantity inside this volume is assigned as a point value at the centroid of the
volume. This means that concentration, temperature, and velocity at a space-time point represent
averages around the point in a small time interval and small spatial volume.

Random walk is a principally different kind of modeling procedure compared to the reasoning behind
partial differential equations. The idea in random walk is to have a large number of “particles’
that undergo random movements. Averaging can then be used afterwards to compute macroscopic
quantities like concentration. The”particles” and their random movement represent a very simplified
microscopic behavior of molecules, much simpler and computationally much more efficient than
direct molecular simulation, yet the random walk model has been very powerful to describe a wide
range of phenomena, including heat conduction, quantum mechanics, polymer chains, population
genetics, neuroscience, hazard games, and pricing of financial instruments.

9

It can be shown that random walk, when averaged, produces models that are mathematically
equivalent to diffusion equations. This is the primary reason why we treat random walk in this
chapter: two very different algorithms (finite difference stencils and random walk) solve the same
type of problems. The simplicity of the random walk algorithm makes it particularly attractive for
solving diffusion equations on massively parallel computers. The exposition here is as simple as
possible, and good thorough derivation of the models is provided by Hjorth-Jensen (Hjorth-Jensen
2016).

3.55. Random walk in 1D

Imagine that we have some particles that perform random moves, either to the right or to the left.
We may flip a coin to decide the movement of each particle, say head implies movement to the right
and tail means movement to the left. Each move is one unit length. Physicists use the term random
walk for this type of movement. The movement is also known as drunkard’s walk. You may try this
yourself: flip the coin and make one step to the left or right, and repeat the process.

We introduce the symbol N for the number of steps in a random walk. Figure Figure 3.16 shows
four different random walks with N = 200.
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Figure 3.16.: Ensemble of 4 random walks, each with 200 steps.
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3.56. Statistical considerations

Let S be the stochastic variable representing a step to the left or to the right in step number k.
We have that S = —1 with probability p and S; = 1 with probability ¢ = 1 — p. The variable Sj, is
known as a Bernoulli variable. The expectation of S} is

E[Sy]=p-(-1)+¢q-1=1-2p,
and the variance is
Var[Sy] = E[S7] —E[Si]> =1 — (1 —2p)? = 4p(1 —p).

The position after k steps is another stochastic variable

Xk = Z Sz .
i=0
The expected position is
- k—1 k—1
E[Xi] =E[)_ Si]= ) E[S]=k(1—2p)
=0 =0

We see that \{ar[)_(k] is proportional with the number of steps k. For the very important case
p=q=13, E[Xi] =0 and Var[X;] = k.

How can we estimate E[X;] = 0 and Var[X;] = N? We must have many random walks of the type
in Figure Figure 3.16. For a given k, say k = 100, we find all the values of X}, name them Zy,
Z1k, To2k, and so on. The empirical estimate of E[X}] is the average,

while an empirical estimate of Var[Xy] is
W— L W=l 2
Var| Xk Z Zjk) W Z Tjk .
§=0 =0

That is, we take the statistics for a given K across the ensemble of random walks (“vertically” in
Figure Figure 3.16). The key quantities to record are >, z; ; and >, ifk
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3.57. Playing around with some code

3.57.1. Scalar code

Python has a random module for drawing random numbers, and this module has a function
uniform(a, b) for drawing a uniformly distributed random number in the interval [a,b). If an
event happens with probability p, we can simulate this on the computer by drawing a random
number 7 in [0, 1), because then r < p with probability p and r > p with probability 1 — p:

import random

r = random.uniform(0, 1)
if r <= p:

else:

A random walk with N steps, starting at zg, where we move to the left with probability p and to
the right with probability 1 — p can now be implemented by

import random, numpy as np

def random_walk1D(x0, N, p):
"""1D random walk with 1 particle."""
position = np.zeros(N)
position[0] = %0
current_pos = x0
for k in range(N-1):
r = random.uniform(0, 1)
if r <= p:
current_pos -= 1
else:

current_pos += 1
position[k+1] = current_pos
return position

3.57.2. Vectorized code

Since N is supposed to be large and we want to repeat the process for many particles, we should
speed up the code as much as possible. Vectorization is the obvious technique here: we draw all the
random numbers at once with aid of numpy, and then we formulate vector operations to get rid
of the loop over the steps (k). The numpy.random module has vectorized versions of the functions
in Python’s built-in random module. For example, numpy.random.uniform(a, b, N) returns N
random numbers uniformly distributed between a (included) and b (not included).

We can then make an array of all the steps in a random walk: if the random number is less than or
equal to p, the step is —1, otherwise the step is 1:
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r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)

The value of position[k] is the sum of all steps up to step k. Such sums are often needed in
vectorized algorithms and therefore available by the numpy.cumsum function:

>>> import numpy as np
>>> np.cumsum(np.array([1,3,4,6]))
array([ 1, 4, 8, 14])

The resulting array in this demo has elements 1, 1 +3=4,14+3+4=8,and 1 +3+4+6 = 14.

We can now vectorize the random_walk1D function:

def random_walklD_vec(x0, N, p):
"""Vectorized version of random_walkiD."""
position = np.zeros(N + 1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

This code runs about 10 times faster than the scalar version. With a parallel numpy library, the
code can also automatically take advantage of hardware for parallel computing because each of the
four array operations can be trivially parallelized.

3.57.3. Fixing the random sequence
During software development with random numbers it is advantageous to always generate the same
sequence of random numbers, as this may help debugging processes. To fix the sequence, we set a

seed of the random number generator to some chosen integer, e.g.,

np.random.seed (10)

Calls to random_walk1D_vec give positions of the particle as depicted in Figure Figure 3.17. The
particle starts at the origin and moves with p = % Since the seed is the same, the plot to the left is
just a magnification of the first 1,000 steps in the plot to the right.
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Figure 3.17.: 1,000 (left) and 50,000 (right) steps of a random walk.

3.57.4. Verification

When we have a scalar and a vectorized code, it is always a good idea to develop a unit test for
checking that they produce the same result. A problem in the present context is that the two
versions apply two different random number generators. For a test to be meaningful, we need to fix
the seed and use the same generator. This means that the scalar version must either use np.random
or have this as an option. An option is the most flexible choice:

import random
def random_walk1D(x0, N, p, random=random) :

r = random.uniform(0, 1)

Using random=np.random, the r variable gets computed by np.random.uniform, and the sequence
of random numbers will be the same as in the vectorized version that employs the same generator
(given that the seed is also the same). A proper test function may be to check that the positions in
the walk are the same in the scalar and vectorized implementations:

def test_random_walk1D():

x0 = 2
N =4
p=20.6

np.random.seed(10)

scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)

vectorized_computed = random_walklD_vec(x0, N, p)

assert (scalar_computed == vectorized_computed).all()

Note that we employ == for arrays with real numbers, which is normally an inadequate test due
to rounding errors, but in the present case, all arithmetics consists of adding or subtracting one,
so these operations are expected to have no rounding errors. Comparing two numpy arrays with
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== results in a boolean array, so we need to call the all() method to ensure that all elements are
True, i.e., that all elements in the two arrays match each other pairwise.

3.58. Equivalence with diffusion

The original random walk algorithm can be said to work with dimensionless coordinates z; = —N +1,
i=0,1,...,2N +1 (i € [-N,N]),and t, =n, n=0,1,..., N. A mesh with spacings Az and At
with dimensions can be introduced by

r; = Xo+ T Az, t,= LTnAt .
If we implement the algorithm with dimensionless coordinates, we can just use this rescaling to
obtain the movement in a coordinate system without unit spacings.

Let Pi”Jrl be the probability of finding the particle at mesh point Z; at time ¢, 1. We can reach
mesh point (i,n + 1) in two ways: either coming in from the left from (i — 1,n) or from the right
(i+1,n). Each has probability & (if we assume p = ¢ = 3). The fundamental equation for P/ is

1 1
P”+1**i:§P”**i—1+§ ARE (3.89)

(This equation is easiest to understand if one looks at the random walk as a Markov process and
applies the transition probabilities, but this is beyond scope of the present text.)

Subtracting P from (3.89) results in
n+1 1) . 1 n . n . 1 n .
P — P **ZZQ(P kxi — 1 —2P **z—f—§P kx1 4 1) .

Readers who have seen the Forward Euler discretization of a 1D diffusion equation recognize this
scheme as very close to such a discretization. We have

) jt)inJrl _ Pzn

or in dimensionless coordinates 5
aﬁ?P(@" t,) ~ P — P

Similarly, we have

9? Py — 2P soxi + AP woxi + 1 )
@P(xl,tn) = 4 A:L’2 + O(Aﬂf ),
82

_ 1
WP(:Z"Z',tn) ~ P —2P" xxi + §P" sk ki + 1.

Equation (3.89) is therefore equivalent with the dimensionless diffusion equation

oP _19°P

of ~ 2032 (3.90)
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or the diffusion equation

oP 0P
o~ Par (3:91)
with diffusion coeflicient
B Ax?
O2At

This derivation shows the tight link between random walk and diffusion. If we keep track of where
the particle is, and repeat the process many times, or run the algorithms for lots of particles, the
histogram of the positions will approximate the solution of the diffusion equation for the local
probability P;*.

Suppose all the random walks start at the origin. Then the initial condition for the probability
distribution is the Dirac delta function §(z). The solution of (3.90) can be shown to be

_ _ 1 z2
P(i,1) = e~ at, (3.92)

where o = %

3.59. Implementation of multiple walks

Our next task is to implement an ensemble of walks (for statistics, see Section Section 3.56) and
also provide data from the walks such that we can compute the probabilities of the positions as
introduced in the previous section. An appropriate representation of probabilities P;* are histograms
(with i along the x axis) for a few selected values of n.

To estimate the expectation and variance of the random walks, Section Section 3.56 points to

recording >, and 3 _; xik, where x;j, is the position at time/step level £ in random walk number

j- The histogram of positions needs the individual values z; j, for all ¢ values and some selected &
values.

We introduce position[k] to hold 3°; z;x, position2[k] to hold 3=, (zjx)?, and pos_hist[i,k]
to hold x; ;. A selection of k values can be specified by saying how many, num_times, and let them
be equally spaced through time:

pos_hist_times = [(N//num_times)*i for i in range(num_times)]

This is one of the few situations where we want integer division (//) or real division rounded to an
integer.

3.59.1. Scalar version

Our scalar implementation of running num_walks random walks may go like this:
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import random

import matplotlib.pyplot as plt
import numpy as np

random.seed (10)
np.random.seed (10)

def

def

def

def

random_walk1D(x0, N, p, random=random) :
"""1D random walk with 1 particle and N moves."""
position = np.zeros(N + 1)
position[0] = x0
current_pos = x0
for k in range(N):
r = random.uniform(0, 1)
if r <= p:
current_pos —= 1
else:
current_pos += 1
position[k + 1] = current_pos
return position

random_walk1D_vec(x0, N, p):

"""Vectorized version of random_walkiD."""
position = np.zeros(N + 1)

position[0] = xO

r = np.random.uniform(0, 1, size=N)

steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

test_random_walkiD():

x0 = 2
N =4
p=0.6

np.random.seed(10)

scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)

vectorized_computed = random_walklD_vec(x0O, N, p)

assert (scalar_computed == vectorized_computed).all()

demo_random_walk1D(N=50000) :
np.random.seed (10)

pos = random_walklD_vec(x0=0, N=N, p=0.5)
plt.figure()

plt.plot(pos)
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plt.savefig("tmpl.pdf")
plt.savefig("tmpl.png")
plt.figure()
plt.plot(pos * pos)
plt.savefig("tmp2.pdf")
plt.savefig("tmp2.png")
plt.show()

demo_fig_random_walk1D(N=200) :
"""Make ensamble of positions (to illustrate E[] operator)."""
np.random.seed(10)
num_plots = 4
for n in range(num_plots):
plt.subplot(num_plots, 1, n + 1)
pos = random_walklD_vec(x0=0, N=N, p=0.5)
plt.plot(pos)
plt.axis([0, N, -15, 20])
plt.savefig("tmp.pdf")
plt.savefig("tmp.png")
plt.show()

demo_random_walk1D_timing() :
import time

x0 =0
N = 10000000
p=0.5

t0 = time.perf_counter()

np.random.seed(10)

pos = random_walkl1D(x0O, N, p, random=np.random)
tl = time.perf_counter()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)

pos = random_walk1D_vec(x0, N, p)

t2 = time.perf_counter ()

cpu_vec = t2 - til

print ("CPU vectorized: %.1f" % cpu_vec)

print ("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

random_walks1D(x0, N, p, num_walks=1, num_times=1, random=random) :
"""Simulate num_walks random walks from xO with N steps."""
position = np.zeros(N + 1) # Accumulated positions
position[0] = x0 * num_walks

position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks
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pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = x0
for k in range(N):
if k in pos_hist_times:
pos_hist[n, num_times_counter] = current_pos
num_times_counter += 1
r = random.uniform(0, 1)
if r <= p:
current_pos —-= 1
else:
current_pos += 1
position[k + 1] += current_pos
position2[k + 1] += current_pos**2
return position, position2, pos_hist, np.array(pos_hist_times)

3.59.2. Vectorized version

We have already vectorized a single random walk. The additional challenge here is to vector-
ize the computation of the data for the histogram, pos_hist, but given the selected steps in
pos_hist_times, we can find the corresponding positions by indexing with the list pos_hist_times:
position[post_hist_times], which are to be inserted in pos_hist[n, :].

def random_walksl1D_vecl(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walksiD."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walk = np.zeros(N + 1) # Positions of current walk
walk[0] = xO
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n, :] = walk[pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)
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3.59.3. Improved vectorized version

Looking at the vectorized version above, we still have one potentially long Python loop over n.
Normally, num_walks will be much larger than N. The vectorization of the loop over N certainly
speeds up the program, but if we think of vectorization as also a way to parallelize the code, all the
independent walks (the n loop) can be executed in parallel. Therefore, we should include this loop
as well in the vectorized expressions, at the expense of using more memory.

We introduce the array walks to hold the N + 1 steps of all the walks: each row represents the
steps in one walk.

walks = np.zeros((num_walks, N+1)) # Positions of each walk
walks[:,0] = %0

Since all the steps are independent, we can just make one long vector of enough random numbers
(N*num_walks), translate these numbers to £1, then we reshape the array such that the steps of
each walk are stored in the rows.

r = np.random.uniform(0, 1, size=N*num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)

The next step is to sum up the steps in each walk. We need the np.cumsum function for this, with
the argument axis=1 for indicating a sum across the columns:

>>> a = np.arrange(6) .reshape(2,3)
>>> a
array([[0, 1, 2],
[3, 4, 511)
>>> np.cumsum(a, axis=1)
array([[ 0, 1, 3],
[3, 7, 121D

Now walks can be computed by

walks[:,1:] = xO + np.cumsum(steps, axis=1)

The position vector is the sum of all the walks. That is, we want to sum all the rows, obtained
by

position = np.sum(walks, axis=0)

A corresponding expression computes the squares of the positions. Finally, we need to compute
pos_hist, but that is a matter of grabbing some of the walks (according to pos_hist_times):
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pos_hist[:,:] = walks[:,pos_hist_times]

The complete vectorized algorithm without any loop can now be summarized:

def random_walksl1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walksl1D; no loops."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1)) # Positions of each walk
walks[:, 0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks)

steps = np.where(r <= p, -1, 1).reshape(num_walks, N)

walks[:, 1:] = x0 + np.cumsum(steps, axis=1)

position = np.sum(walks, axis=0)

position2 = np.sum(walks**2, axis=0)

pos_hist[:, :] = walks[:, pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

What is the gain of the vectorized implementations? One important gain is that each vectorized
operation can be automatically parallelized if one applies a parallel numpy library like Numba. On a
single CPU, however, the speed up of the vectorized operations is also significant. With N = 1,000
and 50,000 repeated walks, the two vectorized versions run about 25 and 18 times faster than the
scalar version, with random_walks1D_vecl being fastest.

3.59.4. Remark on vectorized code and parallelization

Our first attempt on vectorization removed the loop over the N steps in a single walk. However, the
number of walks is usually much larger than N, because of the need for accurate statistics. Therefore,
we should rather remove the loop over all walks. It turns out, from our efficiency experiments, that
the function random_walks1D_vec2 (with no loops) is slower than random_walks1D_vecl. This is
a bit surprising and may be explained by less efficiency in the statements involving very large arrays,
containing all steps for all walks at once.

From a parallelization and improved vectorization point of view, it would be more natural to switch
the sequence of the loops in the serial code such that the shortest loop is the outer loop:

def random_walks1D2(x0, N, p, num_walks=1, num_times=1, ...):

current_pos = x0 + np.zeros(num_walks)
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
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num_times_counter += 1

store_hist = True
else:

store_hist = False

for n in range(num_walks) :
r = random.uniform(0, 1)
if r <= p:
current_pos[n] -= 1
else:
current_pos[n] += 1
position [k+1] += current_pos[n]
position2[k+1] += current_pos[n]**2
if store_hist:
pos_hist[n,num_times_counter] = current_pos[n]
return position, position2, pos_hist, np.array(pos_hist_times)

The vectorized version of this code, where we just vectorize the loop over n, becomes

def random_walks1D2_vecl(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walksiD2."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

current_pos = np.zeros(num_walks)
current_pos[0] = x0
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True # Store histogram data for this k
else:
store_hist = False

r = np.random.uniform(0, 1, size=num_walks)
steps = np.where(r <= p, -1, 1)
current_pos += steps
position[k + 1] = np.sum(current_pos)
position2[k + 1] = np.sum(current_pos**2)
if store_hist:
pos_hist[:, num_times_counter] = current_pos
return position, position2, pos_hist, np.array(pos_hist_times)

This function runs significantly faster than the random_walks1D_vecl function above, typically
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1.7 times faster. The code is also more appropriate in a parallel computing context since each
vectorized statement can work with data of size num_walks over the compute units, repeated N
times (compared with data of size N, repeated num_walks times, in random_walks1D_vecl).

The scalar code with switched loops, random_walks1D2 runs a bit slower than the original
code in random_walks1D, so with the longest loop as the inner loop, the vectorized function
random_walks1D2_vecl is almost 60 times faster than the scalar counterpart, while the code
random_walks1D_vec2 without loops is only around 18 times faster. Taking into account the very
large arrays required by the latter function, we end up with random_walks1D2_vecl as the preferred
implementation.

3.59.5. Test function

During program development, it is highly recommended to carry out computations by hand for,
e.g., N=4 and num_walks=3. Normally, this is done by executing the program with these parameters
and checking with pen and paper that the computations make sense. The next step is to use this
test for correctness in a formal test function.

First, we need to check that the simulation of multiple random walks reproduces the results of
random_walk1D, random_walk1D_vecl, and random_walk1D_vec?2 for the first walk, if the seed is
the same. Second, we run three random walks (N=4) with the scalar and the two vectorized versions
and check that the returned arrays are identical.

For this type of test to be successful, we must be sure that exactly the same set of random numbers
are used in the three versions, a fact that requires the same random number generator and the same
seed, of course, but also the same sequence of computations. This is not obviously the case with
the three random_walk1D* functions we have presented. The critical issue in random_walk1D_vec1l
is that the first random numbers are used for the first walk, the second set of random numbers
is used for the second walk and so on, to be compatible with how the random numbers are used
in the function random_walk1D. For the function random_walk1D_vec2 the situation is a bit more
complicated since we generate all the random numbers at once. However, the critical step now is
the reshaping of the array returned from np.where: we must reshape as (num_walks, N) to ensure
that the first N random numbers are used for the first walk, the next N numbers are used for the
second walk, and so on.

We arrive at the test function below.

def test _random walksiD():

x0 = 0
N =4
p=20.5

num_walks = 1

np.random.seed(10)

computed = random_walks1D(x0, N, p, num_walks, random=np.random)
np.random.seed (10)

expected = random_walklD(x0, N, p, random=np.random)

assert (computed[0] == expected).all()
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np.random.seed(10)

computed = random_walks1D_vecl(x0, N, p, num_walks)
np.random.seed(10)

expected = random_walklD_vec(x0, N, p)

assert (computed[0] == expected).all()
np.random.seed(10)

computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)

expected = random_walklD_vec(x0, N, p)

assert (computed[0] == expected).all()
num_walks = 3
num_times = N

np.random.seed(10)

serial_computed = random_walks1D(x0, N, p, num_walks, num_times, random=np.random)

np.random.seed(10)
vectorizedl_ computed = random_walkslD_vecl(x0O, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed
return_values = ["pos",

random_walks1D_vec2(x0, N, p, num_walks, num_times)
"pos2", "pos_hist", "pos_hist_times"]
for s, v, r in zip(serial_ computed, vectorizedl computed, return_values):

msg = "Ys: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed, vectorized2_computed, return_values):
msg = "%s: %s (serial) vs s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

Such test functions are indispensable for further development of the code as we can at any time test
whether the basic computations remain correct or not. This is particularly important in stochastic
simulations since without test functions and fixed seeds, we always experience variations from run
to run, and it can be very difficult to spot bugs through averaged statistical quantities.

3.60. Demonstration of multiple walks

Assuming now that the code works, we can just scale up the number of steps in each walk and the
number of walks. The latter influences the accuracy of the statistical estimates. Figure Figure 3.18
shows the impact of the number of walks on the expectation, which should approach zero. Figure
Figure 3.19 displays the corresponding estimate of the variance of the position, which should grow
linearly with the number of steps. It does, seemingly very accurately, but notice that the scale on
the y axis is so much larger than for the expectation, so irregularities due to the stochastic nature of
the process become so much less visible in the variance plots. The probability of finding a particle
at a certain position at time (or step) 800 is shown in Figure Figure 3.20. The dashed red line is the
theoretical distribution (3.92) arising from solving the diffusion equation (3.90) instead. As always,
we realize that one needs significantly more statistical samples to estimate a histogram accurately
than the expectation or variance.
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Expected position (100 walks) Expected position (10000 walks)
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Figure 3.18.: Estimated expected value for 1000 steps, using 100 walks (upper left), 10,000 (upper
right), 100,000 (lower left), and 1,000,000 (lower right).
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Variance of position (100 walks) Variance of position (10000 walks)
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Figure 3.19.: Estimated variance over 1000 steps, using 100 walks (upper left), 10,000 (upper right),
100,000 (lower left), and 1,000,000 (lower right).
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Histogram of positions (100 walks) Histogram of positions (10000 walks)
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Figure 3.20.: Estimated probability distribution at step 800, using 100 walks (upper left), 10,000
(upper right), 100,000 (lower left), and 1,000,000 (lower right).
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3.61. Empty figure cache
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3.62. Random walk as a stochastic equation

The (dimensionless) position in a random walk, X4, can be expressed as a stochastic difference
equation:

Xe=Xp_1+s, x9=0, (3.93)
where s is a Bernoulli variable, taking on the two values s = —1 and s = 1 with equal probability:
1 1
Ps=1)==, P(s=-1)==.

The s variable in a step is independent of the s variable in other steps.

The difference equation expresses essentially the sum of independent Bernoulli variables. Because
of the central limit theorem, X}, will then be normally distributed with expectation kE[s] and
kVar[s]. The expectation and variance of a Bernoulli variable with values » = 0 and r = 1 are p and
p(1 — p), respectively. The variable s = 2r — 1 then has expectation 2E[r] — 1 =2p — 1 = 0 and
variance 22Var[r] = 4p(1 — p) = 1. The position X}, is normally distributed with zero expectation
and variance k, as we found in Section Section 3.56.

The central limit theorem tells that as long as k is not small, the distribution of X remains the same
if we replace the Bernoulli variable s by any other stochastic variable with the same expectation
and variance. In particular, we may let s be a standardized Gaussian variable (zero mean, unit
variance).

Dividing (3.93) by At gives B -
X — Xp_1 1
— = —s.
At At
In the limit At — 0, s/At approaches a white noise stochastic process. With X (t) as the continuous
process in the limit At — 0 (X — X (t)), we formally get the stochastic differential equation

dX = dw,

where W (t) is a Wiener process. Then X is also a Wiener process. It follows from the stochastic
ODE dX = dW that the probability distribution of X is given by the Fokker-Planck equation (3.90).
In other words, the key results for random walk we found earlier can alternatively be derived via a
stochastic ordinary differential equation and its related Fokker-Planck equation.

3.63. Random walk in 2D

The most obvious generalization of 1D random walk to two spatial dimensions is to allow movements
to the north, east, south, and west, with equal probability %.

def random_walk2D(x0, N, p, random=random) :
"""2D random walk with 1 particle and N moves: N, E, W, S."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
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for k in range(N):
r = random.uniform(0, 1)
if r <= 0.25:
current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:
current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:
current_pos += np.array([0, -1]) # Move south
else:
current_pos += np.array([-1, 0]) # Move west
position[k + 1, :] = current_pos
return position

The left plot in Figure Figure 3.21 provides an example on 200 steps with this kind of walk. We may
refer to this walk as a walk on a rectangular mesh as we move from any spatial mesh point (7, j) to
one of its four neighbors in the rectangular directions: (i + 1,75), (i — 1,75), (4,5 + 1), or (4,5 — 1).

4 T T T T T T 10

-10 L . n . . n -2 . . . . L n L
-4 =2 0 2 4 6 8 10 =12 =10 -8 -6 -4 =2 0 2 4 6

Figure 3.21.: Random walks in 2D with 200 steps: rectangular mesh (left) and diagonal mesh (right).

3.64. Random walk in any number of space dimensions

From a programming point of view, especially when implementing a random walk in any number
of dimensions, it is more natural to consider a walk in the diagonal directions NW, NE, SW, and
SE. On a two-dimensional spatial mesh it means that we go from (i, j) to either (i + 1,5 + 1),
(i—1,7+1),(i+1,5—1),0r (i —1,j —1). We can with such a diagonal mesh (see right plot in
Figure Figure 3.21) draw a Bernoulli variable for the step in each spatial direction and trivially
write code that works in any number of spatial directions:

import random

import matplotlib.pyplot as plt
import numpy as np
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random.seed (10)
np.random.seed (10)

def

def

def

def

random_walk1D(x0, N, p, random=random) :
"""1D random walk with 1 particle and N moves."""
position = np.zeros(N + 1)
position[0] = x0
current_pos = x0
for k in range(N):
r = random.uniform(0, 1)
if r <= p:
current_pos —= 1
else:
current_pos += 1
position[k + 1] = current_pos
return position

random_walk1D_vec(x0, N, p):

"""Vectorized version of random_walkiD."""
position = np.zeros(N + 1)

position[0] = xO

r = np.random.uniform(0, 1, size=N)

steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

test_random_walkiD():

x0 = 2
N =4
p=20.6

np.random.seed(10)

scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)

vectorized_computed = random_walklD_vec(x0O, N, p)

assert (scalar_computed == vectorized_computed).all()

demo_random_walk1D(N=50000) :
np.random.seed(10)

pos = random_walkl1D_vec(x0=0, N=N, p=0.5)
plt.figure()

plt.plot(pos)

plt.savefig("tmpl.pdf")
plt.savefig("tmpl.png")

plt.figure()

plt.plot(pos * pos)
plt.savefig("tmp2.pdf")
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plt.savefig("tmp2.png")
plt.show()

demo_fig_random_walk1D(N=200) :
"""Make ensamble of positions (to illustrate E[] operator)."""
np.random.seed (10)
num_plots = 4
for n in range(num_plots):
plt.subplot(num_plots, 1, n + 1)
pos = random_walkl1D_vec(x0=0, N=N, p=0.5)
plt.plot (pos)
plt.axis([0, N, -15, 20])
plt.savefig("tmp.pdf")
plt.savefig("tmp.png")
plt.show()

demo_random_walk1D_timing() :
import time

x0 = 0
N = 10000000
p=20.5

t0 = time.perf_counter ()

np.random.seed(10)

pos = random_walk1D(xO, N, p, random=np.random)
tl = time.perf_counter()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)

pos = random_walklD_vec(x0, N, p)

t2 = time.perf_counter()

cpu_vec = t2 - ti

print ("CPU vectorized: %.1f" % cpu_vec)

print ("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

random_walks1D(x0, N, p, num_walks=1, num_times=1, random=random) :
"""Simulate num_walks random walks from x0O with N steps."""
position = np.zeros(N + 1) # Accumulated positions

position[0] = x0 * num_walks

position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks

pos_hist = np.zeros((num_walks, num_times))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
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current_pos = x0
for k in range(N):
if k in pos_hist_times:
pos_hist[n, num_times_counter] = current_pos
num_times_counter += 1
r = random.uniform(0, 1)
if r <= p:
current_pos -= 1
else:
current_pos += 1
position[k + 1] += current_pos
position2[k + 1] += current_pos**2
return position, position2, pos_hist, np.array(pos_hist_times)

def random_walksl1D_vecl(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walksiD."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walk = np.zeros(N + 1) # Positions of current walk
walk[0] = xO0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0O + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n, :] = walk[pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

def random_walksl1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""

position = np.zeros(N + 1) # Accumulated positions

position2 = np.zeros(N + 1) # Accumulated positions**2

walks = np.zeros((num_walks, N + 1)) # Positions of each walk

walks[:, 0] = x0

pos_hist = np.zeros((num_walks, num_times))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks)

steps = np.where(r <= p, -1, 1).reshape(num_walks, N)
walks[:, 1:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)

position2 = np.sum(walks**2, axis=0)

pos_hist[:, :] = walks[:, pos_hist_times]

316



3. Diffusion Equations

return position, position2, pos_hist, np.array(pos_hist_times)

def test_random walksi1D():

x0 = 0
N =4
p=20.5

num_walks = 1

np.random.seed(10)

computed = random_walks1D(x0, N, p, num_walks, random=np.random)
np.random.seed(10)

expected = random_walk1D(x0, N, p, random=np.random)

assert (computed[0] == expected).all()

np.random.seed(10)

computed = random_walks1D_vecl(x0, N, p, num_walks)
np.random.seed (10)

expected = random_walk1D_vec(x0, N, p)

assert (computed[0] == expected).all()
np.random.seed(10)

computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)

expected = random_walklD_vec(x0, N, p)

assert (computed[0] == expected).all()

num_walks = 3

num_times N

np.random.seed (10)

serial_computed = random_walks1D(x0O, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorizedl_computed
np.random.seed(10)
vectorized2_computed = random_walkslD_vec2(x0, N, p, num_walks, num_times)

random_walksl1D_vecl1(x0, N, p, num_walks, num_times)

return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]

for s, v, r in zip(serial_computed, vectorizedl_computed, return_values):
msg = "%s: %s (serial) vs s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed, vectorized2_computed, return_values):
msg = "Ys: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

def demo_random_walks1D(N=1000, num_walks=10000, EX_minmax=None) :
import time

t0 = time.perf_counter()

pos, pos2, hist, hist_times = random_walks1D_vecl(
x0=0,
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N=N,

p=0.5,

num_walks=num_walks,

num_times=10,
)
tl = time.perf_counter()
print("histogram times:", hist_times)
print ("random walk: %.1fs" % (t1 - t0))
E_X = pos / float(num_walks)
Var_X = pos2 / float(num_walks) - E_X**2
if N <= 50:

print (pos)

plt.figure()
plt.plot(E_X)
if EX_minmax is not None:
plt.axis([0, N, EX_minmax[0], EX_minmax[1]])
plt.title("Expected position (%d walks)" % num_walks)
plt.savefig("tmpl.png")
plt.savefig("tmpl.pdf")
plt.figure()
plt.plot(Var_X)
plt.title("Variance of position (%d walks)" 7 num_walks)
plt.savefig("tmp2.png")
plt.savefig("tmp2.pdf")

plt.figure()

a=20.5
exact = (
lambda x, t: 1.0 / np.sqrt(4 * np.pi * t * a) * np.exp(-(x**2) / (4.0 * t * a))
)
hist_time_index = -2

n, bins, patches = plt.hist(hist[:, hist_time_index], bins=30, normed=True)
x = np.linspace(bins[0], bins[-1], 301)

t = hist_times[hist_time_index]

plt.plot(x, exact(x, t), "r—--")

plt.title("Histogram of positions (%d walks)" % num_walks)
plt.savefig("tmp3.png")

plt.savefig("tmp3.pdf")

plt.show()

def demo_fig_random_walksiD():
"""Make figures with statistics and dependence on no of walks."""
import os

import shutil

N = 1000
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num_walks = [100, 10000, 100000, 1000000]
for n in num_walks:
np.random.seed(10) # Use same seq. for all experiments
if n == 100:
demo_random_walks1D(N=N, num walks=n, EX_minmax=None)
else:
demo_random_walks1D(N=N, num_walks=n, EX minmax=[-0.1, 0.5])
d = "tmp_%d" % n
if os.path.isdir(d):
shutil.rmtree(d)
os.mkdir (d)
for p in 1, 2, 3:
os.rename("tmpld.png" % p, os.path.join(d, "tmpld.png" % p))
os.rename ("tmp%d.pdf" % p, os.path.join(d, "tmp’d.pdf" % p))
plots = ["EX", "VarX", "HistX"]
for j, plot in enumerate(plots):
for ext in "png", "pdf":
files = [
os.path.join("tmp_%d" % n, "tmp%d.%s" % (j + 1, ext)) for n in num_walks

]
ncols = 3 if len(num_walks) == 3 else 2
output = "rwilD_%s_%s.%s" % (plot, "_".join([str(n) for n in num_walks]), ext)

cmd = "montage %s -tile %dxl -geometry +0+0 %s" % (
" join(files),

ncols,
output,
)
print (cmd)

os.system(cmd)

def demo_random_walks1D_timing():
import time

x0 =0

N = 1000
num_walks = 50000
p=20.5

t0 = time.perf_counter()

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walks1D(
x0, N, p, num_walks, num_times=4, random=np.random

)

tl = time.perf_counter ()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" % cpu_scalar)

np.random.seed(10)
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pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec1(
x0, N, p, num_walks, num_times=4
)
t2 = time.perf_counter ()
cpu_vecl = t2 - til
print ("CPU vectorizedl: %.1f" % cpu_vecl)
print ("CPU scalar/vectorizedl: %.1f" % (cpu_scalar / cpu_vecl))
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walksl1D_vec2(
x0, N, p, num_walks, num_times=4
)
t3 = time.perf_counter()
cpu_vec2 = t3 - t2
print ("CPU vectorized2: %.1f" % cpu_vec2)
print ("CPU scalar/vectorized2: %.1f" % (cpu_scalar / cpu_vec2))

random_walk2D(x0, N, p, random=random) :
"""2D random walk with 1 particle and N moves: N, E, W, S."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):
r = random.uniform(0, 1)
if r <= 0.25:
current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:
current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:
current_pos += np.array([0, -1]) # Move south
else:
current_pos += np.array([-1, 0]) # Move west
position[k + 1, :] = current_pos
return position

demo_random_walk2D() :

x0 = (0, 0)
N = 200
p=20.5

np.random.seed(10)

pos = random_walk2D(x0, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 11)
plt.savefig("tmpl.png")

plt.savefig("tmpl.pdf")

plt.show()

random_walkdD(x0, N, p, random=random) :
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"""Any-D (diagonal) random walk with 1 particle and N moves."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):
for i in range(d):
r = random.uniform(0, 1)
if r <= p:
current_pos[i] -= 1
else:
current_pos[i] += 1
position[k + 1, :] = current_pos
return position

def random_walkdD_vec(x0, N, p):
"""Vectorized version of random_walkdD."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0] = np.array(x0, dtype=float)
r = np.random.uniform(0, 1, size=N * d)
steps = np.where(r <= p, -1, 1).reshape(N, d)
position[l:, :] = x0 + np.cumsum(steps, axis=0)
return position

def demo_random_walkdD() :

x0 = (0, 0)
N = 200
p=0.5

np.random.seed(10)

pos = random_walkdD(x0O, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 11)
plt.savefig("tmpl.png")

plt.savefig("tmpl.pdf")

plt.show()

def demo_random_walkdD_timing() :
import time

x0 = (0, 0)
N = 4000000
p=0.5

t0 = time.perf_counter ()

np.random.seed(10)

pos = random_walkdD(x0, N, p, random=np.random)
tl = time.perf_counter()
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cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" % cpu_scalar)

np.random. seed(10)

pos = random_walkdD_vec(x0, N, p)

t2 = time.perf_counter ()

cpu_vec = t2 - til

print ("CPU vectorized: %.1f" % cpu_vec)

print ("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

demo_fig_random_walkdD() :

x0 = (0, 0)
N = 5000
p=20.5

n = 2 # nxn subplots
f, axarr = plt.subplots(n, n, sharex=True, sharey=True)
for i in range(n):
for j in range(n):

seed = 3 * i + 8 * j

np.random. seed(seed)

pos = random_walkdD(x0O, N, p, random=np.random)

axarr[i, jl.plot(pos[:, 0], pos[:, 11)
plt.savefig("tmpl.png")
plt.savefig("tmpl.pdf")
plt.show()

test_ramdom walkdD() :

x0 = (0, 0)
N=17
p=20.5

np.random.seed(10)

scalar_computed = random_walkdD(xO, N, p, random=np.random)
np.random.seed(10)

vectorized_computed = random_walkdD_vec(x0, N, p)

assert (scalar_computed == vectorized_computed).all()

random_walksdD(x0, N, p, num_walks=1, num_times=1, random=random) :
"""Simulate num_walks random walks from xO with N steps."""

d = len(x0)

position = np.zeros((N + 1, d)) # Accumulated positions
position2 = np.zeros((N + 1, d)) # Accumulated positions**2
pos_hist = np.zeros((num_walks, num_times, d))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = np.array(x0, dtype=float)
for k in range(N):
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if k in pos_hist_times:
pos_hist[n, num_times_counter, :] = current_pos
num_times_counter += 1
for i in range(d):
r = random.uniform(0, 1)
if r <= p:
current_pos[i] -= 1
else:
current_pos[i] += 1
position[k + 1, :] += current_pos
position2[k + 1, :] += current_pos**2
return position, position2, pos_hist, np.array(pos_hist_times)

def random_walksdD_vec(xO, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
d = len(x0)
position = np.zeros((N + 1, d)) # Accumulated positions
position2 = np.zeros((N + 1, d)) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1, d)) # Positions of each walk
walks[:, 0, :] = x0
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks * d)

steps = np.where(r <= p, -1, 1).reshape(num_walks, N, d)
walks[:, 1:, :] = x0 + np.cumsum(steps, axis=1)

position = np.sum(walks, axis=0)

position2 = np.sum(walks**2, axis=0)

pos_hist[:, :, :] = walks[:, pos_hist_times, :]

return position, position2, pos_hist, np.array(pos_hist_times)

def test_random_ walksdD():

x0 = (0, 0)
N =4
p=20.5

num_walks = 1

np.random.seed(10)

computed = random_walksdD(x0, N, p, num_walks, random=np.random)
np.random.seed(10)

expected = random_walkdD(x0, N, p, random=np.random)

assert (computed[0] == expected).all()

np.random.seed (10)

computed = random_walksdD_vec(x0, N, p, num_walks)
np.random.seed(10)

expected = random_walkdD_vec(x0, N, p)
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assert (computed[0] == expected).all()
num_walks = 3
num_times = N

np.random.seed(10)

serial_computed = random_walksdD(x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)

vectorized_computed = random_walksdD_vec(x0O, N, p, num_walks, num_times)

return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]

for s, v, r in zip(serial_computed, vectorized_computed, return_values):
msg = "Ys: %s\n%s (serial)\nvs\nJs\nl)s (vectorized)" % (r, s.shape, s, v.shape, v)
assert (s == v).all(), msg

demo_random_walksdD() :

x0 = (0, 0)

N = 1000
num_walks = 1000
p=0.5

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walksdD(
x0, N, p, num_walks, num_times=4, random=np.random

)

print(pos_hist_times)

plt.figure()

plt.plot(pos[:, 0], pos[:, 11)

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walksdD_vec(
x0, N, p, num_walks, num_times=4

)

plt.figure()

plt.plot(pos[:, 0], pos[:, 11)

plt.show()

demo_random_walksdD_timing() :
import time

x0 = (0, 0, 0)

N = 1000
num_walks = 10000
p=0.5

t0 = time.perf_counter()

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walksdD(
x0, N, p, num_walks, num_times=4, random=np.random
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tl = time.perf_counter()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" 7 cpu_scalar)

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walksdD_vec(
x0, N, p, num_walks, num_times=4

)

t2 = time.perf_counter()

cpu_vec = t2 - til

print ("CPU vectorized: %.1f" % cpu_vec)

print ("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

random_walks1D2(x0, N, p, num_walks=1, num_times=1, random=random) :
"""Simulate num_walks random walks from xO with N steps."""
position = np.zeros(N + 1) # Accumulated positions

position[0] = x0 * num_walks

position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks

pos_hist = np.zeros((num_walks, num_times))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

current_pos = x0 + np.zeros(num_walks)
num_times counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True # Store histogram data for this k
else:
store_hist = False

for n in range(num_walks):
r = random.uniform(0, 1)
if r <= p:
current_pos[n] -= 1
else:
current_pos[n] += 1
position[k + 1] += current_pos[n]
position2[k + 1] += current_pos[n] ** 2
if store_hist:
pos_hist[n, num_times_counter] = current_pos[n]
return position, position2, pos_hist, np.array(pos_hist_times)

random_walks1D2_vecl1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walksiD2."""

position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
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pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

current_pos = np.zeros(num_walks)
current_pos[0] = x0
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True # Store histogram data for this k
else:
store_hist = False

r = np.random.uniform(0, 1, size=num_walks)
steps = np.where(r <= p, -1, 1)
current_pos += steps
position[k + 1] = np.sum(current_pos)
position2[k + 1] = np.sum(current_pos**2)
if store_hist:
pos_hist[:, num_times_counter] = current_pos
return position, position2, pos_hist, np.array(pos_hist_times)

test_random_walks1D2():

x0 =0
N =4
p=0.5

num_walks = 3

num_times = N

np.random.seed(10)

serial_computed = random_walks1D2(x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)

vectorized_computed = random_walks1D2_vecl(x0O, N, p, num_walks, num_times)

return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]

for s, v, r in zip(serial_computed, vectorized_computed, return_values):
msg = "Ys: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

demo_random_walks1D2_timing() :
"""Timing of random 1D walks with reversed loops."""

import time

x0 =0

N = 1000
num_walks = 50000
p=20.5
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A vectorized version is desired. We follow the ideas from Section Section 3.57.1, but each step is now
a vector in d spatial dimensions. We therefore need to draw And random numbers in r, compute
steps in the various directions through np.where(r <=p, -1, 1) (each step being —1 or 1), and
then we can reshape this array to an N x d array of step vectors. Doing an np.cumsum summation

__name__ == "_main

3. Diffusion Equations

t0 = time.perf_counter()

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walks1D2(
x0, N, p, num_walks, num_times=4, random=np.random

)

tl = time.perf_counter ()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" % cpu_scalar)

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walks1D2_vec1(
x0, N, p, num_walks, num_times=4

)

t2 = time.perf_counter ()

cpu_vecl = t2 - til

print ("CPU vectorizedl: %.1f" % cpu_vecl)

print ("CPU scalar/vectorizedl: ¥%.1f" % (cpu_scalar / cpu_vecl))

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walksl1D_vec2(
x0, N, p, num_walks, num_times=4

)

t3 = time.perf_counter()

cpu_vec2 = t3 - t2

print ("CPU vectorized2: %.1f" % cpu_vec2)

print ("CPU scalar/vectorized2: %.1f" % (cpu_scalar / cpu_vec2))

demo_random_walks1D2_timing()
print ("----")

demo_random_walks1D_timing()

along axis 0 will add the vectors, as this demo shows:

>>> a = np.arrange(6) .reshape(3,2)
>>> a

array([[0, 1],

[2, 3] b
(4, 511

>>> np.cumsum(a, axis=0)
array([[ 0, 11,

With such summation of step vectors, we get all the positions to be filled in the position array:

[2, 4],
L6, 911
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import random

import matplotlib.pyplot as plt
import numpy as np

random.seed (10)
np.random.seed (10)

def

def

def

def

random_walk1D(x0, N, p, random=random) :
"""1D random walk with 1 particle and N moves."""
position = np.zeros(N + 1)
position[0] = x0
current_pos = x0
for k in range(N):
r = random.uniform(0, 1)
if r <= p:
current_pos —= 1
else:
current_pos += 1
position[k + 1] = current_pos
return position

random_walk1D_vec(x0, N, p):

"""Vectorized version of random_walkiD."""
position = np.zeros(N + 1)

position[0] = xO

r = np.random.uniform(0, 1, size=N)

steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

test_random_walkiD():

x0 = 2
N =4
p=0.6

np.random.seed(10)

scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)

vectorized_computed = random_walklD_vec(x0O, N, p)

assert (scalar_computed == vectorized_computed).all()

demo_random_walk1D(N=50000) :
np.random.seed (10)

pos = random_walklD_vec(x0=0, N=N, p=0.5)
plt.figure()

plt.plot(pos)
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plt.savefig("tmpl.pdf")
plt.savefig("tmpl.png")
plt.figure()
plt.plot(pos * pos)
plt.savefig("tmp2.pdf")
plt.savefig("tmp2.png")
plt.show()

demo_fig_random_walk1D(N=200) :
"""Make ensamble of positions (to illustrate E[] operator)."""
np.random.seed(10)
num_plots = 4
for n in range(num_plots):
plt.subplot(num_plots, 1, n + 1)
pos = random_walklD_vec(x0=0, N=N, p=0.5)
plt.plot(pos)
plt.axis([0, N, -15, 20])
plt.savefig("tmp.pdf")
plt.savefig("tmp.png")
plt.show()

demo_random_walk1D_timing() :
import time

x0 =0
N = 10000000
p=0.5

t0 = time.perf_counter()

np.random.seed(10)

pos = random_walkl1D(x0O, N, p, random=np.random)
tl = time.perf_counter()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)

pos = random_walk1D_vec(x0, N, p)

t2 = time.perf_counter ()

cpu_vec = t2 - til

print ("CPU vectorized: %.1f" % cpu_vec)

print ("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

random_walks1D(x0, N, p, num_walks=1, num_times=1, random=random) :
"""Simulate num_walks random walks from xO with N steps."""
position = np.zeros(N + 1) # Accumulated positions
position[0] = x0 * num_walks

position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks
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pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = x0
for k in range(N):
if k in pos_hist_times:
pos_hist[n, num_times_counter] = current_pos
num_times_counter += 1
r = random.uniform(0, 1)
if r <= p:
current_pos —-= 1
else:
current_pos += 1
position[k + 1] += current_pos
position2[k + 1] += current_pos**2
return position, position2, pos_hist, np.array(pos_hist_times)

random_walks1D_vecl(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walksiD."""

position = np.zeros(N + 1) # Accumulated positions

position2 = np.zeros(N + 1) # Accumulated positions**2

walk = np.zeros(N + 1) # Positions of current walk

walk[0] = x0

pos_hist = np.zeros((num_walks, num_times))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n, :] = walk[pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""

position = np.zeros(N + 1) # Accumulated positions

position2 = np.zeros(N + 1) # Accumulated positions**2

walks = np.zeros((num_walks, N + 1)) # Positions of each walk
walks[:, 0] = xO

pos_hist = np.zeros((num_walks, num_times))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks)
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steps = np.where(r <= p, -1, 1).reshape(num_walks, N)

walks[:, 1:] = xO + np.cumsum(steps, axis=1)

position = np.sum(walks, axis=0)

position2 = np.sum(walks**2, axis=0)

pos_hist[:, :] = walks[:, pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

def test_random_walks1D():

x0 = 0
N =4
p=20.5

num_walks = 1

np.random.seed(10)

computed = random_walks1D(x0, N, p, num_walks, random=np.random)
np.random.seed(10)

expected = random_walk1D(x0, N, p, random=np.random)

assert (computed[0] == expected).all()

np.random.seed(10)

computed = random_walks1D_vecl(x0, N, p, num_walks)
np.random.seed(10)

expected = random_walklD_vec(x0, N, p)

assert (computed[0] == expected).all()
np.random.seed(10)

computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)

expected = random_walklD_vec(x0, N, p)

assert (computed[0] == expected).all()

num_walks 3

num_times N

np.random.seed(10)

serial_computed = random_walks1D(x0O, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorizedl_computed
np.random.seed(10)

random_walksl1D_vecl(x0, N, p, num_walks, num_times)

vectorized2_computed = random_walksl1D_vec2(x0, N, p, num_walks, num_times)

return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]

for s, v, r in zip(serial_computed, vectorizedl_computed, return_values):
msg = "Ys: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed, vectorized2_computed, return_values):
msg = "Ys: %s (serial) vs %s (vectorized)" ¥ (r, s, v)
assert (s == v).all(), msg

def demo_random_walks1D(N=1000, num_walks=10000, EX minmax=None) :
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import time

t0 = time.perf_counter()
pos, pos2, hist, hist_times = random_walks1D_vec1(
x0=0,
N=N,
p=0.5,
num_walks=num_walks,
num_times=10,
)
tl = time.perf_counter()
print("histogram times:", hist_times)
print("random walk: %.1fs" % (t1 - t0))
E_X = pos / float(num_walks)
Var_X = pos2 / float(num_walks) - E_X**2
if N <= 50:
print (pos)

plt.figure()
plt.plot(E_X)
if EX minmax is not None:
plt.axis([0, N, EX_minmax[0], EX_minmax[1]])
plt.title("Expected position (%d walks)" % num_walks)
plt.savefig("tmpl.png")
plt.savefig("tmpl.pdf")
plt.figure()
plt.plot(Var_X)
plt.title("Variance of position (%d walks)" % num_walks)
plt.savefig("tmp2.png")
plt.savefig("tmp2.pdf")

plt.figure()

a=20.5
exact = (
lambda x, t: 1.0 / np.sqrt(4 * np.pi * t * a) * np.exp(-(x**2) / (4.0 * t * a))
)
hist_time_index = -2

n, bins, patches = plt.hist(hist[:, hist_time_index], bins=30, normed=True)
x = np.linspace(bins[0], bins[-1], 301)

t = hist_times[hist_time_index]

plt.plot(x, exact(x, t), "r--")

plt.title("Histogram of positions (%d walks)" % num_walks)
plt.savefig("tmp3.png")

plt.savefig("tmp3.pdf")

plt.show()

def demo_fig random_walks1D():
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"""Make figures with statistics and dependence on no of walks."""

import os
import shutil

N = 1000
num_walks = [100, 10000, 100000, 1000000]
for n in num_walks:
np.random.seed(10) # Use same seq. for all experiments
if n == 100:
demo_random_walks1D(N=N, num_walks=n, EX_minmax=None)
else:
demo_random_walks1D(N=N, num walks=n, EX_minmax=[-0.1, 0.5])
d = "tmp_%d" % n
if os.path.isdir(d):
shutil.rmtree(d)
os.mkdir (d)
for p in 1, 2, 3:
os.rename("tmp/d.png" % p, os.path.join(d, "tmpld.png" % p))
os.rename ("tmp%d.pdf" % p, os.path.join(d, "tmp’d.pdf" % p))
plots = ["EX", "VarX", "HistX"]
for j, plot in enumerate(plots):
for ext in "png", "pdf":
files = [
os.path.join("tmp_%d" % n, "tmp%d.%s" % (j + 1, ext)) for n in num_walks

]
ncols = 3 if len(num walks) == 3 else 2
output = "rwiD_%s_%s.%s" % (plot, "_".join([str(n) for n in num_walks]), ext)

cmd = "montage %s -tile %dxl -geometry +0+0 %s" % (
" join(files),

ncols,
output,
)
print (cmd)

os.system(cmd)

def demo_random_walks1D_timing():
import time

x0 =0

N = 1000
num_walks = 50000
p=20.5

t0 = time.perf_counter()

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walks1D(
x0, N, p, num_walks, num_times=4, random=np.random
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)
tl = time.perf_counter ()
cpu_scalar = t1 - tO
print ("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walksl1D_vecl(
x0, N, p, num_walks, num_times=4
)
t2 = time.perf_counter()
cpu_vecl = t2 - t1
print ("CPU vectorizedl: %.1f" % cpu_vecl)
print ("CPU scalar/vectorizedl: ¥%.1f" % (cpu_scalar / cpu_vecl))
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec2(
x0, N, p, num_walks, num_times=4
)
t3 = time.perf_counter()
cpu_vec2 = t3 - t2
print ("CPU vectorized2: %.1f" % cpu_vec2)
print ("CPU scalar/vectorized2: %.1f" % (cpu_scalar / cpu_vec2))

random_walk2D(x0, N, p, random=random) :
"""2D random walk with 1 particle and N moves: N, E, W, S."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :]1 = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):
r = random.uniform(0, 1)
if r <= 0.25:
current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:
current_pos += np.array([1l, 0]) # Move east
elif 0.5 < r <= 0.75:
current_pos += np.array([0, -1]) # Move south
else:
current_pos += np.array([-1, 0]) # Move west
position[k + 1, :] = current_pos
return position

demo_random_walk2D() :

x0 = (0, 0)
N = 200
p=20.5

np.random.seed(10)
pos = random_walk2D(x0, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 11)
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plt.savefig("tmpl.png")
plt.savefig("tmpl.pdf")
plt.show()

def random_walkdD(x0, N, p, random=random) :
"""Any-D (diagonal) random walk with 1 particle and N moves."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :]1 = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):
for i in range(d):
r = random.uniform(0, 1)
if r <= p:
current_pos[i] -= 1
else:
current_pos[i] += 1
position[k + 1, :] = current_pos
return position
def random_walkdD_vec(x0, N, p):
"""Vectorized version of random_walkdD."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0] = np.array(x0, dtype=float)
r = np.random.uniform(0, 1, size=N * d)
steps = np.where(r <= p, -1, 1).reshape(N, d)
position[1l:, :] = x0 + np.cumsum(steps, axis=0)
return position

3.65. Multiple random walks in any number of space dimensions

As we did in 1D, we extend one single walk to a number of walks (num_walks in the code).

3.65.1. Scalar code

As always, we start with implementing the scalar case:
import random

import matplotlib.pyplot as plt
import numpy as np

random.seed (10)
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Figure 3.22.: Four random walks with 5000 steps in 2D.
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np.random.seed (10)

def random_walk1D(x0, N, p, random=random) :
"""1D random walk with 1 particle and N moves."""

position = np.zeros(N + 1)
position[0] = x0
current_pos = x0
for k in range(N):
r = random.uniform(0, 1)
if r <= p:
current_pos —= 1
else:
current_pos += 1
positionf[k + 1] current_pos
return position

def random_walkl1D_vec(x0, N, p):
"""Vectorized version of random_walkiD."""
position = np.zeros(N + 1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

def test _random walkiD():

x0 = 2
N =4
p=0.6

np.random.seed(10)

scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)

vectorized_computed = random_walklD_vec(x0, N, p)

assert (scalar_computed == vectorized_computed).all()

def demo_random_walk1D(N=50000) :
np.random.seed(10)
pos = random_walkl1D_vec(x0=0, N=N, p=0.5)
plt.figure()
plt.plot(pos)
plt.savefig("tmpl.pdf")
plt.savefig("tmpl.png")
plt.figure()
plt.plot(pos * pos)
plt.savefig("tmp2.pdf")
plt.savefig("tmp2.png")
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plt.show()

demo_fig_random_walk1D(N=200) :
"""Make ensamble of positions (to illustrate E[] operator)."""
np.random.seed(10)
num_plots = 4
for n in range(num_plots):
plt.subplot(num_plots, 1, n + 1)
pos = random_walklD_vec(x0=0, N=N, p=0.5)
plt.plot(pos)
plt.axis([0, N, -15, 20])
plt.savefig("tmp.pdf")
plt.savefig("tmp.png")
plt.show()

demo_random_walk1D_timing():
import time

x0 = 0
N = 10000000
p=20.5

t0 = time.perf_counter()

np.random.seed(10)

pos = random_walklD(x0O, N, p, random=np.random)
tl = time.perf_counter ()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)

pos = random_walklD_vec(x0, N, p)

t2 = time.perf_counter()

cpu_vec = t2 - ti

print ("CPU vectorized: %.1f" % cpu_vec)

print ("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

random_walks1D(x0, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from xO with N steps."""
position = np.zeros(N + 1) # Accumulated positions

position[0] = %0 * num_walks

position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = xO0**2 * num_walks

pos_hist = np.zeros((num_walks, num_times))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):

num_times_counter = 0O
current_pos = x0
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for k in range(N):

if k in pos_hist_times:
pos_hist[n, num_times_counter] = current_pos
num_times_counter += 1

r = random.uniform(0, 1)

if r <= p:
current_pos -= 1

else:
current_pos += 1

position[k + 1] += current_pos

position2[k + 1] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

random_walksl1D_vecl(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walksiD."""

position = np.zeros(N + 1) # Accumulated positions

position2 = np.zeros(N + 1) # Accumulated positions**2

walk = np.zeros(N + 1) # Positions of current walk

walk[0] = x0

pos_hist = np.zeros((num_walks, num_times))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0O + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n, :] = walk[pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walkslD; no loops."""

position = np.zeros(N + 1) # Accumulated positions

position2 = np.zeros(N + 1) # Accumulated positions**2

walks = np.zeros((num_walks, N + 1)) # Positions of each walk
walks[:, 0] = x0

pos_hist = np.zeros((num_walks, num_times))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks)

steps = np.where(r <= p, -1, 1).reshape(num_walks, N)

walks[:, 1:] = x0 + np.cumsum(steps, axis=1)

position = np.sum(walks, axis=0)

position2 = np.sum(walks**2, axis=0)

pos_hist[:, :] = walks[:, pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)
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def test_random walks1D():

x0 = 0
N =4
p=20.5

num_walks = 1

np.random. seed(10)

computed = random_walks1D(x0, N, p, num_walks, random=np.random)
np.random.seed(10)

expected = random_walk1D(x0, N, p, random=np.random)

assert (computed[0] == expected).all()

np.random.seed(10)

computed = random_walks1D_vecl(x0, N, p, num_walks)
np.random.seed (10)

expected = random_walk1D_vec(x0, N, p)

assert (computed[0] == expected).all()

np.random. seed(10)

computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)

expected = random_walklD_vec(x0, N, p)

assert (computed[0] == expected).all()

num_walks 8
num_times N
np.random.seed (10)
serial_computed = random_walks1D(x0O, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)

vectorizedl_computed = random_walkslD_vecl(x0, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed

random_walks1D_vec2(x0, N, p, num_walks, num_times)

return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]

for s, v, r in zip(serial_computed, vectorizedl_computed, return_values):
msg = "%s: %s (serial) vs s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed, vectorized2_computed, return_values):
msg = "Us: %s (serial) vs %s (vectorized)" ¥ (r, s, v)
assert (s == v).all(), msg

def demo_random_walks1D(N=1000, num_walks=10000, EX_minmax=None) :
import time

t0 = time.perf_counter()

pos, pos2, hist, hist_times = random_walks1D_vecl(
x0=0,
N=N,
p=0.5,
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num_walks=num_walks,

num_times=10,
)
tl = time.perf_counter()
print("histogram times:", hist_times)
print ("random walk: %.1fs" % (t1 - t0))
E_X = pos / float(num_walks)
Var_X = pos2 / float(num_walks) - E_X**2
if N <= 50:

print (pos)

plt.figure()
plt.plot(E_X)
if EX_minmax is not None:
plt.axis([0, N, EX_minmax[0], EX_minmax[1]])
plt.title("Expected position (%d walks)" % num_walks)
plt.savefig("tmpl.png")
plt.savefig("tmpl.pdf")
plt.figure()
plt.plot(Var_X)
plt.title("Variance of position (%d walks)" 7 num_walks)
plt.savefig("tmp2.png")
plt.savefig("tmp2.pdf")

plt.figure()

a=20.5
exact = (
lambda x, t: 1.0 / np.sqrt(4 * np.pi * t * a) * np.exp(-(x**2) / (4.0 * t * a))
)
hist_time_index = -2

n, bins, patches = plt.hist(hist[:, hist_time_index], bins=30, normed=True)
x = np.linspace(bins[0], bins[-1], 301)

t = hist_times[hist_time_index]

plt.plot(x, exact(x, t), "r—-")

plt.title("Histogram of positions (%d walks)" % num_walks)
plt.savefig("tmp3.png")

plt.savefig("tmp3.pdf")

plt.show()

def demo_fig_random_walks1D():
"""Make figures with statistics and dependence on no of walks."""
import os
import shutil

N = 1000

num_walks = [100, 10000, 100000, 1000000]
for n in num_walks:

341



3. Diffusion Equations

np.random.seed(10) # Use same seq. for all experiments
if n == 100:
demo_random_walks1D(N=N, num walks=n, EX_minmax=None)
else:
demo_random_walks1D(N=N, num_walks=n, EX minmax=[-0.1, 0.5])
d = "tmp_%d" % n
if os.path.isdir(d):
shutil.rmtree(d)
os.mkdir (d)
for p in 1, 2, 3:
os.rename("tmpld.png" % p, os.path.join(d, "tmpld.png" % p))
os.rename ("tmp/d.pdf" % p, os.path.join(d, "tmpld.pdf" % p))
plots = ["EX", "VarX", "HistX"]
for j, plot in enumerate(plots):
for ext in "png", "pdf":
files = [
os.path.join("tmp_%d" % n, "tmp%d.%s" % (j + 1, ext)) for n in num_walks

]
ncols = 3 if len(num_walks) == 3 else 2
output = "rwilD_%s_%s.%s" % (plot, "_".join([str(n) for n in num_walks]), ext)

cmd = "montage %s -tile %dxl -geometry +0+0 %s" % (
" " join(files),

ncols,
output,
)
print (cmd)

os.system(cmd)

def demo_random_walks1D_timing():
import time

x0 = 0

N = 1000
num_walks = 50000
p=20.5

t0 = time.perf_counter()

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walks1D(
x0, N, p, num_walks, num_times=4, random=np.random

)

tl = time.perf_counter()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" % cpu_scalar)

np.random.seed(10)

pos, pos2, pos_hist, pos_hist_times = random_walks1D_vecl(
x0, N, p, num_walks, num_times=4
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)
t2 = time.perf_counter ()
cpu_vecl = t2 - ti1
print ("CPU vectorizedl: %.1f" % cpu_vecl)
print ("CPU scalar/vectorizedl: %.1f" % (cpu_scalar / cpu_vecl))
np.random.seed (10)
pos, pos2, pos_hist, pos_hist_times = random_walksl1D_vec2(
x0, N, p, num_walks, num_times=4
)
t3 = time.perf_counter()
cpu_vec2 = t3 - t2
print ("CPU vectorized2: %.1f" % cpu_vec2)
print ("CPU scalar/vectorized2: %.1f" % (cpu_scalar / cpu_vec2))

random_walk2D(x0, N, p, random=random) :
"""2D random walk with 1 particle and N moves: N, E, W, S."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):
r = random.uniform(0, 1)
if r <= 0.25:
current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:
current_pos np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:
current_pos np.array([0, -1]) # Move south
else:
current_pos np.array([-1, 0]) # Move west
position[k + 1, :] = current_pos
return position

+
I

e
]

e
]

demo_random_walk2D() :

x0 = (0, 0)
N = 200
p=20.5

np.random.seed(10)

pos = random_walk2D(x0, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 1])
plt.savefig("tmpl.png")

plt.savefig("tmpl.pdf")

plt.show()

random_walkdD(x0, N, p, random=random) :
"""Any-D (diagonal) random walk with 1 particle and N moves."""
d = len(x0)
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position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):
for i in range(d):
r = random.uniform(0, 1)
if r <= p:
current_pos[i] -= 1
else:
current_pos[i] += 1
position[k + 1, :] = current_pos
return position

random_walkdD_vec(x0, N, p):

"""Vectorized version of random_walkdD."""

d = len(x0)

position = np.zeros((N + 1, d))

position[0] = np.array(x0, dtype=float)

r = np.random.uniform(0, 1, size=N * d)

steps = np.where(r <= p, -1, 1).reshape(N, d)
position[1l:, :] = x0 + np.cumsum(steps, axis=0)
return position

demo_random_walkdD() :

x0 = (0, 0)
N = 200
p=0.5

np.random.seed (10)

pos = random_walkdD(x0O, N, p, random=np.random)
plt.plot(pos[:, 0], posl[:, 11)
plt.savefig("tmpl.png")

plt.savefig("tmpl.pdf")

plt.show()

demo_random_walkdD_timing() :
import time

x0 = (0, 0)
N = 4000000
p=0.5

t0 = time.perf_counter()

np.random.seed(10)

pos = random_walkdD(x0, N, p, random=np.random)
tl = time.perf_counter()

cpu_scalar = t1 - tO

print ("CPU scalar: %.1f" 7 cpu_scalar)
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np.random.seed(10)

pos = random_walkdD_vec(x0, N, p)

t2 = time.perf_counter()

cpu_vec = t2 - ti

print ("CPU vectorized: %.1f" % cpu_vec)

print ("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

demo_fig random_walkdD() :

x0 = (0, 0)
N = 5000
p=20.5

n = 2 # nxn subplots
f, axarr = plt.subplots(n, n, sharex=True, sharey=True)
for i in range(n):
for j in range(n):

seed = 3 * 1 + 8 * j

np.random. seed (seed)

pos = random_walkdD(x0O, N, p, random=np.random)

axarr[i, j].plot(pos[:, 0], pos[:, 11)
plt.savefig("tmpl.png")
plt.savefig("tmpl.pdf")
plt.show()

test_ramdom_walkdD() :

x0 = (0, 0)
N=7
p=0.5

np.random.seed (10)

scalar_computed = random_walkdD(x0, N, p, random=np.random)
np.random.seed(10)

vectorized_computed = random_walkdD_vec(x0, N, p)

assert (scalar_computed == vectorized_computed) .all()

random_walksdD(x0O, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from xO with N steps."""

d = len(x0)

position = np.zeros((N + 1, d)) # Accumulated positions
position2 = np.zeros((N + 1, d)) # Accumulated positions**2
pos_hist = np.zeros((num_walks, num_times, d))

pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0O
current_pos = np.array(x0, dtype=float)
for k in range(N):
if k in pos_hist_times:
pos_hist[n, num_times_counter, :] = current_pos
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num_times_counter += 1
for i in range(d):
r = random.uniform(0, 1)
if r <= p:
current_pos[i] -= 1
else:
current_pos[i] += 1
position[k + 1, :] += current_pos
position2[k + 1, :] += current_pos**2
return position, position2, pos_hist, np.array(pos_hist_times)

3.65.2. Vectorized code

Significant speed-ups can be obtained by vectorization. We get rid of the loops in the previous
function and arrive at the following vectorized code.

def random_walksdD_vec(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
d = len(x0)
position = np.zeros((N + 1, d)) # Accumulated positions
position2 = np.zeros((N + 1, d)) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1, d)) # Positions of each walk
walks[:, 0, :] = x0
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks * d)

steps = np.where(r <= p, -1, 1).reshape(num_walks, N, d)
walks[:, 1:, :] = x0 + np.cumsum(steps, axis=1)

position = np.sum(walks, axis=0)

position2 = np.sum(walks**2, axis=0)

pos_hist[:, :, :] = walks[:, pos_hist_times, :]

return position, position2, pos_hist, np.array(pos_hist_times)

3.66. Applications

3.66.1. Diffusion of a substance

The first process to be considered is a substance that gets transported through a fluid at rest by
pure diffusion. We consider an arbitrary volume V of this fluid, containing the substance with
concentration function ¢(a,t). Physically, we can think of a very small volume with centroid « at
time ¢ and assign the ratio of the volume of the substance and the total volume to c(x,t). This
means that the mass of the substance in a small volume AV is approximately ocAV, where g is the
density of the substance. Consequently, the total mass of the substance inside the volume V' is the
sum of all pcAV, which becomes the volume integral [, ocdV'.

346



3. Diffusion Equations

Let us reason how the mass of the substance changes and thereby derive a PDE governing the
concentration c. Suppose the substance flows out of V' with a flux q. If AS is a small part of the
boundary 0V of V, the volume of the substance flowing out through dS in a small time interval At
is oq - nAtAS, where n is an outward unit normal to the boundary 0V, see Figure Figure 3.23. We
realize that only the normal component of g is able to transport mass in and out of V. The total
outflow of the mass of the substance in a small time interval At becomes the surface integral

/ 0q - nAtdS .
ov

Assuming conservation of mass, this outflow of mass must be balanced by a loss of mass inside the
volume. The increase of mass inside the volume, during a small time interval At, is

/ o(c(@,t + At) — oz, 1))V,

\%
assuming o is constant, which is reasonable. The outflow of mass balances the loss of mass in V,
which is the increase with a minus sign. Setting the two contributions equal to each other ensures
balance of mass inside V. Dividing by At gives

/Qc(m7t+AAti—C($vt)dV_ _/Qq.nds.

\%4 oV
Note the minus sign on the right-hand side: the left-hand side expresses loss of mass, while the
integral on the right-hand side is the gain of mass.

Now, letting At — 0, we have
c(x, t + At) — c(x, t) n, Jc
At ot’

0
/ga—jdV—i—/gq-ndS’:O. (3.94)
\% ov
To arrive at a PDE, we express the surface integral as a volume integral using Gauss’ divergence
theorem:

SO

oc
/(@* + V- (eq))dV =0.
ot
\%
Since p is constant, we can divide by this quantity. If the integral is to vanish for an arbitrary volume
V', the integrand must vanish too, and we get the mass conservation PDE for the substance:

oc

a754—V~q—0. (3.95)
A fundamental problem is that this is a scalar PDE for four unknowns: ¢ and the three components
of g. We therefore need additional equations. Here, Fick’s law comes at rescue: it models how the
flux q of the substance is related to the concentration c¢. Diffusion is recognized by mass flowing
from regions with high concentration to regions of low concentration. This principle suggests that g
is proportional to the negative gradient of c:

g = —aVe, (3.96)
where « is an empirically determined constant. The relation (3.96) is known as Fick’s law. Inserting
(3.96) in (3.95) gives a scalar PDE for the concentration c:

oc

5 = aVic. (3.97)
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Figure 3.23.: An arbitrary volume of a fluid.

3.66.2. Heat conduction

Heat conduction is a well-known diffusion process. The governing PDE is in this case based on the
first law of thermodynamics: the increase in energy of a system is equal to the work done on the
system, plus the supplied heat. Here, we shall consider media at rest and neglect work done on the
system. The principle then reduces to a balance between increase in internal energy and supplied
heat flow by conduction.

Let e(x,t) be the internal energy per unit mass. The increase of the internal energy in a small
volume AV in a small time interval At is then

ole(xz,t + At) — e(x,t))AV,

where p is the density of the material subject to heat conduction. In an arbitrary volume V, as
depicted in Figure Figure 3.23, the corresponding increase in internal energy becomes the volume
integral

/@(e(az, t+ At) — e(z,t))dV .
\%

This increase in internal energy is balanced by heat supplied by conduction. Let g be the heat flow
per time unit. Through the surface 9V of V the following amount of heat flows out of V' during a
time interval At:

/q-nAtdS.
ov

The simplified version of the first law of thermodynamics then states that

/Q(e(w,t + At) — e(x, t))dV = — / q-nAtdS.
14 v
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The minus sign on the right-hand side ensures that the integral there models net inflow of heat
(since m is an outward unit normal, q - n models outflow). Dividing by At and notifying that
e(x,t+ At) —e(x,t) Oe

i -
Ao At ot

we get (in the limit At — 0)

/Qgidvvt/q-nAtdS:O.
\% oV

This is the integral equation for heat conduction, but we aim at a PDE. The next step is therefore to
transform the surface integral to a volume integral via Gauss’ divergence theorem. The result is

Oe

If this equality is to hold for all volumes V', the integrand must vanish, and we have the PDE

Oe

—=-V-q. 3.98
0%, q (3.98)
Sometimes the supplied heat can come from the medium itself. This is the case, for instance, when
radioactive rock generates heat. Let us add this effect. If f(x,t) is the supplied heat per unit volume
per unit time, the heat supplied in a small volume is fAtAV, and inside an arbitrary volume V the
supplied generated heat becomes

V/ FALAV .

Adding this to the integral statement of the (simplified) first law of thermodynamics, and continuing
the derivation, leads to the PDE

e
05, =-V-a+/. (3.99)

There are four unknown scalar fields: e and q. Moreover, the temperature 7', which is our primary
quantity to compute, does not enter the model yet. We need an additional equation, called the
equation of state, relating e, V =1/p =, and T: e = e(V,T). By the chain rule we have

de _ e
ot oT

or | oe
v ot oV

ov
7 Ot

The first coefficient de/0T is called specific heat capacity at constant volume, denoted by ¢,:

_ oe
- aT

Cy

L
The specific heat capacity will in general vary with 7', but taking it as a constant is a good

approximation in many applications.

The term de/0V models effects due to compressibility and volume expansion. These effects are
often small and can be neglected. We shall do so here. Using de/0t = ¢,01' /0t in the PDE gives

oT
QCUEZ_V'Q'Ff'
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We still have four unknown scalar fields (7" and q). To close the system, we need a relation between
the heat flux g and the temperature T' called Fourier’s law:

q=—kVT,

which simply states that heat flows from hot to cold areas, along the path of greatest variation. In
a solid medium, k& depends on the material of the medium, and in multi-material media one must
regard k as spatially dependent. In a fluid, it is common to assume that k is constant. The value of
k reflects how easy heat is conducted through the medium, and k is named the coefficient of heat
conduction.

We now have one scalar PDE for the unknown temperature field 7'(x, t):

gcva({;f =V-(kVT)+ f. (3.100)

3.66.3. Porous media flow

The requirement of mass balance for flow of a single, incompressible fluid through a deformable
(elastic) porous medium leads to the equation

S%—I—V-(q—a%—u)zo,
where p is the fluid pressure, g is the fluid velocity, u is the displacement (deformation) of the
medium, S is the storage coefficient of the medium (related to the compressibility of the fluid and
the material in the medium), and « is another coefficient. In many circumstances, the last term
with w can be neglected, an assumption that decouples the equation above from a model for the
deformation of the medium. The famous Darcy’s law relates q to p:

K
q= —;(Vp— 09),

where K is the permeability of the medium, u is the dynamic viscosity of the fluid, o is the density of
the fluid, and g is the acceleration of gravity, here taken as g = —gk. Combining the two equations
results in the diffusion model

— = 'V(KVp) + S Or (3.101)

Boundary conditions consist of specifying p or g - n (i.e., normal velocity) at each point of the
boundary.

3.66.4. Potential fluid flow

Let v be the velocity of a fluid. The condition V x v = 0 is relevant for many flows, especially in
geophysics when viscous effects are negligible. From vector calculus it is known that V x v =0
implies that v can be derived from a scalar potential field ¢: v = V¢. If the fluid is incompressible,
Vv =0, it follows that V- V¢ =0, or

V26 =0.
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This Laplace equation is sufficient for determining ¢ and thereby describe the fluid motion. This
type of flow is known as potential flow. One very important application where potential flow is a
good model is water waves. As boundary condition we must prescribe v -n = d¢/In. This gives
rise to what is known as a pure Neumann problem and will cause numerical difficulties because ¢
and ¢ plus any constant are two solutions of the problem. The simplest remedy is to fix the value
of ¢ at a point.

3.66.5. Streamlines for 2D fluid flow

The streamlines in a two-dimensional stationary fluid flow are lines tangential to the flow. The
stream function v is often introduced in two-dimensional flow such that its contour lines, ¥ = const,
gives the streamlines. The relation between 1 and the velocity field v = (u,v) is

e o
oy’ oz

It follows that Vv = ¢, — 1y = 0, so the stream function can only be used for incompressible
flows. Since

ov Ou
=|——-——k=wk
V xv <3y ax) wk,
we can derive the relation
Vz"(/) = —w,

which is a governing equation for the stream function ¥ (z,y) if the vorticity w is known.

3.66.6. The potential of an electric field

Under the assumption of time independence, Maxwell’s equations for the electric field E become

V- E=",
€0
V x E =0,

where p is the electric charge density and ¢ is the electric permittivity of free space (i.e., vacuum).
Since V x E = 0, E can be derived from a potential ¢, E = —V . The electric field potential is
therefore governed by the Poisson equation

If the medium is heterogeneous, p will depend on the spatial location r. Also, ¢g must be exchanged
with an electric permittivity function e(r).

Each point of the boundary must be accompanied by, either a Dirichlet condition ¢(7) = ¢p(r), or

a Neumann condition 8“5—5:) = N (7).

[sl: is this what you were thinking of?]

351


https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/Stream_function

3. Diffusion Equations

3.66.7. Development of flow between two flat plates

Diffusion equations may also arise as simplified versions of other mathematical models, especially in
fluid flow. Consider a fluid flowing between two flat, parallel plates. The velocity is uni-directional,
say along the z axis, and depends only on the distance x from the plates; u = u(z,t)k. The flow is
governed by the Navier-Stokes equations,

ou

05 +ou-Vu = —Vp+ uViu + of,

V-u=0,
where p is the pressure field, unknown along with the velocity w, ¢ is the fluid density, u the dynamic
viscosity, and f is some external body force. The geometric restrictions of flow between two flat

plates puts restrictions on the velocity, u = u(z,t)?, and the z component of the Navier-Stokes
equations collapses to a diffusion equation:

ou dp 0%u

Qa = —&‘FM@‘*‘Qfm

if f, is the component of f in the z direction.

The boundary conditions are derived from the fact that the fluid sticks to the plates, which means
u = 0 at the plates. Say the location of the plates are z = 0 and z = L. We then have

u(0,t) = u(L,t) =0.

One can easily show that dp/0z must be a constant or just a function of time t. We set dp/0z = —j(¢).
The body force could be a component of gravity, if desired, set as f, = yg. Switching from z to x
as independent variable gives a very standard one-dimensional diffusion equation:

ou 9%u

QEZM@‘FB@%LQ%% ZL’E[O,L], tE(O>T]'

The boundary conditions are
u(0,t) = u(L,t) =0,

while some initial condition

u(z,0) = I(z)
must also be prescribed.

The flow is driven by either the pressure gradient S or gravity, or a combination of both. One may
also consider one moving plate that drives the fluid. If the plate at 2 = L moves with velocity Up(t),
we have the adjusted boundary condition

u(L,t) = Up(t).

##4# Flow in a straight tube {#sec-diffu-app-pipeflow}

Now we consider viscous fluid flow in a straight tube with radius R and rigid walls. The governing
equations are the Navier-Stokes equations, but as in Section Section 3.66.7, it is natural to assume
that the velocity is directed along the tube, and that it is axi-symmetric. These assumptions reduced
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the velocity field to w = u(r, z,t)t, if the x axis is directed along the tube. From the equation
of continuity, V - u = 0, we see that u must be independent of x. Inserting u = u(r,t)s in the
Navier-Stokes equations, expressed in axi-symmetric cylindrical coordinates, results in

ou 18(8u

—_— = yy—— | r—
e or

5~ Mo ) +B8(t) +ovg, rel0,R], te(0,T]. (3.102)

Here, §(t) = —0p/0x is the pressure gradient along the tube. The associated boundary condition is
u(R,t) = 0.

3.66.8. Tribology: thin film fluid flow

Thin fluid films are extremely important inside machinery to reduce friction between gliding surfaces.
The mathematical model for the fluid motion takes the form of a diffusion problem and is quickly
derived here. We consider two solid surfaces whose distance is described by a gap function h(z,y).
The space between these surfaces is filled with a fluid with dynamic viscosity u. The fluid may
move partially because of pressure gradients and partially because the surfaces move. Let Uz + V5
be the relative velocity of the two surfaces and p the pressure in the fluid. The mathematical model
builds on two principles: 1) conservation of mass, 2) assumption of locally quasi-static flow between
flat plates.

The conservation of mass equation reads V - u, where u is the local fluid velocity. For thin films the
detailed variation between the surfaces is not of interest, so V - u = 0 is integrated (average) in
the direction perpendicular to the surfaces. This gives rise to the alternative mass conservation
equation

h(z,y)

V-gq=0, q= / udz,
0
where z is the coordinate perpendicular to the surfaces, and q is then the volume flux in the fluid
gap.
Locally, we may assume that we have steady flow between two flat surfaces, with a pressure gradient
and where the lower surface is at rest and the upper moves with velocity Ut 4V j. The corresponding

mathematical problem is actually the limit problem in Section Section 3.66.7 as ¢ — oco. The limit
problem can be solved analytically, and the local volume flux becomes

h
h3 I
Q(-T,y, Z) = O/U(»’Ua’yaz)dz = *@V})Jr §Uh7, + §Vh_] .

The idea is to use this expression locally also when the surfaces are not flat, but slowly varying,
and if U, V, or p varies in time, provided the time variation is sufficiently slow. This is a common
quasi-static approximation, much used in mathematical modeling.

Inserting the expression for g via p, U, and V in the equation Vg = 0 gives a diffusion PDE for p:

10 10

The boundary conditions must involve p or g at the boundary.
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3.66.9. Propagation of electrical signals in the brain

One can make a model of how electrical signals are propagated along the neuronal fibers that receive
synaptic inputs in the brain. The signal propagation is one-dimensional and can, in the simplest
cases, be governed by the Cable equation:

ov 19’V 1
= 2 Vigbel
m ot r; 0x2 1Ty ave

where V(z,t) is the voltage to be determined, ¢, is capacitance of the neuronal fiber, while r;
and r,, are measures of the resistance. The boundary conditions are often taken as V =0 at a
short circuit or open end, 9V /0x = 0 at a sealed end, or 9V/0x  V where there is an injection of
current.

3.67. 2D Diffusion with Devito

Extending the diffusion solver to two dimensions illustrates Devito’s dimension-agnostic approach.
The same symbolic patterns apply, and the .laplace attribute automatically generates the correct
2D stencil.

3.67.1. The 2D Diffusion Equation

The two-dimensional diffusion equation on [0, L] x [0, L,] is:

ou O*u  J*u 9
ke (83}2 + 3TJ2> =aVu (3.103)

where V2u = ug, + Uyy is the Laplacian.

3.67.2. Devito’s Dimension-Agnostic Laplacian
The .laplace attribute works identically in 1D, 2D, and 3D:
from devito import Grid, TimeFunction

# 2D grid
grid = Grid(shape=(Nx + 1, Ny + 1), extent=(Lx, Ly))

# 2D temperature field
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

# The Laplacian automatically includes both u_xx and u_yy
laplacian = u.laplace # Returns u_xx + u_yy
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3.67.3. Stability Condition in 2D

The Forward Euler stability condition in 2D is more restrictive:

1 1 1
F=a At-|—+-— ] <=
@ (Am2 + Ay2> -2
For equal grid spacing Az = Ay = h:
h2
At < —
~ da

This means F' < 0.25 with equal spacing, compared to F' < 0.5 in 1D.

3.67.4. The 2D Solver

The src.diffu module provides solve_diffusion_2d:

from src.diffu import solve_diffusion_2d
import numpy as np

# Initial condition: 2D sinusoidal mode
def I(X, Y):

return np.sin(np.pi * X) * np.sin(up.pi * Y)

result = solve_diffusion_2d(

Lx=1.0, Ly=1.0, # Domain size

a=1.0, # Diffusion coefficient

Nx=50, Ny=50, # Grid points

T=0.1, # Final time

F=0.25, # Fourier number (2D stability limit)
I=1E, # Initial temperature

# Result is a 2D array
print(result.u.shape) # (51, 51)

3.67.5. 2D Boundary Conditions

Dirichlet conditions must be applied on all four boundaries:

from devito import Eq

t_dim = grid.stepping_dim
x_dim, y_dim = grid.dimensions

# Boundary conditions (u = O on all boundaries)
bc_x0 = Eq(ult_dim + 1, 0, y_dim], 0) # Left
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bc_xN = Eq(ult_dim + 1, Nx, y_dim], 0) # Right
bc_y0 = Eq(ult_dim + 1, x_dim, 0], 0) # Bottom
bc_yN = Eqult_dim + 1, x_dim, Ny], 0) # Top

3.67.6. Exact Solution for Verification

The exact solution for the initial condition I(xz,y) = sin(wx /L) sin(wy/Ly) is:

u(z,y,t) = e *"sin <Z) sin (Z)

where the decay rate is:

This can be used for verification:

from src.diffu import convergence_test_diffusion_2d

grid_sizes, errors, rate = convergence_test_diffusion_2d(
grid_sizes=[10, 20, 40, 80],

T=0.05,
F=0.25,

print (f"Observed convergence rate: {rate:.2f}") # Should be ~2.0

3.67.7. Visualizing 2D Solutions

For 2D problems, contour plots and surface plots are useful:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

result = solve_diffusion_2d(Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=0.1, F=0.25)
X, Y = np.meshgrid(result.x, result.y, indexing='ij')

fig = plt.figure(figsize=(12, 5))

# Surface plot

axl = fig.add_subplot(121, projection='3d"')

axl.plot_surface(X, Y, result.u, cmap='hot')

axl.set_xlabel('x"')
axl.set_ylabel('y"')
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axl.set_zlabel('Temperature')
axl.set_title(f't = {result.t:.3f}')

# Contour plot

ax2 = fig.add_subplot(122)

c = ax2.contourf (X, Y, result.u, levels=20, cmap='hot')
plt.colorbar(c, ax=ax2)

ax2.set_xlabel('x"')

ax2.set_ylabel('y')

ax2.set_title('Temperature distribution')
ax2.set_aspect('equal')

3.67.8. Heat Diffusion from a Point Source
A classic problem is the diffusion of heat from a localized hot spot:
from src.diffu import gaussian_2d_initial_condition
# Gaussian "hot spot" in the center
result = solve _diffusion_2d(
Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=0.2, F=0.25,

I=lambda X, Y: gaussian_2d_initial_condition(X, Y, 1.0, 1.0, sigma=0.1),
save_history=True,

The Gaussian spreads out and decays over time, eventually approaching zero as heat is lost through
the boundaries.

3.67.9. Animation of 2D Diffusion

from matplotlib.animation import FuncAnimation

result = solve_diffusion_2d(
Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=0.5, F=0.25,
save_history=True,

fig, ax = plt.subplots()
X, Y = np.meshgrid(result.x, result.y, indexing='ij')
vmax = result.u_history[0] .max()

im = ax.contourf (X, Y, result.u_history[0], levels=20,
cmap='hot', vmin=0, vmax=vmax)
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def update(frame) :
ax.clear()
ax.contourf (X, Y, result.u_history[frame], levels=20,
cmap='hot', vmin=0, vmax=vmax)
ax.set_title(f't = {result.t_history[frame]:.3f}"')
ax.set_aspect('equal')
return []

anim = FuncAnimation(fig, update, frames=len(result.t_history),
interval=50)

3.67.10. From 2D to 3D

The pattern extends naturally to three dimensions:

# 3D grid
grid = Grid(shape=(Nx+1, Ny+1, Nz+1), extent=(Lx, Ly, Lz))

# 3D temperature field
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

# The PDE is unchanged - .laplace now includes u_zz
pde = u.dt - a * u.laplace

The stability condition in 3D becomes:

for equal grid spacing in all directions.

3.67.11. Computational Efficiency

2D and 3D diffusion simulations can become computationally expensive as the number of grid points
grows. Devito helps through:

e Automatic parallelization: Set OMP_NUM_THREADS for OpenMP
e Cache optimization: Loop tiling is applied automatically
e« GPU support: Use platform='nvidiaX' for CUDA execution

The explicit Forward Euler scheme is embarrassingly parallel since each new value depends only on

neighbors at the previous time level.

3.67.12. Comparison: Diffusion vs Wave Equation
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Property Diffusion Wave

Time derivative First order Second order

Stability (2D) F <025 C<1/V2

Solution character Smoothing, decaying Propagating, oscillating
Physical process Heat conduction Vibrations, acoustics

3.67.13. Summary

Key points for 2D diffusion with Devito:

The .laplace attribute handles dimension automatically
Stability conditions are more restrictive in higher dimensions
Equal spacing gives F' < 0.25 in 2D, F' < 1/6 in 3D

The same code patterns extend from 1D to 2D to 3D
Visualization requires contour/surface plots and animations

U N

Devito’s abstraction means we write the physics symbolically and let the framework handle the
computational complexity across dimensions.

3.68. Exercise: Stabilizing the Crank-Nicolson method by Rannacher
time stepping

It is well known that the Crank-Nicolson method may give rise to non-physical oscillations in the
solution of diffusion equations if the initial data exhibit jumps (see Section Section 3.21). Rannacher
(Rannacher 1984) suggested a stabilizing technique consisting of using the Backward Euler scheme
for the first two time steps with step length %At. One can generalize this idea to taking 2m time
steps of size %At with the Backward Euler method and then continuing with the Crank-Nicolson
method, which is of second-order in time. The idea is that the high frequencies of the initial solution
are quickly damped out, and the Backward Euler scheme treats these high frequencies correctly.
Thereafter, the high frequency content of the solution is gone and the Crank-Nicolson method will
do well.

Test this idea for m = 1,2, 3 on a diffusion problem with a discontinuous initial condition. Measure
the convergence rate using the solution (3.40) with the boundary conditions (3.41)-(3.42) for ¢
values such that the conditions are in the vicinity of +1. For example, ¢ < 5a1.6 - 10~2 makes the
solution diffusion from a step to almost a straight line. The program diffu_erf_sol.py shows how
to compute the analytical solution.

3.69. Project: Energy estimates for diffusion problems

This project concerns so-called energy estimates for diffusion problems that can be used for qualitative
analytical insight and for verification of implementations.

a)
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We start with a 1D homogeneous diffusion equation with zero Dirichlet conditions:

up = augz,x € Q= (0,L), t € (0,7T], (3.104)
w(0,t) = u(L,t) = 0, te (0,7, (3.105)
u(z,0) = I(z), ze€[0,L]. (3.106)

The energy estimate for this problem reads

[Juf| % *L? < ||1]| % *L?, (3.107)

L
lgllze = 1 /0 g?dz. (3.108)

The quantify ||ul| L2 or 3||u|| * *L? is known as the energy of the solution, although it is not the
physical energy of the system. A mathematical tradition has introduced the notion energy in this
context.

where the || - ||72 norm is defined by

The estimate (3.107) says that the “size of u” never exceeds that of the initial condition, or more
precisely, it says that the area under the u curve decreases with time.

To show (3.107), multiply the PDE by u and integrate from 0 to L. Use that uu; can be expressed
as the time derivative of u? and that u,zu can integrated by parts to form an integrand u2. Show
that the time derivative of ||u||?, must be less than or equal to zero. Integrate this expression and
derive (3.107).

b)
Now we address a slightly different problem,

ur = augx + f(z,t),r € Q= (0,L), t € (0,77, (3.109)
u(0,t) = u(L,t) =0, t € (0,77, (3.110)
u(z,0) =0, x€[0,L]. (3.111)

The associated energy estimate is
u|| * xL? < ||f|| * *L>. (3.112)

(This result is more difficult to derive.)

Now consider the compound problem with an initial condition I(z) and a right-hand side f(x,t):

u = augx + f(z,t),r € Q= (0,L), t € (0,77, (3.113)
u(0,t) = u(L,t) =0, t € (0,7, (3.114)
u(x,0) = I(x), x€10,L]. (3.115)
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Show that if w; fulfills the first problem (with I and f = 0) and w, fulfills the second problem (with
fand I =0), then u = wy + we is the solution of the compound problem above. Using the triangle
inequality for norms,

lla +bl| < [lal| + [|bl],

show that the energy estimate for the compound problem becomes

|[w|| * xL* < ||I]] % +L% + || f|| 2 - (3.116)

)

One application of (3.116) is to prove uniqueness of the solution. Suppose u; and ug both fulfill the
compound problem. Show that v = u; — us then fulfills the compound problem with f = 0 and
I =0. Use (3.116) to deduce that the energy must be zero for all times and therefore that u; = ug,
which proves that the solution is unique.

d)
Generalize (3.116) to a 2D /3D diffusion equation u; = V - (aVu) for z € Q.

@ Use integration by parts in multi dimensions:

/uV-(aVu)dx:—/ aVu-Vud:L‘—/ ua@,
0 Q 80  On
ou

where §° = n - Vu, n being the outward unit normal to the boundary 99 of the domain 2.

e)

Now we also consider the multi-dimensional PDE u; = V - («Vu). Integrate both sides over 2 and
use Gauss’ divergence theorem, [, V- qdz = [, q - nds for a vector field g. Show that if we have
homogeneous Neumann conditions on the boundary, du/0n = 0, area under the u surface remains

constant in time and
/ udr = / Idx. (3.117)
Q Q

)

Establish a code in 1D, 2D, or 3D that can solve a diffusion equation with a source term f, initial
condition I, and zero Dirichlet or Neumann conditions on the whole boundary.

We can use (3.116) and (3.117) as a partial verification of the code. Choose some functions f and I
and check that (3.116) is obeyed at any time when zero Dirichlet conditions are used. Iterate over
the same I functions and check that (3.117) is fulfilled when using zero Neumann conditions.

g)

Make a list of some possible bugs in the code, such as indexing errors in arrays, failure to set the
correct boundary conditions, evaluation of a term at a wrong time level, and similar. For each of
the bugs, see if the verification tests from the previous subexercise pass or fail. This investigation
shows how strong the energy estimates and the estimate (3.117) are for pointing out errors in the
implementation.
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3.70. Exercise: Splitting methods and preconditioning

In Section Section 3.51.1, we outlined a class of iterative methods for Au = b based on splitting A
into A = M — N and introducing the iteration

Mu* = NuF +0.

The very simplest splitting is M = I, where [ is the identity matrix. Show that this choice
corresponds to the iteration

ub = uf R el o Ay (3.118)

where rF—

1is the residual in the linear system in iteration k — 1. The formula (3.118) is known
as Richardson’s iteration. Show that if we apply the simple iteration method (3.118) to the
preconditioned system M~'Au = M~'b, we arrive at the Jacobi method by choosing M = D (the
diagonal of A) as preconditioner and the SOR method by choosing M = w™'D + L (L being the
lower triangular part of A). This equivalence shows that we can apply one iteration of the Jacobi or

SOR method as preconditioner.

@ Solution
Inserting M = I and N = I — A in the iterative method leads to
W= (- A b= 4 (b AT,
which is (3.118). Replacing A by M !4 and b by M ~'b in this equation gives
Yy o WU ) M S S T
which we after multiplication by M and reordering can write as
MuF = (M — Au*~t 4+ b= NuF~t 40,

which is the standard form for the Jacobi and SOR methods. Choosing M = D gives Jacobi
and M = w™'D + L gives SOR. We have shown that we may view M as a preconditioner of a
simplest possible iteration method.

3.71. Problem: Oscillating surface temperature of the earth

Consider a day-and-night or seasonal variation in temperature at the surface of the earth. How deep
down in the ground will the surface oscillations reach? For simplicity, we model only the vertical
variation along a coordinate x, where x = 0 at the surface, and = increases as we go down in the
ground. The temperature is governed by the heat equation
oT

cha =V (kVT),
in some spatial domain x € [0, L], where L is chosen large enough such that we can assume that T
is approximately constant, independent of the surface oscillations, for x > L. The parameters p,
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¢y, and k are the density, the specific heat capacity at constant volume, and the heat conduction
coefficient, respectively.

a)

Derive the mathematical model for computing 7T'(z,t). Assume the surface oscillations to be
sinusoidal around some mean temperature 1;,,. Let T' = T, initially. At x = L, assume T = T},.

@ Solution
The surface temperature is set as
T(0,t) = T, + Asin(wt) .

With only one “active” spatial coordinate we get the initial-boundary value problem

T T
chai _9 (k(gc)gm) € (0,L), te(0,T],

ot Oz
T(z,0) = T, z €[0,L],
T(0,t) = Ty, + Asin(wt), t e (0,77,
T(L,t) = Tpn, t e (0,7).

b)

Scale the model in a) assuming k is constant. Use a time scale t. = w™! and a length scale
z. = \/20/w, where o = k/(pc,). The primary unknown can be scaled as 15Tm

2A
Show that the scaled PDE is

ou 1 0%u

ot 2022
with initial condition u(z,0) = 0, left boundary condition w(0,t) = sin(¢), and right boundary
condition u(L,t) = 0. The bar indicates a dimensionless quantity.

Show that u(Z,t) = e"Tsin(Z — t) is a solution that fulfills the PDE and the boundary condition at
Z = 0 (this is the solution we will experience as ¢ — oo and L — o). Conclude that an appropriate
domain for x is [0,4] if a damping e=* = 0.18 is appropriate for implementing % = const; increasing
to [0, 6] damps @ to 0.0025.

@ Solution

Chapter 3.2.4 in the book (Langtangen and Pedersen 2016) describes the scaling of this problem
in detail. Inserting dimensionless variables t = wt, T = \/w/(2a)x, and

T-T,
Y= Toa

leads to
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ou  10%u - _

ﬁ 561’2’ e (O,L), t S (0,1"]7
u(z,0) =0, z €10,1],
u(0,t) = sin(¢), te (0,7),
u(L,t) =0, t € (0,T).

The domain lengths L and T follows from straightforward scaling of L and T.

Inserting u(Z,t) = e~ “sin(f — ) in the PDE shows that this is a solution. It also obeys the
boundary condition @(0,t) = sin(t). As t — oo, the initial condition has no longer impact on
the solution and is “forgotten” and of no interest. The boundary condition at z = L is never
compatible with the given solution unless u is damped to zero, which happens mathematically
as L — oo. For a numerical solution, however, we may use a small finite value such as L = 4.

)

Compute the scaled temperature and make animations comparing two solutions with L =4 and
L = 8, respectively (keep Ax the same).

@ Solution

We can use the viz function in diff1D_vc.py to do the number crunching. Appropriate calls
and visualization go here:
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import os
import sys

sys.path.insert (0, os.path.join(os.pardir, "src-diffu"))
from diffulD_vc import viz

sol = [] # store solutions
for Nx, L in [[20, 4], [40, 8]]:
dt = 0.1
dx = float(L) / Nx
D = dt / dxxx*2
from math import pi, sin

T=2x%pix*x©6
from numpy import zeros

a = zeros(Nx + 1) + 0.5
cpu, u_ = viz(
I=lambda x: O,

umax=1.1,
theta=0.5,
u_L=lambda t: sin(t),
u_R=0,
animate=False,
store_u=True,
)
sol.append(u_)
print ("computed solution for Nx=Yd in [0,%gl" % (Nx, L))

print (sol[0] .shape)
print(sol[1].shape)
import matplotlib.pyplot as plt

counter = 0

for u0, ul in zip(sol[0][2:], sol[1][2:], strict=False):
x0 = sol[0] [0]
x1 = sol[1][0]
plt.clf()
plt.plot(x0, u0, "r-", label="short")
plt.plot(xl, ul, "b-", label="long")
plt.legend()
plt.axis([x1[0], x1[-1], -1.1, 1.1])
plt.savefig("tmp_%04d.png" % counter)
counter += 1
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MOVIE: [https://github.com/hplgit/fdm-book /raw/master/doc/pub/book/html /mov-
diffu/surface_osc/movie.mp4]

3.72. Problem: Oscillating and pulsating flow in tubes

We consider flow in a straight tube with radius R and straight walls. The flow is driven by a pressure
gradient 3(¢). The effect of gravity can be neglected. The mathematical problem reads

ou 10 [ Ou
oo = o <rar> +8(t), rel0,R], te(0,T), (3.119
u(r,0) = I(r), r € [0, R], (3.120
uw(R,t) =0, t e (0,17, (3.121
ou
E(O’ t) =0, t e (0,77 (3.122

We consider two models for 5(¢). One plain, sinusoidal oscillation:
B = Asin(wt),

and one with periodic pulses,
B = Asin'®(wt),

Note that both models can be written as § = Asin"(wt), with m = 1 and m = 16, respectively.
a)

Scale the mathematical model, using the viscous time scale oR?/p.

@ Solution

We can introduce

N S SR
R oR%/) Ue
Inserted in the PDE, we get
810 (00) FA
ot  ror\ or Ul o

where « is a dimensionless number

o\ wol? _ oR?/u
w 1w’
reflecting the ratio of the viscous diffusion time scale and the time scale of the oscillating
pressure gradient. We may choose u. such that the coefficient in the pressure gradient term
equals unity:
R%’A
Ue = — .
I
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The governing PDE, dropping the bars, then reads

ou 10 [ Ou . my T
i <T’8T> +sin™(at), r€(0,1), t € (0,T].

b)

Implement the scaled model from a), using the unifying 6 scheme in time and centered differences
in space.

@ Solution

We need to take into account extensions below: a coefficient in front of the viscous term, and
an extra source term.
A preliminary and unfinished code:
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import time

import scipy.sparse

import scipy.sparse.linalg

import sympy as sym

from numpy import linspace, log, ones, sqrt, sum, zeros

def solver_theta(I, a, R, Nr, D, T, theta=0.5, u_L=None, u_R=0, user_action=None

nnn

Solve the diffusion equation for axi-symmetric case:
ut =1/r * (r*xa(r)*u_r) r + f(r,t)
on (0,R) with boundary conditions u(0,t)_r = O and u(R,t) = 0.

Method: (implicit) theta-rule in time.
D = dt/dr**2 and implicitly specifies the time step.
u_L = None implies du/dr = 0, i.e. a symmetry condition.

nnn

t0 = time.perf_counter()

r = linspace(0, R, Nr + 1) # mesh points in space

dr = r[1] - r[0]
dt = D * dr*x*x2
Nt = int(round(T / float(dt)))

t = linspace(0, T, Nt + 1) # mesh points in time

if isinstance(u_L, (float, int)): 348
u_L_ = float(u_L)
1L = lambda t: u L
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)

Verify the implementation in b) using a manufactured solution that is quadratic in r and linear in ¢.
Make a corresponding test function.

@ You need to include an extra source term

in the equation to allow for such tests. Let the spatial variation be 1 — 2 such that the
boundary condition is fulfilled.

d)

Make animations for m = 1,16 and o = 1,0.1. Choose T such that the motion has reached a steady
state (non-visible changes from period to period in ).

e)

For a > 1, the scaling in a) is not good, because the characteristic time for changes (due to the
pressure) is much smaller than the viscous diffusion time scale (a becomes large). We should in this
case base the short time scale on 1/w. Scale the model again, and make an animation for m = 1,16
and a = 10.

@ Solution

Now the governing PDE becomes

8'1117 _118(8“

— = — in™ 1 T].
5% =% oo rar>+sm t, re(0,1), t e (0,T]

In this case,
A
Ue = — .
ow
We see that for @ > 1, we can neglect the viscous term, and we basically have a balance
between the acceleration and the driving pressure gradient:

u .
— =sin"t.

ot

3.73. Problem: Scaling a welding problem

Welding equipment makes a very localized heat source that moves in time. We shall investigate the
heating due to welding and choose, for maximum simplicity, a one-dimensional heat equation with a
fixed temperature at the ends, and we neglect melting. We shall scale the problem, and besides
solving such a problem numerically, the aim is to investigate the appropriateness of alternative
scalings.

The governing PDE problem reads

369



3. Diffusion Equations

ou 0%u
Qca :kjw—f—f,l’e (O,L), tE (07T)7
u(z,0) = U, x € [0,1],
u(0,t) = u(L,t) =0, te(0,1].

Here, u is the temperature, o the density of the material, ¢ a heat capacity, k the heat conduction
coefficient, f is the heat source from the welding equipment, and Uy is the initial constant (room)
temperature in the material.

A possible model for the heat source is a moving Gaussian function:

1 [z —ovt\?
szexp<—( ))
2 o
where A is the strength, o is a parameter governing how peak-shaped (or localized in space) the
heat source is, and v is the velocity (in positive = direction) of the source.

a)

Let z., t., u., and f. be scales, i.e., characteristic sizes, of x, t, u, and f, respectively. The natural
choice of z. and f. is L and A, since these make the scaled = and f in the interval [0, 1]. If each of
the three terms in the PDE are equally important, we can find ¢, and u. by demanding that the
coefficients in the scaled PDE are all equal to unity. Perform this scaling. Use scaled quantities in
the arguments for the exponential function in f too and show that

f= o 38%(@1)? ’

where 8 and v are dimensionless numbers. Give an interpretation of 5 and ~.

@ Solution

We introduce

L te Ue A’
Inserted in the PDE and dividing by ocu./t. such that the coefficient in front of 9u/dt becomes
unity, and thereby all terms become dimensionless, we get

du k. @ At 7
ot ocLl?0z?2  pcu.’

Demanding that all three terms are equally important, it follows that

kte . Ate _
ocL? 0CU
These constraints imply the diffusion time scale
cL?
te = QT’
and a scale for u,,
AL?
Ue = — .
¢ k
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The scaled PDE reads
ou_0%u
ot 0x2 '

Scaling f results in

N =

(a: — vt) 2
o
112 <_ vt )2
= e —_—— €r— —
P\ 252 L
_ Lo 2
=exp (=50 (@ =91)" ),
where 8 and v are dimensionless numbers:

,B—L _ vt woecL
o’ ,Y—L— k-

The o parameter measures the width of the Gaussian peak, so 3 is the ratio of the domain
and the width of the heat source (large § implies a very peak-formed heat source). The v
parameter arises from t./(L/v), which is the ratio of the diffusion time scale and the time
it takes for the heat source to travel through the domain. Equivalently, we can multiply by
te/tc to get v =v/(t.L) as the ratio between the velocity of the heat source and the diffusion
velocity.

b)

Argue that for large v we should base the time scale on the movement of the heat source. Show
that this gives rise to the scaled PDE

ou  _,0%u
=" e )

and

F=exp (552~ D7)

Discuss when the scalings in a) and b) are appropriate.

@ Solution

We perform the scaling as in a), but this time we determine ¢, such that the heat source moves
with unit velocity. This means that

Scaling of the PDE gives, as before,

ou kt. 9%*u  At. -
P — f X

ot o0cL?0z%  ocu,
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Inserting the expression for t., we have

ou kL 0%u AL

ot ocL?v oz  wocu.”
We recognize the first coefficient as y~*
second coefficient to be unity:

, while u. can be determined from demanding the

AL
Up = — .
voc
The scaled PDE is therefore
ou _ 0% ¢
at | ez -

If the heat source moves very fast, there is little time for the diffusion to transport the heat
away from the source, and the heat conduction term becomes insignificant. This is reflected
in the coefficient y~!, which is small when =, the ratio of the heat source velocity and the
diffusion velocity, is large.

The scaling in a) is therefore appropriate if diffusion is a significant process, i.e., the welding
equipment moves at a slow speed so heat can efficiently spread out by diffusion. For large
7, the scaling in b) is appropriate, and ¢t = 1 corresponds to having the heat source traveled
through the domain (with the scaling in a), the heat source will leave the domain in short
time).

c)

One aim with scaling is to get a solution that lies in the interval [—1, 1]. This is not always the case
when u, is based on a scale involving a source term, as we do in a) and b). However, from the scaled
PDE we realize that if we replace f with §f, where § is a dimensionless factor, this corresponds to
replacing u. by u./d. So, if we observe that % ~ 1/4 in simulations, we can just replace f by §f in
the scaled PDE.

Use this trick and implement the two scaled models. Reuse software for the diffusion equation
(e.g., the solver function in diffulD_vc.py). Make a function run(gamma, beta=10, delta=40,
scaling=1, animate=False) that runs the model with the given v, 8, and § parameters as well as
an indicator scaling that is 1 for the scaling in a) and 2 for the scaling in b). The last argument
can be used to turn screen animations on or off.

Experiments show that with v =1 and g = 10, § = 20 is appropriate. Then max |u| will be larger
than 4 for v = 40, but that is acceptable.

Equip the run function with visualization, both animation of @ and f, and plots with @ and f for
t=0.2 and t = 0.5.

@ Since the amplitudes of @ and f differs by a factor d,

it is attractive to plot f/d together with 4.
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@ Solution

Here is a possible run function:
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import os
import sys

sys.path.insert (0, os.path.join(os.pardir, "src-diffu"))
import numpy as np
from diffulD_vc import solver

def run(gamma, beta=10, delta=40, scaling=1, animate=False):
"""Run the scaled model for welding."""

if scaling == 1:
vV = gamma
a =1
elif scaling ==
v=1
a=1.0/ gamma
b = 0.5 * betax**2
L=1.0
ymin = 0
global ymax
ymax = 1.2
I = lambda x: O
f = lambda x, t: delta * np.exp(-b * (x - v * t) *x* 2)

import time
import matplotlib.pyplot as plt
plot_arrays = []

def process_u(u, x, t, n):

global ymax

if animate:
plt.clf(O)
plt.plot(x, u, "r-", x, £f(x, tln]) / delta, "b-")
plt.axis([0, L, ymin, ymax])
plt.title(f"t={t[n]:£f}")
plt.xlabel("x")
plt.ylabel(f"u and f/{delta:g}")
plt.draw()
plt.pause(0.001)

if t[n] == 0:
time.sleep(1)
plot_arrays.append (x)

dt = t[1] - t[0]

tol = dt / 10.0

if abs(t[n] - 0.2) < tol or abs(t[n] - 0.5) < tol:
plot_arrays.append((u.copy(), f(x, t[n]) / delta))
if u.max() > ymax: 374
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Note that we have dropped the bar notation in the plots. It is common to drop the bars as

soon as the scaled problem is established.

d)

Use the software in ¢) to investigate v = 0.2,1,5,40 for the two scalings. Discuss the results.

@ Solution

appropriate function for automating the tasks is

def investigate():
"""Do scientific experiments with the run function above."""
import glob

# Clean up old files
for filename in glob.glob("tmpl_gamma*") + glob.glob("welding gammax"):
os.remove (filename)

gamma_values = 1, 40, 5, 0.2, 0.025
for gamma in gamma_values:
for scaling in 1, 2:
run(gamma=gamma, beta=10, delta=20, scaling=scaling)

# Combine images
for gamma in gamma_values:
for ext in "pdf", "png":
cmd = (
"montage "
"tmpl_gamma{gamma:g}_si1.{ext} "
"tmpl_gamma{gamma:g}_s2.{ext} "
"-tile 2x1 -geometry +0+0 "
"welding_gamma{gamma:g}.{ext}".format (**vars())
)
os.system(cmd)
# pdflatex doesn't like 0.2 in filenames...
if "." in str(gamma):
os.rename (
"welding_gamma{gamma:g}.{ext}".format (**vars()),

+ n n

+ ext,

We run here a Backward Euler scheme with N, = 100 and quite long time steps.
Running the investigate function, we get the following plots:

375

("welding_ gamma{gamma:gl}".format (x*vars())) .replace(".",

For these investigations, we compare the two scalings for each of the different v values. An
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Figure 3.24.: FIGURE: [fig-diffu/welding_gamma0_ 2, width=800 frac=1]
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Figure 3.25.: FIGURE: [fig-diffu/welding_gammab, width=800 frac=1]
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3=10, v=40, scaling=diffusion 3=10, v=40, scaling=source

u, t=0.2

4r £/20,t=0.2 |4
u, t=0.5
£/20,t=0.5

0.8} 4 3t

w, £/20
o
(=]

w, £/20

0.4+

0.2

T @

Figure 3.26.: For v < 1 as in v = 0.025, the heat source moves very slowly on the diffusion
time scale and has hardly entered the medium, while the scaling in b) is not
inappropriate, but a larger ¢ is needed to bring u around unity. We see that
for v = 0.2, each of the scalings work, but with the diffusion time scale, the
heat source has not moved much into the domain. For v = 1, the mathematical
problems are identical and hence the plots too. For v = 5, the time scale based on
the source is clearly the best choice, and for v = 40, only this scale is appropriate.

A conclusion is that the scaling in b) works well for a range of v values, also in the case v < 1.

3.74. Exercise: Implement a Forward Euler scheme for axi-symmetric
diffusion

Based on the discussion in Section Section 3.35, derive in detail the discrete equations for a Forward
Euler in time, centered in space, finite difference method for axi-symmetric diffusion. The diffusion
coefficient may be a function of the radial coordinate. At the outer boundary r = R, we may
have either a Dirichlet or Robin condition. Implement this scheme. Construct appropriate test

problems.

@ Solution

We start with the equation at » = 0. According to Section Section 3.35, we get

ug ™t —ug uy —ugy g
T vl
For ¢ > 0, we have
utt — 11 1
: AL - = rAr?(i(ri + Ti+1)§(az’ + i) (uhg —uf')—

(2
1 1
5(7“1'71 + 7”2‘)5(041'71 + o) (wi! —uiq)) + f]
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3. Diffusion Equations

Solving with respect to u™! and introducing D = At/Ar? results in

7

ug ™ = ufy +4Da(0)(uf — ug) + 7',
1

1 1
uftt = uf + D;%(ﬁ‘ + "”z‘+1)5(0% + i) (Ui — ui')—
7

1
—(ri—1 + Ti)i(ai—l + i) (ui —uiq)) + Atf},

i=1,...,N, —1,

N —

and u?“ at the end point 4 = N, is assumed known in case of a Dirichlet condition. A Robin
condition

ou
—azt = hy(u—Uy),
am- 7(u—Us)
can be discretized at ¢ = N, by
Ui — Uy n
—q; 2 = hp(ul - Uy).
“T oA r(uf —Us)

Solving with respect to the value at the fictitious point ¢ + 1 gives

This value is then inserted for u’,; in the discrete PDE at i = NV,.

3.75. Exercises: Diffusion with Devito

These exercises explore the diffusion equation using Devito’s symbolic finite difference framework.

3.75.1. Exercise 1: Verify the Fourier Stability Limit

The Forward Euler scheme for the diffusion equation requires F' < 0.5 for stability.

a) Use solve_diffusion_1d with F' = 0.5 and verify that the solution decays smoothly.
b) Try F = 0.51 and observe what happens.
c) Plot the solution at several time steps for both cases.
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1 Solution

from src.diffu import solve_diffusion_1d
import numpy as np
import matplotlib.pyplot as plt

# Stable case: F = 0.5

result_stable = solve_diffusion_1d(
L=1.0, a=1.0, Nx=50, T=0.1, F=0.5,
save_history=True,

# Unstable case: F = 0.51

# Note: The solver will raise a ValueError for F > 0.5

# To demonstrate instability, we would need to bypass the check
# or use the legacy NumPy implementation

plt.figure(figsize=(10, 4))

plt.subplot(l, 2, 1)
for i in [0, 5, 10, 20]:
if i < len(result_stable.t_history):
plt.plot(result_stable.x, result_stable.u_historyl[il],
label=f't = {result_stable.t_history[i]:.3f}')
plt.xlabel('x")
plt.ylabel('u')
plt.title('Stable: F = 0.5')
plt.legend()

# The F > 0.5 case shows exponential growth with oscillations
plt.subplot(l, 2, 2)
plt.text(0.5, 0.5, 'F > 0.5 causes instability:\n'
'Solution grows exponentially\nwith oscillations',
ha='center', va='center', fontsize=12)
plt.title('Unstable: F > 0.5')
plt.tight_layout ()

3.75.2. Exercise 2: Convergence Rate Verification

Verify that the Forward Euler scheme achieves second-order spatial convergence when the Fourier
number F' is held fixed.

a) Use grid sizes N, = 10, 20, 40, 80, 160.

b) Compute the L? error against the exact sinusoidal solution.
¢) Plot the error vs. grid spacing on a log-log scale.

d) Compute the observed convergence rate.
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1 Solution

from src.diffu import solve_diffusion_1d, exact_diffusion_sine
import numpy as np
import matplotlib.pyplot as plt

grid_sizes = [10, 20, 40, 80, 160]
errors = []
L

O O = =
a0 = O O

a
T=
F

for Nx in grid_sizes:
result = solve_diffusion_1d(L=L, a=a, Nx=Nx, T=T, F=F)
u_exact = exact_diffusion_sine(result.x, result.t, L, a)
error = np.sqrt(np.mean((result.u - u_exact)**2))
errors.append(error)
print (£"Nx = {Nx:3d}, error = {error:.4el}")

# Compute convergence rate

errors = np.array(errors)

dx = L / np.array(grid_sizes)

log_dx = np.log(dx)

log_err = np.log(errors)

rate = np.polyfit(log_dx, log_err, 1)[0]

print (£"\nObserved convergence rate: {rate:.2f}")
print (f"Expected rate: 2.0")

# Plot

plt.figure(figsize=(8, 6))

plt.loglog(dx, errors, 'bo-', label=f'Observed (rate={rate:.2f})')
plt.loglog(dx, errors[0]*(dx/dx[0])**2, 'r--', label='0(dx"2)"')
plt.xlabel('Grid spacing dx')

plt.ylabel('L2 error')

plt.legend()

plt.title('Convergence of Forward Euler for Diffusion')
plt.grid(True)

3.75.3. Exercise 3: Gaussian Initial Condition

Study the diffusion of a Gaussian temperature profile.

a) Set up a Gaussian initial condition centered at z = L/2 with width o = 0.05.
b) Simulate for 7' = 0.5 and visualize the spreading.

380



3. Diffusion Equations

c¢) Show that the total “heat content” (integral of u) is conserved over time (with homogeneous
Neumann BCs) or decreases (with Dirichlet BCs).

1 Solution

from src.diffu import solve_diffusion_1d, gaussian_initial_condition
import numpy as np
import matplotlib.pyplot as plt

result = solve diffusion_1d(
L=1.0, a=1.0, Nx=100, T=0.5, F=0.5,
I=lambda x: gaussian_initial_condition(x, L=1.0, sigma=0.05),
save_history=True,

# Plot evolution
plt.figure(figsize=(10, 5))

plt.subplot(l, 2, 1)
times = [0, 0.05, 0.1, 0.2, 0.5]
for t in times:
idx = int(t / result.dt)
if idx < len(result.t_history):
plt.plot(result.x, result.u_history[idx],
label=f't = {result.t_history[idx]:.2f}')
plt.xlabel('x")
plt.ylabel('u')
plt.title('Gaussian Diffusion')
plt.legend()

# Heat content over time (with Dirichlet BCs, heat is lost at boundaries)
plt.subplot(l, 2, 2)
dx = result.x[1] - result.x[0]
heat_content = [np.trapz(result.u_history[i], result.x)
for i in range(len(result.t_history))]
plt.plot(result.t_history, heat_content)
plt.xlabel('Time")
plt.ylabel('Total heat content')
plt.title('Heat Loss Through Boundaries')
plt.tight_layout ()

With Dirichlet BCs (v = 0 at boundaries), heat flows out and the total decreases. With
Neumann BCs (insulated boundaries), total heat would be conserved.
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3.75.4. Exercise 4: Discontinuous Initial Condition

The diffusion equation smooths out discontinuities over time.

a) Use a “plug” initial condition (1 for |z — L/2| < 0.1, 0 otherwise).

b) Compare the solution for F' = 0.5 and F' = 0.25.

c) Observe the oscillations (Gibbs phenomenon) for F' = 0.5.

1 Solution

import numpy as np
import matplotlib.pyplot as plt

fig, axes = plt.subplots(l, 2, figsize=(12, 5))

for ax, F in zip(axes, [0.5, 0.25]):
result = solve diffusion_1d(
L=1.0, a=1.0, Nx=100, T=0.1, F=F,

save_history=True,

times = [0, 0.01, 0.02, 0.05, 0.1]
for t in times:

idx = int(t / result.dt)

if idx < len(result.t_history):

ax.set_xlabel('x')

ax.set_ylabel('u')

ax.set_title(f'Plug Diffusion (F = {F})"')
ax.legend()

plt.tight_layout ()

from src.diffu import solve_diffusion_1d, plug_initial_condition

I=lambda x: plug_initial_condition(x, L=1.0, width=0.1),

ax.plot(result.x, result.u_historyl[idx],
label=f't = {result.t_history[idx]:.3f}"')

At F = 0.5, oscillations appear near the discontinuity (numerical Gibbs phenomenon). At
F = 0.25, the solution is smoother but the simulation takes more time steps.

3.75.5. Exercise 5: 2D Heat Diffusion

Simulate heat diffusion in a 2D square domain.

a) Set up a Gaussian “hot spot” centered at (0.5,0.5).
b) Apply u = 0 on all boundaries (heat sink).
c¢) Visualize the temperature distribution at several times.
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d) Compute the decay rate of the maximum temperature.

1 Solution

from src.diffu import solve_diffusion_2d, gaussian_2d_initial_condition
import numpy as np
import matplotlib.pyplot as plt

result = solve_diffusion_2d(
Lx=1.0, Ly=1.0, a=1.0, Nx=50, Ny=50, T=0.2, F=0.25,
I=lambda X, Y: gaussian_2d_initial_condition(X, Y, 1.0, 1.0, sigma=0.1),
save_history=True,

# Plot at several times
fig, axes = plt.subplots(2, 3, figsize=(12, 8))
X, Y = np.meshgrid(result.x, result.y, indexing='ij')

times = [0, 0.04, 0.08, 0.12, 0.16, 0.2]
for ax, t in zip(axes.flat, times):
idx = int(t / result.dt)
if idx >= len(result.t_history):
idx = -1
c = ax.contourf(X, Y, result.u_history[idx], levels=20, cmap='hot')
ax.set_title(f't = {result.t_historyl[idx]:.3f}"')
ax.set_aspect('equal')

plt.tight_layout ()

# Maximum temperature decay

max_temps = [result.u_history[i].max() for i in range(len(result.t_history))]
plt.figure()

plt.semilogy(result.t_history, max_temps)

plt.xlabel('Time')

plt.ylabel ('Maximum temperature')

plt.title('Exponential Decay of Peak Temperature')

plt.grid(True)

3.75.6. Exercise 6: Variable Diffusion Coefficient

In heterogeneous materials, the diffusion coefficient varies in space.

a) Modify the solver to accept a spatially varying a(z).
b) Set up a two-layer problem: o =1 for x < L/2, a = 0.1 for = > L/2.
¢) Observe how heat diffuses differently in the two regions.

Hint: In Devito, use a Function instead of a Constant for the diffusion coefficient.
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1 Solution

384



3. Diffusion Equations

from devito import Grid, TimeFunction, Function, Eq, solve, Operator
import numpy as np
import matplotlib.pyplot as plt

# Setup
I, S 22,0
Nx = 200
s 0.6

grid = Grid(shape=(Nx + 1,), extent=(L,))

# Variable diffusion coefficient

a = Function(name='a', grid=grid)

x_coords = np.linspace(0, L, Nx + 1)

a.datal:] = np.where(x_coords < L/2, 1.0, 0.1)

# Temperature field
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

# Initial condition: Gaussian in left region

sigma = 0.1

x0 = 0.5

u.datal[0, :] = np.exp(-((x_coords - x0) / sigma)**2)

# PDE: u_t = a(x) * u_xx

# Note: Using variable coefficient

pde = u.dt - a * u.dx2

stencil = Eq(u.forward, solve(pde, u.forward))

# Stability: use max(a) for dt calculation

dx = L / Nx

F=0.5

dt = F * dx**2 / a.data.max()
Nt = int(T / dt)

# Boundary conditions
bc_left = Eq(ulgrid.stepping_dim + 1, 0], 0)
bc_right = Eq(ulgrid.stepping_dim + 1, Nx], 0)

op = Operator([stencil, bc_left, bc_right])

# Time stepping with history
history = [u.data[0, :].copy()]
times = [0]

for n in range(Nt):
op.apply(time_m=0, time_M=0, dt=dt)
u.datal[0, :] = u.datall, :]
if n % 100 == 0:
history.append(u.datal[0, :].copy())
times.append((n + 1) * dt)
385
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Heat diffuses quickly in the left region (o = 1) but slowly in the right region (o = 0.1). The
solution shows a discontinuity in the temperature gradient at the interface.

3.75.7. Exercise 7: Manufactured Solution

Verify the implementation using the Method of Manufactured Solutions.

a) Choose a solution u(z,t) = z(L — z) - t.
b) Compute the source term f(x,t) needed to make this satisfy u; = g, + f.
c¢) Verify that the numerical solution matches the manufactured solution to machine precision.
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1 Solution
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import sympy as sp

# Define symbolic variables
x_sym, t_sym, a_sym, L_sym = sp.symbols('x t a L')

# Manufactured solution
umms = x_sym * (L_sym - x_sym) * t_sym

# Compute required source term
u_t = sp.diff(u_mms, t_sym)
u_xx = sp.diff(u_mms, x_sym, 2)
f sym = u_t - a_sym * u_xx

print (f"Manufactured solution: u = {u_mms}")
print(f"Source term: f = {sp.simplify(f_sym)}")

# f = xx(L-x) - ax(-2)*t = xx(L-x) + 2*axt
# Numerical verification

from devito import Grid, TimeFunction, Eq, solve, Operator, Constant
import numpy as np

L=1.5
Nx = 20
a=20.5
T =0.2
dx = L / Nx
F=0.5

dt = F * dx*x2 / a
Nt = int(T / dt)

grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

x_coords = np.linspace(0, L, Nx + 1)

# Source term as a function
def f_source(x, t):
return x * (L - x) + 2 *x a * t

# Exact solution
def u_exact(x, t):
return x * (L - x) * t

# Initial condition (t=0 gives u=0)
u.datal[0, :] = u_exact(x_coords, 0)

# Include source term in the PDE (simplified for Forward Euler)
# Manual time stepping with source
for n in range(Nt): 388

t_.n =n *x dt
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3. Diffusion Equations

The Forward Euler scheme is exact for solutions linear in time and quadratic in space, so the
error should be near machine precision.

3.75.8. Exercise 8: Energy Decay

The “energy” of the diffusion equation, defined as:

E(t):§/0 u® dz

always decreases for the diffusion equation (with homogeneous BCs).

a) Compute E(t) numerically at each time step.
b) Verify that E(t) is monotonically decreasing.

c) Compare the decay rate to the theoretical prediction for the fundamental mode: E(t)
—2a(mr/L)?t
e .
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1 Solution
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from src.diffu import solve_diffusion_1d
import numpy as np
import matplotlib.pyplot as plt

result = solve diffusion_ 1d(
L=1.0, a=1.0, Nx=100, T=1.0, F=0.5,
I=lambda x: np.sin(np.pi * x), # Fundamental mode
save_history=True,

# Compute energy at each time step

dx = result.x[1] - result.x[0]

energies = []

for u_n in result.u_history:
E = 0.5 * np.trapz(u_n*+*2, result.x)
energies.append (E)

energies = np.array(energies)

# Theoretical decay: E(t) = E(0) * exp(-2xa*x(pi/L)"2 * t)

L = 1,0

a=1.0

decay_rate = 2 * a * (np.pi / L)*x*2

E_theory = energies[0] * np.exp(-decay_rate * result.t_history)

# Plot
plt.figure(figsize=(10, 5))

plt.subplot(l, 2, 1)

plt.semilogy(result.t_history, energies, 'b-', label='Numerical')
plt.semilogy(result.t_history, E_theory, 'r--', label='Theory')
plt.xlabel('Time")

plt.ylabel('Energy E(t)')

plt.legend()

plt.title('Energy Decay')

plt.subplot(1l, 2, 2)

# Verify monotonic decrease

dE = np.diff(energies)
plt.plot(result.t_history[1:], dE)
plt.axhline(0, color='k', linestyle='--")
plt.xlabel('Time')

plt.ylabel('dE/dt")

plt.title('Energy Change (should be < 0)')
plt.tight_layout ()

# Compute observed decay rate

log_E = np.log(energies[energies > 0])

t_fit = result.t_history[:len(log_E)]
rate_obs = -np.polyfit(t_fit, log_ E, 1) [0]
print (f"Observed decay rate: {rate_obs39Mf}")
print (f"Theoretical rate: {decay_rate:.4f}")
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3.75.9. Exercise 9: 2D Convergence Test

Verify second-order convergence for the 2D diffusion solver.

a) Use the exact 2D sinusoidal solution.
b) Run with N, = N, = 10, 20, 40, 80.
c) Compute the observed convergence rate.

1 Solution

from src.diffu import convergence_test_diffusion_2d
import numpy as np
import matplotlib.pyplot as plt

grid_sizes, errors, rate = convergence_test_diffusion_2d(
grid_sizes=[10, 20, 40, 80],
T=0.05,
F=0.25,

print (f"Observed convergence rate: {rate:.2f}")

# Plot

plt.figure(figsize=(8, 6))

dx = 1.0 / np.array(grid_sizes)

plt.loglog(dx, errors, 'bo-', label=f'Observed (rate={rate:.2f})')
plt.loglog(dx, errors[0]*(dx/dx[0])**2, 'r--', label='0(dx"2)')
plt.xlabel('Grid spacing')

plt.ylabel('L2 error')

plt.legend()

plt.title('2D Diffusion Convergence')

plt.grid(True)

The 2D solver should also achieve second-order spatial convergence when the Fourier number
is held fixed.

3.75.10. Exercise 10: Comparison with Legacy Code

Compare the Devito solver with the legacy NumPy implementation.

a) Run both solvers with the same parameters.
b) Verify they produce the same results.
¢) Compare execution times.
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1 Solution

from src.diffu import solve_diffusion_1d

from src.diffu.diffulD_u0 import solver_FE_simple
import numpy as np

import time

# Parameters

L=1.0

a=1.0

Nx = 200

F=0.5

T=0.1

dx = L / Nx

dt = F * dx**2 / a

# Devito solver

t0 = time.perf_counter()

result_devito = solve_diffusion_1d(
L=L, a=a, Nx=Nx, T=T, F=F,
I=lambda x: np.sin(np.pi * x),

)

t_devito = time.perf_counter() - tO

# Legacy NumPy solver

t0 = time.perf_counter()

u_legacy, x_legacy, t_legacy, cpu_legacy = solver_FE_simple(
I=lambda x: np.sin(np.pi * x),
a=a,
f=lambda x, t: O,

)

t_numpy = time.perf_counter() - tO

# Compare results

diff = np.max(np.abs(result_devito.u - u_legacy))
print (f"Maximum difference: {diff:.2el}")
print(f"Devito time: {t_devito:.4f} s")

print (£"NumPy time: {t_numpy:.4f} s")

# Note: For small problems, NumPy may be faster due to compilation
# overhead. For large problems, Devito's optimized C code wins.
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For large grids, Devito’s automatically generated and optimized C code typically outperforms
pure Python/NumPy implementations. The advantage grows with problem size.
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Wave (Chapter Chapter 2) and diffusion (Chapter Chapter 3) equations are solved reliably by finite
difference methods. As soon as we add a first-order derivative in space, representing advective
transport (also known as convective transport), the numerics gets more complicated and intuitively
attractive methods no longer work well. We shall show how and why such methods fail and
provide remedies. The present chapter builds on basic knowledge about finite difference methods
for diffusion and wave equations, including the analysis by Fourier components, truncation error
analysis (Appendix Chapter 7), and compact difference notation.

1 Remark on terminology

It is common to refer to movement of a fluid as convection, while advection is the transport of
some material dissolved or suspended in the fluid. We shall mostly choose the word advection
here, but both terms are in heavy use, and for mass transport of a substance the PDE has an
advection term, while the similar term for the heat equation is a convection term.

Much more comprehensive discussion of dispersion analysis for advection problems can be found
in the book by Duran (Duran 2010). This is a an excellent resource for further studies on the
topic of advection PDEs, with emphasis on generalizations to real geophysical problems. The book
by Fletcher (Fletcher 2013) also has a good overview of methods for advection and convection
problems.

4.1. 1D linear advection equations with constant velocity

We consider the pure advection model

ou ou
5 +vas =0, we(0,L), te (0T (4.1)
u(z,0) =I(z), z€(0,L), (4.2)
u(0,t) = Uy, te (0,T]. (4.3)

In (4.3), v is a given parameter, typically reflecting the transport velocity of a quantity u with a
flow. There is only one boundary condition (4.2) since the spatial derivative is only first order in
the PDE (4.3). The information at = 0 and the initial condition get transported in the positive z
direction if v > 0 through the domain.

It is easiest to find the solution of (4.3) if we remove the boundary condition and consider a process
on the infinite domain (—o00, 00). The solution is simply

u(z,t) = I(x — vt). (4.4)
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This is also the solution we expect locally in a finite domain before boundary conditions have
reflected or modified the wave.

A particular feature of the solution (4.4) is that
u(wi, tn+1) == u(aji,l, tn), (45)

if z; = 1Az and t,, = nAt are points in a uniform mesh. We see this relation from

u(iAx, (n + 1)At) = I[(iAx — v(n + 1)At)

(i — 1)Az — vnAt — vAt + Ax)
(i — 1)Az — vnAt)
(i

i —1)Ax,nAt),

=1

=Uu

I(
=I(
(
(

provided v = Axz/At. So, whenever we see a scheme that collapses to
T ki = xoki — 17, (4.6)

for the PDE in question, we have in fact a scheme that reproduces the analytical solution, and many
of the schemes to be presented possess this nice property!

Finally, we add that a discussion of appropriate boundary conditions for the advection PDE in
multiple dimensions is a challenging topic beyond the scope of this text.

4.2. Simplest scheme: forward in time, centered in space

4.2.1. Method

A first attempt to solve a PDE like (4.3) will normally be to look for a time-discretization scheme
that is explicit so we avoid solving systems of linear equations. In space, we anticipate that centered
differences are most accurate and therefore best. These two arguments lead us to a Forward Euler
scheme in time and centered differences in space:

[Djfu + vDopu = 0]7

Written out, we see that this expression implies that
nt+l _ ,n 1 n n
u =u - §C(Ui+1 —ui' ),

with C as the Courant number

vAt

##4 Implementation

A solver function for our scheme goes as follows.
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import numpy as np

def solver FECS(I, UO, v, L, dt, C, T, user_action=None):
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = v *dt / C
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]
C=v*dt / dx

= np.zeros(Nx + 1)

u
u_n = np.zeros(Nx + 1)

[

for i in range(0, Nx + 1):

_nl[i]l = I(x[iD)

e

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
for i in range(l, Nx):
ulil = un[i] - 0.5 * C * (u_n[i + 1] - u_nl[i - 11)

ul0] = UO

if user_action is not None:
user_action(u, x, t, n + 1)

un, u=mu, un

def solver(I, UO, v, L, dt, C, T, user_action=None, scheme="FE", periodic_bc=True):
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = v *xdt / C
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]
C=v *dt / dx
print ("dt=%g, dx=lg, Nx=)d, C=lg" % (dt, dx, Nx, C))

u = np.zeros(Nx + 1)

u_n = np.zeros(Nx + 1)
u_nml = np.zeros(Nx + 1)
integral = np.zeros(Nt + 1)
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for i in range(0, Nx + 1):
u nli] = I(x[il)

ul0] = UO
integral[0] = dx * (0.5 * u_n[0] + 0.5 * u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
if scheme == "FE":
if periodic_bc:
i=0
uli] = u_nli] - 0.5 * C * (u_n[i + 1] - u_n[Nx])
u[Nx] = ul0]
for i in range(l, Nx):
uli]l = u_n[i] - 0.5 * C * (u_n[i + 1] - u_n[i - 1])
elif scheme == "LF":
if n ==
if periodic_bc:
i=0
u_n[i] = u_n[Nx]
for i in range(l, Nx + 1):
uli] = u_nf[i] - C * (u_n[i] - u_nl[i - 11)
else:
if periodic_bc:
i=20
ulil] = unmi[i] - C * (u_n[i + 1] - u_n[Nx - 1])
for i in range(l, Nx):
ulil] = unmi[i] - C * (u_n[i + 1] - u_nl[i - 1])
if periodic_bc:
ul[Nx] = ul0]
elif scheme == "UP":
if periodic_bc:
u_nl[0] = u _n[Nx]
for i in range(l, Nx + 1):
uli]l] = unl[i] - C * (u_n[i] - u_n[i - 11)
elif scheme == "LW":
if periodic_bc:
i=20
uli] = (
u_nli]
- 0.5 *%* C* (unf[i + 1] - u_n[Nx - 1])
+ 0.5 % C* (un[i+ 1] - 2 * un[i] + u_n[Nx - 1])
)

for i in range(1l, Nx):
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uli] = (
u_nli]
- 0.5 %« Cx* (u_n[i + 1] - u_n[i - 11)
+ 0.5 * C * (u_n[i + 1] - 2 * u_n[i] + u_n[i - 1]1)

)
if periodic_bc:
u[Nx] = u[0]

else:
raise ValueError('scheme="7s" not implemented' 7 scheme)

if not periodic_bc:
ul0] = UO

integrall[n + 1] = dx * (0.5 * u[0] + 0.5 * u[Nx] + np.sum(u[1:-1]))

if user_action is not None:
user_action(u, x, t, n + 1)

u_nml, un, u =un, u, unnml
print("I:", integral[n + 1])
return integral

def run_ FECS(case):
"""Special function for the FECS case."""
if case == '"gaussian":

def I(x):
return np.exp(-0.5 * ((x - L / 10) / sigma) ** 2)
elif case == "cosinehat":

def I(x):
return np.cos(np.pi * 56 / L * (x - L / 10)) if x <L / 5 else 0

L=1.0
sigma = 0.02
legends = []

def plot(u, x, t, n):
"""Animate and plot every m steps in the same figure."""
plt.figure(1)

if n ==
lines = plot(x, u)
else:
lines[0] .set_ydata(u)
plt.draw()
plt.figure(2)
m = 40
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ifn % m '= 0:

return
print(

"t=Y%g, n=%d, u in [lg, %gl w/%d points" % (t[n], n, u.min(), u.max(), x.size)
)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
legends.append("t=Yg" % t[nl)

plt.ion()
U0 = 0

dt = 0.001
c=1
T=1

solver(I=I, U0=UO, v=1.0, L=L, dt=dt, C=C, T=T, user_action=plot)
plt.legend(legends, loc="lower left")

plt.savefig("tmp.png")

plt.savefig("tmp.pdf")

plt.axis([0, L, -0.75, 1.1])

plt.show()

def run(scheme="UP", case="gaussian", C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == '"gaussian":

def I(x):
return np.exp(-0.5 * ((x - L / 10) / sigma) ** 2)
elif case == "cosinehat":

def I(x):
return np.cos(np.pi * 5 /L * (x - L / 10)) if 0 < x < L / 5 else O

L=1.0
sigma = 0.02
global lines # needs to be saved between calls to plot

def plot(u, x, t, n):
"""Plot t=0 and t=0.6 in the same figure."""
plt.figure(1)
global lines
if n ==
lines = plt.plot(x, w)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.xlabel("x")
plt.ylabel("u")
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plt.axes() .set_aspect(0.15)

plt.savefig("tmp_%04d.png" % n)

plt.savefig("tmp_%04d.pdf" % n)
else:

lines[0] .set_ydata(u)

plt.axis([x[0], x[-1], -0.5, 1.5])

plt.title("C=kg, dt=hg, dx=kg" % (C, t[1] - t[0], x[1] - x[0]))

plt.legend(["t=%.3£" % t[nll)

plt.xlabel("x")

plt.ylabel("u"

plt.draw()

plt.savefig("tmp_%04d.png" % n)
plt.figure(2)

eps = le-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:
return
print(
"t=%g, n=%d, u in [%g, %gl w/%d points" % (t[n], n, u.min(), u.max(), x.size)
)
if np.abs(u).max() > 3: # Instability?
return
plt.plot(x, u)
plt.draw()
if n > 0O:
y = [I(x_ - v * t[n]) for x_ in x]
plt.plot(x, y, "k--")
if abs(t[n] - 0.6) < eps:
filename = ("tmp_%s_dt/s_Cls" % (scheme, t[1] - t[0], C)).replace(".", "")
np.savez(filename, x=x, u=u, u_e=y)
plt.ion()
Uo =0
T=20.7
v =1

codecs = dict(flv="flv", mp4="1ibx264", webm="libvpx", ogg="libtheora")
import glob
import os

for name in glob.glob("tmp_*.png"):
os.remove (name)
for ext in codecs:
name = "movie.%s" 7 ext
if os.path.isfile(name):
os.remove (name)

if scheme == "CN":
integral = solver_theta(I, v, L, dt, C, T, user_action=plot, FE=False)
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elif scheme == "BE":
integral = solver_theta(I, v, L, dt, C, T, theta=1, user_action=plot)
else:
integral = solver(
I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T, scheme=scheme, user_action=plot

)
plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel ("$x$")
plt.ylabel("$u$")
plt.axes() .set_aspect(0.5) # no effect
plt.savefig("tmpl.png")
plt.savefig("tmpl.pdf")
plt.show()
for codec in codecs:
cmd = "ffmpeg -i tmp_%%04d.png -r 25 -vcodec %s movie.%s" % (codecs[codec], codec)
os.system(cmd)
print("Integral of u:", integral.max(), integral.min())

def solver_theta(I, v, L, dt, C, T, theta=0.5, user_action=None, FE=False):
nmnn
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5).
Vectorized implementation and sparse (tridiagonal)
coefficient matrix.

import time

t0 = time.perf_counter() # for measuring the CPU time
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time

dx = v xdt / C

Nx = int(round(L / dx))

X = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]

dt = t[1] - t[0]

C=vx*xdt / dx
print("dt=Yg, dx=%g, Nx=%d, C=g" % (dt, dx, Nx, C))

u = np.zeros(Nx + 1)

u_n = np.zeros(Nx + 1)
u_nml = np.zeros(Nx + 1)
integral = np.zeros(Nt + 1)

for i in range(0, Nx + 1):
u nli] = I(x[i])
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integral[0] = dx * (0.5 * u_n[0] + 0.5 * u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros (Nx)
b = np.zeros(Nx + 1)

diagonall[:] =1
lower[:] = -0.5 * theta * C
upper[:] = 0.5 * theta * C
if FE:
diagonall[:] += 4.0 / 6
lower[:] += 1.0 / 6
upper[:] += 1.0 / 6
upper [0] = O
lower[-1] = 0

diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

for n in range(0, Nt):
b[1:-1] = u n[1:-1] + 0.5 * (1 - theta) * C * (u_n[:-2] - u_n[2:1)
if FE:
b[1:-1] += 1.0 / 6 * unl[:-2] + 1.0 / 6 * unl[:-2] + 4.0 / 6 * u_n[1:-1]
b[0] = u_n[Nx]
b[-1] = u_n[0] # boundary conditions
b[0] =0
b[-1] = 0 # boundary conditions
ul:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

integrall[n + 1] = dx * (0.5 * u[0] + 0.5 * u[Nx] + np.sum(u[1:-1]))

un, u=1u, un
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tl = time.perf_counter()
return integral
n.

if __name == " main_ _

run(scheme="LW", case="gaussian", C=1, dt=0.01)

4.2.2. Test cases

The typical solution u has the shape of I and is transported at velocity v to the right (if v > 0).
Let us consider two different initial conditions, one smooth (Gaussian pulse) and one non-smooth
(half-truncated cosine pulse):

o 2
u(z,0) = Ae_%( ﬁ/10) ,
L L
u(z,0) = Acos <5£r (3:—10>>, :U<gelse 0. (4.7)

The parameter A is the maximum value of the initial condition.

Before doing numerical simulations, we scale the PDE problem and introduce Z = x/L and t = vt/L,
which gives
Ju Ou
o oz
The unknown wu is scaled by the maximum value of the initial condition: u = v/ max|I(x)| such
that |u(z,0)| € [0,1]. The scaled problem is solved by setting v =1, L =1, and A = 1. From now
on we drop the bars.

=0.

To run our test cases and plot the solution, we make the function

def run FECS(case):
"""Special function for the FECS case."""
if case == "gaussian":

def I(x):
return np.exp(-0.5 * ((x - L / 10) / sigma) ** 2)
elif case == "cosinehat":

def I(x):
return np.cos(np.pi * 5 / L * (x - L / 10)) if x <L / 5 else 0

L=1.0
sigma = 0.02
legends = []

def plot(u, x, t, n):
"""Animate and plot every m steps in the same figure."""
plt.figure(1)
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if n ==
lines = plot(x, u)
else:
lines[0] .set_ydata(u)
plt.draw()
plt.figure(2)
m = 40
ifn%m!=0:
return
print(
"t=%g, n=%d, u in [%g, %gl w/%d points" % (t[n]l, n, u.min(), u.max(), x.size)
)
if np.abs(u) .max() > 3: # Instability?
return
plt.plot(x, u)
legends.append ("t=Yg" % t[nl)

plt.ion()
U0 = 0

dt = 0.001
c=1
T=1

solver(I=I, U0=UO, v=1.0, L=L, dt=dt, C=C, T=T, user_action=plot)
plt.legend(legends, loc="lower left")

plt.savefig("tmp.png")

plt.savefig("tmp.pdf")

plt.axis([0, L, -0.75, 1.1])

plt.show()

def run(scheme="UP", case="gaussian", C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == '"gaussian':
def I(x):

return np.exp(-0.5 * ((x - L / 10) / sigma) ** 2)
elif case == "cosinehat":

def I(x):
return np.cos(np.pi * 5 /L * (x - L / 10)) if 0 < x <L / 5 else O

L=1.0
sigma = 0.02

global lines # needs to be saved between calls to plot

def plot(u, x, t, n):
"""Plot t=0 and t=0.6 in the same figure."""
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plt.figure(1)
global lines

if n ==

lines = plt.plot(x, u)

plt

plt.

plt

plt.
plt.
plt.

else:

.axis([x[0], x[-1], -0.5, 1.5])
xlabel("x")

.ylabel("u")

axes() .set_aspect(0.15)
savefig("tmp_%04d.png" % n)
savefig("tmp_%04d.pdf" % n)

lines[0] .set_ydata(u)

plt.axis([x[0], x[-1], -0.5, 1.5])
plt.title("C=lg, dt=%g, dx=kg" % (C, t[1] - t[0], x[1] - x[0]))
plt.legend(["t=%.3f" % t[nl])
plt.xlabel("x")
plt.ylabel("u")
plt.draw()
plt.savefig("tmp_%04d.png" % n)
plt.figure(2)
eps = le-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:
return
print(
"t=%g, n=%d, u in [%g, %gl w/%d points" % (t[n]l, n, u.min(), u.max(), x.size)
)
if np.abs(u).max() > 3: # Instability?
return
plt.plot(x, u)
plt.draw()
if n > O:
y = [I(x_ - v * t[n]) for x_ in x]
plt.plot(x, y, "k--")

if abs(t[n] - 0.6) < eps:

plt.ion()
U0 =0
T=0.7
v =1

filename = ("tmp_%s_dtls_Clks" 7% (scheme, t[1] - t[0], C)).replace(".",

np.savez(filename, x=x, u=u, u_e=y)

codecs = dict(flv="flv", mp4="1ibx264", webm="libvpx", ogg="libtheora")

import glob
import os

for name in

glob.glob("tmp_*.png"):

os.remove (name)
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for ext in codecs:
name = "movie.%s" % ext
if os.path.isfile(name):
os.remove (name)

if scheme == "CN":

integral = solver_theta(I, v, L, dt, C, T, user_action=plot, FE=False)
elif scheme == "BE":

integral = solver_theta(I, v, L, dt, C, T, theta=1, user_action=plot)
else:

integral = solver(
I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T, scheme=scheme, user_action=plot
)
plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel ("$x$")
plt.ylabel("$u$")
plt.axes() .set_aspect(0.5) # no effect
plt.savefig("tmpl.png")
plt.savefig("tmpl.pdf")
plt.show()
for codec in codecs:
cmd = "ffmpeg -i tmp_%%04d.png -r 25 -vcodec %s movie.%s" % (codecs[codec], codec)
os.system(cmd)
print("Integral of u:", integral.max(), integral.min())

def solver_theta(I, v, L, dt, C, T, theta=0.5, user_action=None, FE=False):
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5).
Vectorized implementation and sparse (tridiagonal)
coefficient matrix.

import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))

t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = v xdt / C

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space

dx = x[1] - x[0]

dt = t[1] - t[0]

C=v *dt / dx

print ("dt=lg, dx=lg, Nx=)d, C=Yg" % (dt, dx, Nx, C))
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u = np.zeros(Nx + 1)

u_n = np.zeros(Nx + 1)
u_nml = np.zeros(Nx + 1)
integral = np.zeros(Nt + 1)

for i in range(0, Nx + 1):
u_nl[i] = I(x[i])

integral[0] = dx * (0.5 * u_n[0] + 0.5 * u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u n, x, t, 0)

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx + 1)

diagonall[:] = 1

lower[:] = -0.5 * theta * C
upper[:] = 0.5 * theta * C
if FE:

diagonal[:] += 4.0 / 6
lower[:] += 1.0 / 6
upper[:] += 1.0 / 6
upper [0] = 0
lower[-1] = 0

diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

for n in range(0, Nt):
b[1:-1] = u_n[1:-1] + 0.5 * (1 - theta) * C * (u_n[:-2] - u_n([2:])
if FE:
b[1:-1] += 1.0 / 6 * u_n[:-2] + 1.0 / 6 * u_n[:-2] + 4.0 / 6 * u_n[1:-1]
b[0] = u_n[Nx]
b[-1] = u_n[0] # boundary conditions
b[0] =0
b[-1] = 0 # boundary conditions
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ul:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

integral[n + 1] = dx * (0.5 * u[0] + 0.5 * u[Nx] + np.sum(ul[1:-1]))

tl = time.perf_counter()
return integral

if __name__ == "__main__":
run(scheme="LW", case="gaussian", C=1, dt=0.01)

4.2.3. Bug?

Running either of the test cases, the plot becomes a mess, and the printout of u values in the plot
function reveals that u grows very quickly. We may reduce At and make it very small, yet the
solution just grows. Such behavior points to a bug in the code. However, choosing a coarse mesh
and performing one time step by hand calculations produces the same numbers as the code, so the
implementation seems to be correct. The hypothesis is therefore that the solution is unstable.

4.3. Analysis of the scheme

It is easy to show that a typical Fourier component
u(z,t) = Bsin(k(z — ct))

is a solution of our PDE for any spatial wave length A = 27/k and any amplitude B. (Since the
PDE to be investigated by this method is homogeneous and linear, B will always cancel out, so we
tend to skip this amplitude, but keep it here in the beginning for completeness.)

A general solution may be viewed as a collection of long and short waves with different amplitudes.
Algebraically, the work simplifies if we introduce the complex Fourier component

u(z,t) = Ace™™,
with
Ae — Be*ik’uAt — BefiCkA:B
Note that |Ae| < 1.

It turns out that many schemes also allow a Fourier wave component as solution, and we can use
the numerically computed values of A (denoted A) to learn about the quality of the scheme. Hence,
to analyze the difference scheme we have just implemented, we look at how it treats the Fourier

component
u;r; —_ AnequAx )
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Inserting the numerical component in the scheme,

(D Ae®IAT 4y Dy, Ae™8T = ]2,

and making use of (6.5) results in

. A-1 1
tkqAx - e 1
[e (7At + VAL sin(kAx)) = 0],
which implies
A =1-iCsin(kAz).

The numerical solution features the formula A™. To find out whether A™ means growth in time, we
rewrite A in polar form: A = A,e'?, for real numbers A, and ¢, since we then have A" = A7¢",
The magnitude of A™ is A”. In our case, A4, = (1 + C?sin?(kx))"/2 > 1, so A will increase in time,
whereas the exact solution will not. Regardless of At, we get unstable numerical solutions.

4.4. Leapfrog in time, centered differences in space

4.4.1. Method

Another explicit scheme is to do a “leapfrog” jump over 2At in time and combine it with central
differences in space:
[Dau + vDagu = 0]7,

which results in the updating formula

1

u?“ =u""

soki — Cluxxi+1" —ul ).

A special scheme is needed to compute u!, but we leave that problem for now. Anyway, this special
scheme can be found in adveciD.py.

4.4.2. Implementation
We now need to work with three time levels and must modify our solver a bit:

Nt = int(round(T/float(dt)))
t = np.linspace(0, Ntxdt, Nt+1) # Mesh points in time

& o
Il

np.zeros (Nx+1)
np.zeros (Nx+1)
u_2 = np.zeros(Nx+1)

'l:'
—
1]

for n in range(0, Nt):
if scheme == 'FE':
for i in range(1, Nx):
uli]l = u_1[i] - 0.5%Cx(u_1[i+1] - u_1[i-11)
elif scheme == 'LF':
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if n == O:
for i in range(l, Nx):

else:
for i in range(l, Nx+1):
ulil = w_2[i] - Cx(u_1[i] - u_1[i-1])

u?2, ul, u=ul, u, u?2

4.4.3. Running a test case

Let us try a coarse mesh such that the smooth Gaussian initial condition is represented by 1 at
mesh node 1 and 0 at all other nodes. This triangular initial condition should then be advected
to the right. Choosing scaled variables as At = 0.1, T'= 1, and C' = 1 gives the plot in Figure
Figure 4.1, which is in fact identical to the exact solution (!).

0.8} .

0.6 .

0.4f 1

0.2 .

0.0

—0.4} 4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1.: Exact solution obtained by Leapfrog scheme with At = 0.1 and C' = 1.

4.4.4. Running more test cases

We can run two types of initial conditions for C' = 0.8: one very smooth with a Gaussian function
(Figure Figure 4.2) and one with a discontinuity in the first derivative (Figure Figure 4.3). Unless
we have a very fine mesh, as in the left plots in the figures, we get small ripples behind the main
wave, and this main wave has the amplitude reduced.
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1.0}
0.8f
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T x

Figure 4.2.: Advection of a Gaussian function with a leapfrog scheme and C' = 0.8, At = 0.001 (left)
and At = 0.01 (right).
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Figure 4.3.: Advection of half a cosine function with a leapfrog scheme and C' = 0.8, At = 0.001
(left) and At = 0.01 (right).
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4.4.5. Analysis

We can perform a Fourier analysis again. Inserting the numerical Fourier component in the Leapfrog
scheme, we get
A? —i2C sin(kAx)A —1 =0,

and

A = —iCsin(kAzx) £ \/1 — C?sin?(kAx) .

Rewriting to polar form, A = A,e'®, we see that A, = 1, so the numerical component is neither
increasing nor decreasing in time, which is exactly what we want. However, for C' > 1, the square
root can become complex valued, so stability is obtained only as long as C < 1.

Stability

For all the working schemes to be presented in this chapter, we get the stability condition
C<1:

NP
v

This is called the CFL condition and applies almost always to successful schemes for advection
problems. Of course, one can use Crank-Nicolson or Backward Euler schemes for increased and
even unconditional stability (no At restrictions), but these have other less desired damping
problems.

We introduce p = kAz. The amplification factor now reads

A= —iCsinp+4/1— C?sin?p,

and is to be compared to the exact amplification factor

Ae e e—ikvAt — e—ik:CAx — e—iCp

Section Section 4.10 compares numerical amplification factors of many schemes with the exact
expression.

4.5. Upwind differences in space

Since the PDE reflects transport of information along with a flow in positive x direction, when v > 0,
it could be natural to go (what is called) upstream and not downstream in the spatial derivative to
collect information about the change of the function. That is, we approximate
ul — ul
O s ta) e (D = L

This is called an upwind difference (the corresponding difference in the time direction would be
called a backward difference, and we could use that name in space too, but upwind is the common
name for a difference against the flow in advection problems). This spatial approximation does
magic compared to the scheme we had with Forward Euler in time and centered difference in space.
With an upwind difference,

[Djfu+vD;u=0]7, (4.8)
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4. Advection-Dominated Equations

written out as

ul =l — C(u™ %0 — u™ % xi — 1),
gives a generally popular and robust scheme that is stable if C' < 1. As with the Leapfrog scheme,
it becomes exact if C = 1, exactly as shown in Figure Figure 4.1. This is easy to see since C' =1
gives the property (4.6). However, any C' < 1 gives a significant reduction in the amplitude of the
solution, which is a purely numerical effect, see Figures Figure 4.4 and Figure 4.5. Experiments
show, however, that reducing At or Az, while keeping C' reduces the error.

1.0 1.0
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Figure 4.4.: Advection of a Gaussian function with a forward in time, upwind in space scheme and

C = 0.8, At = 0.01 (left) and At = 0.001 (right).
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Figure 4.5.: Advection of half a cosine function with a forward in time, upwind in space scheme and
C = 0.8, At = 0.001 (left) and At = 0.01 (right).

The amplification factor can be computed using the formula (6.4),

A—-1 ,
4 L(l . eflkA:p)

At Az =0,

which means
A=1-C(1—cos(p) —isin(p)).
For C' < 1 there is, unfortunately, non-physical damping of discrete Fourier components, giving rise

to reduced amplitude of u} as in Figures Figure 4.4 and Figure 4.5. The damping seen in these
figures is quite severe. Stability requires C' < 1.
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4. Advection-Dominated Equations

1 Interpretation of upwind difference as artificial diffusion

One can interpret the upwind difference as extra, artificial diffusion in the equation. Solving

o, ou_ o
ot Uax_ya$2’

by a forward difference in time and centered differences in space,
DV s xtu + vD * x2xu = vD, Dyu)?,

actually gives the upwind scheme (4.8) if v = vAz/2. That is, solving the PDE w; + vu, =0
by centered differences in space and forward difference in time is unsuccessful, but by adding
some artificial diffusion vu,;, the method becomes stable:

ou ou (a vAx) 0%u
2

o Vo ek

4.6. Periodic boundary conditions

So far, we have given the value on the left boundary, ug, and used the scheme to propagate the
solution signal through the domain. Often, we want to follow such signals for long time series,
and periodic boundary conditions are then relevant since they enable a signal that leaves the right
boundary to immediately enter the left boundary and propagate through the domain again.

The periodic boundary condition is
u(0,t) = u(L,t), uy=uy, .

It means that we in the first equation, involving u(, insert u}; , and that we in the last equation,
involving u"tl insert uf™!. Normally, we can do this in the simple way that u_1[0] is updated as

u_1[Nx] at the beginning of a new time level.

In some schemes we may need uy, ., and u”;. Periodicity then means that these values are equal
to uf and u}; 4, respectively. For the upwind scheme, it is sufficient to set u_1[0]=u_1[Nx] at a
new time level before computing u[1]. This ensures that u[1] becomes right and at the next time
level u[0] at the current time level is correctly updated. For the Leapfrog scheme we must update
u[0] and u[Nx] using the scheme:

if periodic_bc:

i=0

uli]l = u 2[i] - Cx(u_1[i+1] - u_1[Nx-1])
for i in range(l, Nx):

uli] = u_2[i] - Cx(u_1[i+1] - u_1[i-1])
if periodic_bc:

ul[Nx] = u[0]
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4. Advection-Dominated Equations
4.7. Implementation

4.7.1. Test condition

Analytically, we can show that the integral in space under the u(z,t) curve is constant:

L rou ou

0 (L L du
a/o udr = — ; U%dﬁ
L
(?;tt/ udr = [vu)l =0
0

as long as u(0) = u(L) = 0. We can therefore use the property
L
/ u(z,t)dr = const
0
as a partial verification during the simulation. Now, any numerical method with C' # 1 will deviate
from the constant, expected value, so the integral is a measure of the error in the scheme. The

integral can be computed by the Trapezoidal integration rule

dx*(0.5*%ul0] + 0.5%u[Nx] + np.sum(ul[1:-1]))
if u is an array holding the solution.

4.7.2. The code

An appropriate solver function for multiple schemes may go as shown below.

def solver(I, UO, v, L, dt, C, T, user_action=None,
scheme='FE', periodic_bc=True):

Nt = int(round(T/float(dt)))
t = np.linspace(0, Ntxdt, Nt+1) # Mesh points in time

dx = vxdt/C

Nx = int(round(L/dx))

x = np.linspace(0, L, Nx+1) # Mesh points in space
dx = x[1] - x[0]

dt = t[1] - t[0]

C = v*xdt/dx

print 'dt=lg, dx=lg, Nx=4d, C=lg' % (dt, dx, Nx, C)
u = np.zeros(Nx+1)

u_n = np.zeros(Nx+1)
u_nml = np.zeros(Nx+1)
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4. Advection-Dominated Equations

integral = np.zeros(Nt+1)

for i in range(0, Nx+1):
unli] = I(x[il)

ul0] = UO
integral[0] = dx*(0.5%u_n[0] + 0.5*%u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
if scheme == 'FE':
if periodic_bc:
i=0
uli] = u_nl[i] - 0.5*C*(u_n[i+1] - u_n[Nx])
u[Nx] = u[0]
for i in range(l, Nx):
uli]l = u_nl[i] - 0.5*Cx(u_n[i+1] - u_n[i-1])

elif scheme == 'LF':
if n ==
if periodic_bc:
i=0

u_n[i] = u_n[Nx]
for i in range(l, Nx+1):
ulil = u_n[i] - Cx(u_n[i] - u_n[i-1])
else:
if periodic_bc:
i=20
uli]l = u nmi1[i] - C*(u_n[i+1] - u_n[Nx-1])
for i in range(l, Nx):
ulil = unmi[i] - Cx(u_n[i+1] - u_n[i-1])
if periodic_bc:
u[Nx] = ul[0]
elif scheme == 'UP':
if periodic_bc:
u_nl[0] = u n[Nx]
for i in range(l, Nx+1):
ulil = u_n[i] - C+*(u_n[i] - u_n[i-11)
else:
raise ValueError('scheme="7s" not implemented' 7 scheme)

if not periodic_bc:
ul0] = UO

integral[n+1] = dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))
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4. Advection-Dominated Equations

if user_action is not None:
user_action(u, x, t, n+1)

unml, un, u=un, u, unnml
return integral

4.7.3. Solving a specific problem

We need to call up the solver function in some kind of administering problem solving function
that can solve specific problems and make appropriate visualization. The function below makes
both static plots, screen animation, and hard copy videos in various formats.

def run(scheme='UP', case='gaussian', C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == 'gaussian':
def I(x):
return np.exp(-0.5%((x-L/10)/sigma) **2)
elif case == 'cosinehat':
def I(x):
return np.cos(np.pi*5/L*(x - L/10)) if x < L/5 else 0

L S 1.0
sigma = 0.02
global lines # needs to be saved between calls to plot

def plot(u, x, t, n):

"""Plot t=0 and t=0.6 in the same figure."""

plt.figure(1)

global lines

if n ==
lines = plt.plot(x, u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.xlabel('x'); plt.ylabel('u')
plt.axes().set_aspect(0.15)
plt.savefig('tmp_%04d.png' % n)
plt.savefig('tmp_%04d.pdf' % n)

else:
lines[0] .set_ydata(u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.title('C=lg, dt=kg, dx=kg' %

(¢, tl11-t[0], x[11-x[01))
plt.legend(['t=%.3f' % t[nll)
plt.xlabel('x'); plt.ylabel('u')
plt.draw()
plt.savefig('tmp_%04d.png' % n)
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plt.figure(2)

eps = 1E-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:
return

print 't=lg, n=Y%d, u in [%g, %gl w/%d points' % \
(t[n], n, u.min(), u.max(), x.size)
if np.abs(u).max() > 3: # Instability?
return
plt.plot(x, u)
plt.hold('on')
plt.draw()
if n > 0O:
y = [I(x_-v*t[n]) for x_ in x]
plt.plot(x, y, 'k—-')
if abs(t[n] - 0.6) < eps:
filename = ('tmp_%s_dt%s_Clhs' % \
(scheme, t[1]-t[0], C)).replace('.', '")
np.savez(filename, x=x, u=u, u_e=y)

plt.ion()
U0 =0

T =0.7
v =1

codecs = dict(flv='flv', mp4='1ibx264', webm='libvpx',
ogg="'libtheora')

import glob, os
for name in glob.glob('tmp_*.png'):

os.remove (name)
for ext in codecs:

name = 'movie.%s' 7 ext

if os.path.isfile(name):

os.remove (name)

integral = solver(
I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T,
scheme=scheme, user_action=plot)
plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel('$x$'); plt.ylabel('$u$’')
plt.savefig('tmpl.png'); plt.savefig('tmpl.pdf')
plt.show()
for codec in codecs:
cmd = 'ffmpeg -i tmp_7%%04d.png -r 25 -vcodec %s movie.%s' % \
(codecs[codec], codec)
os.system(cmd)
print 'Integral of u:', integral.max(), integral.min()
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4. Advection-Dominated Equations

The complete code is found in the file advec1D.py.

4.8. A Crank-Nicolson discretization in time and centered differences in
space

Another obvious candidate for time discretization is the Crank-Nicolson method combined with
centered differences in space:

1
[Dyu]? + Ui([Dgwu]n-‘rl x i + [D * x2zull’) = 0.
It can be nice to include the Backward Euler scheme too, via the #-rule,
[Dyu)? + v0[Dogu)™ 5 %i + v(1 — 0)[D % x2zu]? = 0.

When 6 is different from zero, this gives rise to an implicit scheme,

0 1-10
u”“**z’—l—EC(u"H**i—i—l—u?ff):u?—?C(un**i—i—l—u”**i—l)

fori=1,..., N, — 1. At the boundaries we set u = 0 and simulate just to the point of time when
the signal hits the boundary (and gets reflected).

" k0 = "M x kN, = 0.
The elements on the diagonal in the matrix become:
Aii=1, i=0,...,N,.

On the subdiagonal and superdiagonal we have

0 0 )
Ai—17i:_§c) Ai—i—l,i: 507 v = ]-7"'7NJ:_17
with Ag; = 0 and Ay, 1,5, = 0 due to the known boundary conditions. And finally, the right-hand

side becomes

bozu%z
1-6

bi:u?—?C(u”**i—i—l—u"**i—l), i=1,...,N;—1
by, = ug

The dispersion relation follows from inserting uy = Ame* and using the formula (6.5) for the
spatial differences:

A 1—(1—-0)iCsinp
14 6iCsinp

Figure Figure 4.6 depicts a numerical solution for C' = 0.8 and the Crank-Nicolson with severe
oscillations behind the main wave. These oscillations are damped as the mesh is refined. Switching
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Figure 4.6.: Crank-Nicolson in time, centered in space, Gaussian profile, C' = 0.8, At = 0.01 (left)
and At = 0.005 (right).
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Figure 4.7.: Backward-Euler in time, centered in space, half a cosine profile, C' = 0.8, At = 0.01
(left) and At = 0.005 (right).
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4. Advection-Dominated Equations

to the Backward Euler scheme removes the oscillations, but the amplitude is significantly reduced.
One could expect that the discontinuous derivative in the initial condition of the half a cosine wave
would make even stronger demands on producing a smooth profile, but Figure Figure 4.7 shows
that also here, Backward-Euler is capable of producing a smooth profile. All in all, there are no
major differences between the Gaussian initial condition and the half a cosine condition for any of
the schemes.

4.9. The Lax-Wendroff method

The Lax-Wendroff method is based on three ideas:

1 in terms of known quantities at ¢ = t,, by means of a Taylor

1. Express the new unknown u;'
polynomial of second degree.

2. Replace time-derivatives at ¢t = ¢,, by spatial derivatives, using the PDE.

3. Discretize the spatial derivatives by second-order differences so we achieve a scheme of accuracy

O(A2) + O(Az?).

Let us follow the recipe. First we have the three-term Taylor polynomial,

ou 0%y
n+1 2
—u -i-At(at) + At <8t2>

From the PDE we have that temporal derivatives can be substituted by spatial derivatives:

ou ou

— N ==

ot ox’
and furthermore,

Pu .2 0%u

otz o0x?
Inserted in the Taylor polynomial formula, we get

ou 0°u
+1 _ 2,2
u; — vAt (8x> + At <8x2>

To obtain second-order accuracy in space we now use central differences:

u ™ = ul — vAt[Dogul? + At2 2D, Dyu)?,

)

or written out,
1
ul Tt = — 2C(u kol + 1 —u" k% — 1) + C2( ui g — 2up +up ).

)

This is the explicit Lax-Wendroff scheme.
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4. Advection-Dominated Equations

1 Lax-Wendroff works because of artificial viscosity

From the formulas above, we notice that the Lax-Wendroff method is nothing but a Forward
Euler, central difference in space scheme, which we have shown to be useless because of chronic
instability, plus an artificial diffusion term of strength %Atv? It means that we can take an
unstable scheme and add some diffusion to stabilize it. This is a common trick to deal with
advection problems. Sometimes, the real physical diffusion is not sufficiently large to make
schemes stable, so then we also add artificial diffusion.

From an analysis similar to the ones carried out above, we get an amplification factor for the
Lax-Wendroff method that equals

A=1—iCsinp —2C%sin?(p/2).

This means that |A| = 1 and also that we have an exact solution if C' = 1!

4.10. Analysis of dispersion relations

We have developed expressions for A(C,p) in the exact solution ug = AretkaAT of the discrete
equations. Note that the Fourier component that solves the original PDE problem has no damping
and moves with constant velocity v. There are two basic errors in the numerical Fourier component:
there may be damping and the wave velocity may depend on C' and p = kAz.

The shortest wavelength that can be represented is A = 2Az. The corresponding k is k = 27/\ =
w/Az, so p=kAx € (0,7].

Given a complex A as a function of C' and p, how can we visualize it? The two key ingredients in A
is the magnitude, reflecting damping or growth of the wave, and the angle, closely related to the
velocity of the wave. The Fourier component

D eik(z—ct)
has damping D and wave velocity ¢. Let us express our A in polar form, A = A,e~*®, and insert
this expression in our discrete component uy = Aneikadz — pngikz,

U,Z | Agefizi)neikx _ Agei(kxfmb) _ jélﬁez'(lc(xfct))7

for
S
kAt
Now,
CEkA C
kAt = —
v v
SO
ov
c= —.
Cp
An appropriate dimensionless quantity to plot is the scaled wave velocity ¢/v:
c_ ¢
v Cp’
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4. Advection-Dominated Equations

Figures Figure 4.8-Figure 4.13 contain dispersion curves, velocity and damping, for various values
of C'. The horizontal axis shows the dimensionless frequency p of the wave, while the figures to
the left illustrate the error in wave velocity ¢/v (should ideally be 1 for all p), and the figures to
the right display the absolute value (magnitude) of the damping factor A,. The curves are labeled
according to the table below.

Label Method

FE Forward Euler in time, centered difference in space
LF Leapfrog in time, centered difference in space
UpP Forward Euler in time, upwind difference in space
CN Crank-Nicolson in time, centered difference in space
Lw Lax-Wendroff’s method
BE Backward Euler in time, centered difference in space
02 : : _e=t . : 1.06 =1
— W
— uwp
00F LF 1 104t
-0.2
1.02
-0.4
2 - 1.00
-0.6
0.98
-0.8
096 — W
-1.0 — uP
— LF
=12 0.94 L
0.0 0.5 1.0 15 2.0 25 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
P P
Figure 4.8.: Dispersion relations for C' = 1.
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— CN
— BE 14}
—02f — FE
13t
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Figure 4.9.: Dispersion relations for C = 1.

The total damping after some time 7" = nAt is reflected by A,(C,p)". Since normally A, < 1, the
damping goes like A%/ At and approaches zero as At — 0. The only way to reduce damping is to
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35
Figure 4.10.: Dispersion relations for C = 0.8.
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Figure 4.11.: Dispersion relations for C = 0.8.
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Figure 4.12.: Dispersion relations for C = 0.5.
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Figure 4.13.: Dispersion relations for C = 0.5.

increase C' and/or the mesh resolution.

We can learn a lot from the dispersion relation plots. For example, looking at the plots for C' =1,
the schemes LW, UP, and LF has no amplitude reduction, but LF has wrong phase velocity for the
shortest wave in the mesh. This wave does not (normally) have enough amplitude to be seen, so
for all practical purposes, there is no damping or wrong velocity of the individual waves, so the
total shape of the wave is also correct. For the CN scheme, see Figure Figure 4.6, each individual
wave has its amplitude, but they move with different velocities, so after a while, we see some of
these waves lagging behind. For the BE scheme, see Figure Figure 4.7, all the shorter waves are so
heavily dampened that we cannot see them after a while. We see only the longest waves, which
have slightly wrong velocity, but visible amplitudes are sufficiently equal to produce what looks like
a smooth profile.

Another feature was that the Leapfrog method produced oscillations, while the upwind scheme
did not. Since the Leapfrog method does not dampen the shorter waves, which have wrong wave
velocities of order 10 percent, we can see these waves as noise. The upwind scheme, however,
dampens these waves. The same effect is also present in the Lax-Wendroff scheme, but the damping
of the intermediate waves is hardly present, so there is visible noise in the total signal.

We realize that, compared to pure truncation error analysis, dispersion analysis sheds more light
on the behavior of the computational schemes. Truncation analysis just says that Lax-Wendroff is
better than upwind, because of the increased order in time, but most people would say upwind is
the better one when looking at the plots.

4.11. Stationary 1D advection-diffusion

Now we pay attention to a physical process where advection (or convection) is in balance with
diffusion:

V— = . (4.9)

For simplicity, we assume v and « to be constant, but the extension to the variable-coefficient case
is trivial. This equation can be viewed as the stationary limit of the corresponding time-dependent
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problem
ou  Ou 9

Equations of the form (4.9) or (4.10) arise from transport phenomena, either mass or heat transport.
One can also view the equations as a simple model problem for the Navier-Stokes equations. With the
chosen boundary conditions, the differential equation problem models the phenomenon of a boundary
layer, where the solution changes rapidly very close to the boundary. This is a characteristic of many
fluid flow problems, which makes strong demands to numerical methods. The fundamental numerical
difficulty is related to non-physical oscillations of the solution (instability) if the first-derivative
spatial term dominates over the second-derivative term.

4.12. A simple model problem

We consider (4.9) on [0, L] equipped with the boundary conditions u(0) = Uy, u(L) = Ur. By
scaling we can reduce the number of parameters in the problem. We scale z by = /L, and u by
u— Uy

U, —Uy’

u =

Inserted in the governing equation we get

’U(UL — U()) @ . Oé(UL ¢ U()) @
L dz L2 dz?’

Dropping the bars is common. We can then simplify to

du d’u

There are two competing effects in this equation: the advection term transports signals to the
right, while the diffusion term transports signals to the left and the right. The value u(0) = 0 is
transported through the domain if € is small, and u ~ 0 except in the vicinity of x = 1, where
u(1) = 1 and the diffusion transports some information about u(1) = 1 to the left. For large e,
diffusion dominates and the u takes on the “average” value, i.e., u gets a linear variation from 0 to 1
throughout the domain.

It turns out that we can find an exact solution to the differential equation problem and also to
many of its discretizations. This is one reason why this model problem has been so successful in
designing and investigating numerical methods for mixed convection/advection and diffusion. The

exact solution reads
er/e — 1
Ue(x) = olle —1°

The forthcoming plots illustrate this function for various values of e.
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4.13. A centered finite difference scheme

The most obvious idea to solve (4.11) is to apply centered differences:
[Dqu = GDQ;D;CU]Z'

fort=1,...,Ny — 1, with ug = 0 and uy, = 1. Note that this is a coupled system of algebraic
equations involving ug, ..., un,.

Written out, the scheme becomes a tridiagonal system
A1 ui—1 + Ajus + Aipr it =0,

fori=1,...,N;—1

Agp =1,
Aic = —i - 6$7
A= 26%‘%‘2,
A1 = Aix - GALQUQ,
An, N, = 1.

The right-hand side of the linear system is zero except by, = 1.

Figure Figure 4.14 shows reasonably accurate results with $N_x=20 $ and N, = 40 cells in =
direction and a value of € = 0.1. Decreasing € to 0.01 leads to oscillatory solutions as depicted in
Figure Figure 4.15. This is, unfortunately, a typical phenomenon in this type of problem: non-
physical oscillations arise for small e unless the resolution N, is big enough. Exercise Section 4.18
develops a precise criterion: u is oscillation-free if

Ax <

a N

If we take the present model as a simplified model for a wviscous boundary layer in real, industrial
fluid flow applications, € ~ 1076 and millions of cells are required to resolve the boundary layer.
Fortunately, this is not strictly necessary as we have methods in the next section to overcome the
problem!

1 Solver

A suitable solver for doing the experiments is presented below.
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Figure 4.14.: Comparison of exact and numerical solution for ¢ = 0.1 and N, = 20,40 with centered

differences.
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import numpy as np

def solver(eps, Nx, method="centered"):
Solver for the two point boundary value problem u'=eps*u'',
u(0)=0, u(1)=1.
nnn
x = np.linspace(0, 1, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
u = np.zeros(Nx + 1)

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros (Nx)
b = np.zeros(Nx + 1)

if method == "centered":
diagonal[:] = 2 * eps / dx**2

lower[:] = -1 / dx - eps / dx**2
upper[:] = 1 / dx - eps / dx**2
elif method == "upwind":

diagonal[:] = 1 / dx + 2 * eps / dx**2
lower[:] = 1 / dx - eps / dx**2
upper[:] = -eps / dx**2

upper[0] = 0

lower[-1] = 0

diagonal [0] = diagonal[-1] = 1
b[-1] = 1.0

diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

)

ul:] = scipy.sparse.linalg.spsolve(A, b)

return u, X
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4.14. Remedy: upwind finite difference scheme

The scheme can be stabilized by letting the advective transport term, which is the dominating term,
collect its information in the flow direction, i.e., upstream or upwind of the point in question. So,
instead of using a centered difference

du UK KT — U

— xR R

dx Az ’
in case v > 0. For v < 0 we set ‘

du Cooukxi+1—

— kK

dx Ax

On compact operator notation form, our upwind scheme can be expressed as
[D,u = €eDyDyul;

provided v > 0 (and € > 0).

We write out the equations and implement them as shown in the program in Section Section 4.13.
The results appear in Figures Figure 4.16 and Figure 4.17: no more oscillations!

1.0

upwind difference scheme, e=0.1

e—e N =20

- - exact

0.8}

0.6

0.4+

0.2}

1.0

upwind difference scheme, e=0.1

o—e N, =40

- - exact

0.8

0.6

041

0.2

0.4 0.6

Figure 4.16.: Comparison of exact and numerical solution for € = 0.1 and N, = 20,40 with upwind
difference.

We see that the upwind scheme is always stable, but it gives a thicker boundary layer when the
centered scheme is also stable. Why the upwind scheme is always stable is easy to understand as
soon as we undertake the mathematical analysis in Exercise Section 4.18. Moreover, the thicker
layer (seemingly larger diffusion) can be understood by doing Exercise Section 4.19.
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upwind difference scheme, ¢=0.01 upwind difference scheme, ¢=0.01

1.0 1.0
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08r 0.8}

0.6

0.6

0.4+

0.41

0.2} 0.2}
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Figure 4.17.: Comparison of exact and numerical solution for € = 0.01 and N, = 20,40 with upwind
difference.

1 Exact solution for this model problem

It turns out that one can introduce a linear combination of the centered and upwind differences
for the first-derivative term in this model problem. One can then adjust the weight in the
linear combination so that the numerical solution becomes identical to the analytical solution
of the differential equation problem at any mesh point.

Now it is time to combine time-dependency, convection (advection) and diffusion into one equation:

ou ou \ 9%u

4.14.1. Analytical insight

The diffusion is now dominated by convection, a wave, and diffusion, a loss of amplitude. One
possible analytical solution is a traveling Gaussian function

u(x,t) = Bexp <— (x4—atvt>) .

This function moves with velocity v > 0 to the right (v < 0 to the left) due to convection, but at
the same time we have a damping e~164°t from diffusion.

4.15. Forward in time, centered in space scheme

The Forward Euler for the diffusion equation is a successful scheme, but it has a very strict stability
condition. The similar Forward in time, centered in space strategy always gives unstable solutions for
the advection PDE. What happens when we have both diffusion and advection present at once?

[Diu + vDou = aDyDyu + f17.
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We expect that diffusion will stabilize the scheme, but that advection will destabilize it.

Another problem is non-physical oscillations, but not growing amplitudes, due to centered differences
in the advection term. There will hence be two types of instabilities to consider. Our analysis
showed that pure advection with centered differences in space needs some artificial diffusion to
become stable (and then it produces upwind differences for the advection term). Adding more
physical diffusion should further help the numerics to stabilize the non-physical oscillations.

The scheme is quickly implemented, but suffers from the need for small space and time steps,
according to this reasoning. A better approach is to get rid of the non-physical oscillations in space
by simply applying an upwind difference on the advection term.

4.16. Forward in time, upwind in space scheme

A good approximation for the pure advection equation is to use upwind discretization of the
advection term. We also know that centered differences are good for the diffusion term, so let us
combine these two discretizations:

[Diw+vDyu=aD;Dyu+ f|7,

for v > 0. Use vDTu if v < 0. In this case the physical diffusion and the extra numerical diffusion
vAzx/2 will stabilize the solution, but give an overall too large reduction in amplitude compared
with the exact solution.

We may also interpret the upwind difference as artificial numerical diffusion and centered differences
in space everywhere, so the scheme can be expressed as

vAzx

4.17. Applications of advection equations

There are two major areas where advection and convection applications arise: transport of a
substance and heat transport in a fluid. To derive the models, we may look at the similar derivations
of diffusion models in Section Section 3.66, but change the assumption from a solid to fluid medium.
This gives rise to the extra advection or convection term v - Vu. We briefly show how this is done.

Normally, transport in a fluid is dominated by the fluid flow and not diffusion, so we can neglect
diffusion compared to advection or convection. The end result is anyway an equation of the form

ou
E‘F’UVU—O

#4# Transport of a substance {#sec-advec-app-mass}

The diffusion of a substance in Section Section 3.66.1 takes place in a solid medium, but in a fluid
we can have two transport mechanisms: one by diffusion and one by advection. The latter arises
from the fact that the substance particles are moved with the fluid velocity v such that the effective
flux now consists of two and not only one component as in (3.96):

qg=—-aVc+uv,
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Inserted in the equation V - ¢ = 0 we get the extra advection term V - (v). Very often we deal with
incompressible flows, V - v = 0 such that the advective term becomes v - Ve. The mass transport
equation for a substance then reads

Jc

_ . = 2
8t+v Ve =aV-e.

## Transport of heat in fluids {#sec-advec-app-heat}

The derivation of the heat equation in Section Section 3.66.2 is limited to heat transport in solid
bodies. If we turn the attention to heat transport in fluids, we get a material derivative of the

internal energy in (3.98),

De
PR

and more terms if work by stresses is also included, where

De Oe
E—E‘F’U'Ve,

v being the velocity of the fluid. The convective term v- Ve must therefore be added to the governing
equation, resulting typically in

00 (Z +o. VT) _ V- (kVT) + f, (4.13)

where f is some external heating inside the medium.

4.18. Exercise: Analyze 1D stationary convection-diffusion problem

Explain the observations in the numerical experiments from Sections Section 4.13 and Section 4.14
by finding exact numerical solutions.

@ The difference equations allow solutions on the form Ai, where

A is an unknown constant and i is a mesh point counter. There are two solutions for A,
so the general solution is a linear combination of the two, where the constants in the linear
combination are determined from the boundary conditions.

4.19. Exercise: Interpret upwind difference as artificial diffusion

Consider an upwind, one-sided difference approximation to a term du/dz in a differential equation.
Show that this formula can be expressed as a centered difference plus an artificial diffusion term
of strength proportional to Az. This means that introducing an upwind difference also means
introducing extra diffusion of order O(Ax).
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4.20. Advection Schemes with Devito

Having understood the mathematical properties and challenges of advection schemes in the previous
sections, we now implement these methods using Devito’s symbolic framework. Devito allows us to
write the discrete equations in a form close to the mathematical notation while generating optimized
code automatically.

4.20.1. The Advection Equation

The 1D linear advection equation is:

ou ou

where c is the advection velocity (assumed constant and positive). The exact solution is:
u(z,t) = I(x — ct)

which represents the initial condition I(x) traveling to the right at velocity ¢ without change in
shape.

4.20.2. Devito Implementation Patterns

Unlike diffusion and wave equations, the advection equation requires careful treatment of the spatial
derivative. Centered differences lead to instability (as we saw with the FTCS scheme), so we need
alternative approaches:

Scheme Spatial Discretization Order Key Property

Upwind Backward difference 1st Stable, diffusive

Lax-Wendroff  Centered + diffusion 2nd Less diffusion, some
dispersion

Lax- Averaged neighbors 1st Very diffusive but robust

Friedrichs

All schemes require the CFL condition: C' = cAt/Az < 1.
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Property Diffusion Wave Advection

4.20.3. Comparison with Wave and Diffusion Equations

The advection equation differs fundamentally from the diffusion and wave equations we’ve solved
previously:

Property Diffusion Wave Advection
time_order 1 2 1

Spatial deriv. ~ 2nd (.dx2) 2nd (.laplace) Ist (.dx)
Stability F <05 c<1 c<1
Centered space Stable Stable Unstable
Information Spreads both ways Spreads both ways One direction

The key difference is that advection has directional information flow, which requires using upwind
differences rather than centered differences.

4.20.4. Upwind Scheme Implementation

The upwind scheme uses a backward difference for the spatial derivative when ¢ > 0:

Ak A el /R
At Ax
which gives the update formula:
W = - O] — ) (4.15)

In Devito, we express this using shifted indexing:

from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np

def solve_advection_upwind(L, c, Nx, T, C, I):
"""Upwind scheme for 1D advection."""
# Grid setup
dx = L / Nx
dt =C *xdx / c

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=1)
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# Set initial condition
x_coords = np.linspace(0, L, Nx + 1)
u.datal0, :] = I(x_coords)

# Courant number as constant
courant = Constant(name='C', value=C)

# Upwind stencil: u”{n+1} = u - C*(u - ulx-dx])
u_minus = u.subs(x_dim, x_dim - x_dim.spacing)
stencil = u - courant * (u - u_minus)

update = Eq(u.forward, stencil)

op = Operator([update])
# ... time stepping loop

The key line is:

u_minus = u.subs(x_dim, x_dim - x_dim.spacing)

This creates a reference to uj ; by substituting x_dim - x_dim.spacing for x_dim in the
TimeFunction u.

4.20.5. Lax-Wendroff Scheme Implementation

The Lax-Wendroff scheme achieves second-order accuracy by including both a centered advection
term and a diffusion-like correction:

2

(W — 207 + i)

P = — S (ufy g

u’L 3 2

This can be written using Devito’s derivative operators:

def solve advection_ lax wendroff(L, c, Nx, T, C, I):
"""Lax-Wendroff scheme for 1D advection."""
dx = L / Nx
dt = C *xdx / ¢

grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

x_coords = np.linspace(0, L, Nx + 1)
u.datal[0, :] = I(x_coords)

courant = Constant(name='C', value=C)

# Lax-Wendroff: u - (C/2)*dx*u.dx + (C*/2)*dx**u.dx2
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# u.dx = centered first derivative
# u.dx2 = centered second derivative
stencil = u - O0.5%courant*dx*u.dx + 0.5*courant**2*dx**2*u.dx?2

update = Eq(u.forward, stencil)

op = Operator([update])
# ... time stepping loop

Here we use Devito’s built-in derivative operators:

e u.dx computes the centered first derivative (u;+1 — u;—1)/(2Ax)
e u.dx2 computes the centered second derivative (u;4+1 — 2u; +ui—1)/ Ax?

4.20.6. Lax-Friedrichs Scheme Implementation

The Lax-Friedrichs scheme is simpler but more diffusive:

1
+1 _
u = 5(“?“ +uiq) — g(u?ﬂ —uiq)
def solve_advection_lax_friedrichs(L, c, Nx, T, C, I):
"""Lax-Friedrichs scheme for 1D advection."""
dx = L / Nx
dt = C *xdx / ¢

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=1)

x_coords = np.linspace(0, L, Nx + 1)
u.datal[0, :] = I(x_coords)

courant = Constant(name='C', value=C)

# Neighbor values

u_plus = u.subs(x_dim, x_dim + x_dim.spacing)

u_minus = u.subs(x_dim, x_dim - x_dim.spacing)

# Lax-Friedrichs stencil

stencil = 0.5%(u_plus + u_minus) - 0.5*courant*(u_plus - u_minus)

update = Eq(u.forward, stencil)

op = Operator([update])
# ... time stepping loop

438



4. Advection-Dominated Equations

4.20.7. Periodic Boundary Conditions

For advection problems, periodic boundary conditions are often useful to study wave propagation
without boundary effects:

t_dim = grid.stepping_dim

# Periodic BC: u[0] wraps to u[Nx], u[Nx] wraps to u[0]
bc_left = Eq(ult_dim + 1, 0], ult_dim, Nx])
bc_right = Eq(ult_dim + 1, Nx], ult_dim + 1, 0])

op = Operator([update, bc_left, bc_right])

4.20.8. Using the Solvers

The complete solver implementation in src/advec/adveclD_devito.py provides convenient inter-
faces:

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs,
exact_advection_periodic

)

import numpy as np

# Define initial condition
def I(x):
return np.exp(-0.5*%((x - 0.25)/0.05)**2)

# Solve with upwind scheme

result = solve_advection_upwind(
L=1.0, c=1.0, Nx=100, T=0.5, C=0.8, I=I,
periodic_bc=True

# Compare with exact solution

u_exact = exact_advection_periodic(result.x, result.t, c=1.0, L=1.0, I=I)
error = np.max(np.abs(result.u - u_exact))

print (f"Max error: {error:.6f}")

4.20.9. Scheme Comparison

The three schemes exhibit different numerical behaviors:
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import matplotlib.pyplot as plt

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs,
exact_advection_periodic

)

import numpy as np

def I(x):
return np.exp(-0.5*%((x - 0.25)/0.05)*%2)

L, ¢, Nx, T, C=1.0, 1.0, 50, 0.5, 0.8

# Solve with all three schemes

r_upwind = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)
r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
r_1f = solve_advection_lax_friedrichs(L, c, Nx, T, C, I, periodic_bc=True)

# Exact solution
u_exact = exact_advection_periodic(r_upwind.x, r_upwind.t, c, L, I)

plt.figure(figsize=(10, 6))

plt.plot(r_upwind.x, u_exact, 'k-', lw=2, label='Exact')
plt.plot(r_upwind.x, r_upwind.u, 'b--', label='Upwind')
plt.plot(r_lw.x, r_lw.u, 'r-.', label='Lax-Wendroff')
plt.plot(r_1f.x, r_1f.u, 'g:', label='Lax-Friedrichs')
plt.legend ()

plt.xlabel('x")

plt.ylabel('u')

plt.title(f'Advection: Nx={Nx}, C={C}, T={T}')
plt.savefig('advec_scheme_comparison.pdf')

The Lax-Wendroff scheme typically preserves the wave amplitude better but may show small
oscillations. The upwind and Lax-Friedrichs schemes are more diffusive, causing the wave to spread
and reduce in amplitude.

4.20.10. Convergence Testing

We can verify the convergence rates of the schemes:

from src.advec import (
solve_advection_upwind,

solve_advection_lax_wendroff,
convergence_test_advection
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# Test upwind (expect 1st order)

sizes, errors, rate = convergence_test_advection(
solve_advection_upwind,
grid_sizes=[25, 50, 100, 200],
T=0.25, C=0.8

)

print (f"Upwind convergence rate: {rate:.2f}") # ~1.0

# Test Lax-Wendroff (expect 2nd order)

sizes, errors, rate = convergence_test_advection(
solve_advection_lax_wendroff,
grid_sizes=[25, 50, 100, 200],
T=0.25, C=0.8

)

print (f"Lax-Wendroff convergence rate: {rate:.2f}") # ~2.0

4.20.11. Key Takeaways
1. Upwind differencing is essential for stable advection schemes—centered differences in space
are unconditionally unstable.
2. The Courant number C' = cAt/Ax controls stability; all schemes require C' < 1.

3. Trade-offs exist between accuracy and numerical diffusion:

o Upwind: Stable, 1st order, diffusive
o Lax-Wendroff: 2nd order, less diffusion, may have small oscillations
e Lax-Friedrichs: Very stable, very diffusive

4. Devito’s shifted indexing via u.subs(x_dim, x_dim - x_dim.spacing) allows expressing
upwind differences naturally.

5. Periodic BCs are implemented by explicitly setting boundary equations that copy values
from the opposite end of the domain.

4.21. Exercises: Advection with Devito

4.21.1. Exercise 1: Verify CFL Stability Condition

The upwind scheme requires C' < 1 for stability.

a) Run the upwind solver with C' = 0.5, C' = 0.9, and C' = 1.0 for T' = 1.0 with a Gaussian initial
condition. Verify that all solutions remain bounded.

b) Try C' = 1.01 and observe what happens. How quickly does the instability grow?

c) For C' = 1.0 exactly, the upwind scheme should reproduce the exact solution (up to machine
precision). Verify this numerically.
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@ Solution

from src.advec import solve_advection_upwind, exact_advection_periodic
import numpy as np

def I(x):
return np.exp(-0.5%((x - 0.25)/0.05)**2)

# Part a: Stable Courant numbers
for C in [0.5, 0.9, 1.0]:
result = solve_advection_upwind(
L=1.0, c=1.0, Nx=100, T=1.0, C=C, I=I
)
print (£"C={C}: u in [{result.u.min():.4f}, {result.u.max():.4f}]")

# Part b: Slightly unstable
# This will raise ValueError since C > 1 violates stability
try:

result = solve_advection_upwind(

L=1.0, c=1.0, Nx=100, T=1.0, C=1.01, I=I

)
except ValueError as e:

print (f"Error: {e}")

# Part c: Exact at C=1
result = solve_advection_upwind(
L=1.0, c=1.0, Nx=100, T=0.5, C=1.0, I=I, periodic_bc=True
)
u_exact = exact_advection_periodic(result.x, result.t, 1.0, 1.0, I)
error = np.max(np.abs(result.u - u_exact))
print (f"Error at C=1: {error:.2e}") # Should be ~machine precision

4.21.2. Exercise 2: Compare Numerical Diffusion

The upwind scheme introduces numerical diffusion that causes the wave amplitude to decrease over

time.

a) Run all three schemes (upwind, Lax-Wendroff, Lax-Friedrichs) with C' = 0.8 for 7' = 2.0 and
track the maximum value of u over time.

b) Plot the amplitude decay for each scheme. Which scheme preserves the amplitude best?

c¢) For the Gaussian initial condition, measure the “width” of the pulse (e.g., the distance between
points where v = 0.5 max(u)) at T'= 0 and 7' = 2. How much has each scheme spread the pulse?
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@ Solution
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from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs

)

import numpy as np

import matplotlib.pyplot as plt

def I(x):
return np.exp(-0.5*((x - 0.25)/0.05)**2)

# Run all schemes with history
L, c, Nx, T, C=1.0, 1.0, 100, 2.0, 0.8

r_up = solve_advection_upwind(L, c, Nx, T, C, I, save_history=True)
r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, save_history=True)

r_1f = solve_advection_lax_friedrichs(L, c, Nx, T, C, I, save_history=True)

# Part b: Track amplitude decay

max_up = [np.max(u) for u in r_up.u_history]
max_lw = [np.max(u) for u in r_lw.u_history]
max_1f = [np.max(u) for u in r_1f.u_history]

plt.figure()
plt.plot(r_up.t_history, max_up, 'b-', label='Upwind')

plt.plot(r_lw.t_history, max_lw, 'r--', label='Lax-Wendroff')
plt.plot(r_1f.t_history, max_1f, 'g-.', label='Lax-Friedrichs')
plt.axhline(1.0, color='k', linestyle=':', label='Exact')

plt.xlabel('Time")

plt.ylabel('Max amplitude')
plt.legend()

plt.title('Amplitude decay comparison')
plt.savefig('amplitude_decay.pdf"')

# Part c: Measure pulse width at half-maximum
def half width(u, x):

u_max = np.max(u)

half max = 0.5 * u_max

above = np.where(u >= half_max) [0]

if len(above) > O:

return x[above[-1]] - x[above[0]]
return O

print("Initial width:", half_width(I(r_up.x), r_up.x))
print ("Upwind width:", half_width(r_up.u, r_up.x))

print ("Lax-Wendroff width:", half width(r_lw.u, r_lw.x))
print ("Lax-Friedrichs width:", half_width(r_1f.u, r_1f.x))
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4.21.3. Exercise 3: Convergence Rate Verification
Verify the theoretical convergence rates: - Upwind: 1st order - Lax-Wendroff: 2nd order - Lax-
Friedrichs: 1st order

a) Use the convergence_test_advection function with grid sizes [25, 50, 100, 200, 400] and verify
the rates.

b) Create a log-log plot of error vs grid size for all three schemes.

c) What happens to the convergence rate if you use a discontinuous initial condition (step function)
instead of the smooth Gaussian?
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@ Solution

from src.advec import (

)

solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs,
convergence_test_advection

import numpy as np
import matplotlib.pyplot as plt

# Part a: Verify rates
grid_sizes = [25, 50, 100, 200, 400]

sizes_up, err_up, rate_up = convergence_test_advection(

)

solve_advection_upwind, grid_sizes, T=0.25, C=0.8

print (f"Upwind rate: {rate_up:.2f}")

sizes_lw, err_lw, rate_lw = convergence_test_advection(

)

solve_advection_lax_wendroff, grid_sizes, T=0.25, C=0.8

print (f"Lax-Wendroff rate: {rate_lw:.2f}")

sizes_1f, err_1f, rate_1f = convergence_test_advection(

)

solve_advection_lax_friedrichs, grid_sizes, T=0.25, C=0.8

print (f"Lax-Friedrichs rate: {rate_1f:.2f}")

# Part b: Log-log plot

plt.
plt.
plt.
plt.

figure()

loglog(sizes_up, err_up, 'b-o', label=f'Upwind (rate={rate_up:.2f})"')
loglog(sizes_1lw, err_lw, 'r-s', label=f'Lax-Wendroff (rate={rate_lw:.2f})')
loglog(sizes_1f, err_1f, 'g-"', label=f'Lax-Friedrichs (rate={rate_l1f:.2f})'

# Reference slopes

h =
plt

plt.

plt.
plt.
plt.
plt.
plt.
plt.

np.array(sizes_up)

.loglog(h, err_up[0]*(h[0]/h), 'k--', alpha=0.5, label='0(h)"')

loglog(h, err_1lw[0]*(h[0]/h)**2, 'k:', alpha=0.5, label='0(h?)")

xlabel('Grid points')

ylabel('L2 Error')

legend ()

title('Convergence comparison')
gca() .invert_xaxis()
savefig('convergence_advec.pdf')
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4.21.4. Exercise 4: Step Function Advection

A step (Heaviside) function is a challenging test case for advection schemes because of the disconti-
nuity.

a) Advect a step function from z = 0.25 using all three schemes with C' = 0.8 and Az = 0.01.
Compare the results at T = 0.5.

b) The Lax-Wendroff scheme may show oscillations near the discontinuity (Gibbs phenomenon).
Observe and document this behavior.

¢) How does the upwind scheme handle the step? Does it preserve the sharp transition?
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@ Solution

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs,
step_initial_condition,
exact_advection_periodic

)

import numpy as np

import matplotlib.pyplot as plt

def I(x):
return np.where(x < 0.25, 1.0, 0.0)

L, ¢, Nx, T, C=1.0, 1.0, 100, 0.5, 0.8
r_up = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)

r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
r 1f solve_advection_lax_friedrichs(L, c, Nx, T, C, I, periodic_bc=True)

u_exact = exact_advection_periodic(r_up.x, r_up.t, c, L, I)

plt.figure(figsize=(10, 6))

plt.plot(r_up.x, u_exact, 'k-', lw=2, label='Exact')
plt.plot(r_up.x, r_up.u, 'b--', label='Upwind')
plt.plot(r_lw.x, r_lw.u, 'r-.', label='Lax-Wendroff')
plt.plot(r_1f.x, r_1f.u, 'g:', label='Lax-Friedrichs')
plt.legend ()

plt.xlabel('x")

plt.ylabel('u')

plt.title('Step function advection')

plt.ylim(-0.2, 1.3)

plt.savefig('step_advection.pdf')

# Note Lax-Wendroff oscillations near discontinuity

4.21.5. Exercise 5: Long-Time Integration
With periodic boundary conditions, a wave should return to its starting position after traveling one
domain length.

a) Advect a Gaussian pulse for T'= 1.0 (one complete cycle with ¢ =1, L = 1) and compare the
final solution to the initial condition.

b) Run for 7' = 10.0 (10 cycles) and measure how much the amplitude has decayed for each
scheme.
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c¢) For each scheme, estimate after how many cycles the peak amplitude drops to 50% of its initial

value.

@ Solution

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs

)

import numpy as np

def I(x):
return np.exp(-0.5*%((x - 0.25)/0.05)**2)

L, ¢, Nx, C=1.0, 1.0, 100, 0.8

# Part a: One cycle
for T in [1.0, 10.0]:

r_up = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)
solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
solve_advection_lax_friedrichs(L, c, Nx, T, C, I, periodic_bc=True)

r lw
r_1f

print(£"\nT = {T} ({int(T)} cycles):")

print(f" Upwind: max = {r_up.u.max():.4f}")
print(f" Lax-Wendroff: max = {r_lw.u.max():.4f}")
print(f" Lax-Friedrichs: max = {r_1f.u.max():.4f}")

# Part c: Find half-life
def find_halflife(solver_func, L, c, Nx, C, I, max_cycles=100):
for n in range(1l, max_cycles + 1):
T = float(n)
result = solver_func(L, c, Nx, T, C, I, periodic_bc=True)
if result.u.max() < 0.5:
return n
return max_cycles

print ("\nCycles to 50% amplitude:")
print(f" Upwind: {find_halflife(solve_advection_upwind, L, c, Nx, C, I)}")

print(f" Lax-Wendroff: {find_halflife(solve_advection_lax_wendroff, L, c, Nx, C
print(f" Lax-Friedrichs: {find_halflife(solve_advection_lax_friedrichs, L, c, N

4.21.6. Exercise 6: Effect of Courant Number

The Courant number C' affects both stability and accuracy.

449
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a) For the upwind scheme, run with C' = 0.2, 0.5, 0.8, and 1.0 for 7" = 1.0. Plot the final solutions
on the same figure.

b) Which value of C gives the best accuracy? Why?

c) Measure the L2 error for each C value and create a plot of error vs. C.
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@ Solution

from src.advec import solve_advection_upwind, exact_advection_periodic
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.exp(-0.5*%((x - 0.25)/0.05)**2)

L, ¢, Nx, T=1.0, 1.0, 100, 1.0
C_values = [0.2, 0.5, 0.8, 1.0]

plt.figure(figsize=(10, 6))

errors = []

for C in C_values:
result = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)
plt.plot(result.x, result.u, label=f'C={C}')

u_exact = exact_advection_periodic(result.x, result.t, c, L, I)
dx = L / Nx

error = np.sqrt(dx * np.sum((result.u - u_exact)**2))
errors.append (error)

# Add exact solution
u_exact = exact_advection_periodic(result.x, T, c, L, I)
plt.plot(result.x, u_exact, 'k--', lw=2, label='Exact')

plt.legend ()

plt.xlabel('x")

plt.ylabel('u')

plt.title('Effect of Courant number on upwind scheme')
plt.savefig('courant_effect.pdf')

# Error vs C

plt.figure()

plt.plot(C_values, errors, 'bo-')
plt.xlabel('Courant number C')

plt.ylabel('L2 Error')

plt.title('Error vs Courant number (Upwind)')
plt.savefig('error_vs_courant.pdf')

# C=1 gives exact solution for upwind
print ("Errors:", dict(zip(C_values, errors)))
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4.21.7. Exercise 7: Variable Velocity Field

Modify the upwind solver to handle a spatially varying velocity c(z).

a) Implement an upwind scheme for:

ou ou
e + c(:c)% =0

where the local Courant number varies: C; = ¢(x;)At/Awx.

b) Test with ¢(z) = 14 0.5sin(27z) and observe how the wave stretches and compresses as it moves
through regions of different velocity.
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@ Solution
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from devito import Grid, TimeFunction, Function, Eq, Operator, Constant
import numpy as np
import matplotlib.pyplot as plt

def solve advection variable c(L, c_func, Nx, T, dt, I):
"""Upwind scheme with spatially varying velocity."""
grid = Grid(shape=(Nx + 1,), extent=(L,))

x_dim, = grid.dimensions
t_dim = grid.stepping_dim

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=1)
¢ = Function(name='c', grid=grid)

x_coords = np.linspace(0, L, Nx + 1)
u.datal[0, :] = I(x_coords)

c.datal:] = c_func(x_coords)
dx = L / Nx
dt_const = Constant(name='dt', value=dt)

dx_const = Constant(name='dx', value=dx)

# Local Courant number: C_i = c_ i * dt / dx

# Upwind: u™{n+1} = u - (c*dt/dx)*(u - ulx-dx])

u_minus = u.subs(x_dim, x_dim - x_dim.spacing)

stencil = u - (c * dt_const / dx_const) * (u - u_minus)
update = Eq(u.forward, stencil)

# Periodic BCs
bc_left = Eq(ult_dim + 1, 0], ult_dim, Nx])
bc_right = Eq(ult_dim + 1, Nx], ult_dim + 1, 0])

op = Operator([update, bc_left, bc_right])
Nt = int(round(T / dt))
for n in range(Nt):

op.apply(time_m=n, time_M=n, dt=dt)

return u.data[Nt % 2, :].copy(), x_coords

# Test with variable velocity
def I(x):
return np.exp(-0.5%((x - 0.25)/0.05)*%2)

def c_var(x):
return 1.0 + 0.5*np.sin(2*np.pi*x)

L, Nx = 1.0, 200

dx = L / Nx

c max = 1.5 # max of c(x)

dt = 0.5 *x dx / c_max # ensure CFL < 1 everywhere
454
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4.21.8. Exercise 8: Advection-Diffusion Equation

Combine advection and diffusion:
ou ou 9%u

ot + ox Ox?
a) Implement a solver using upwind for advection and centered differences for diffusion.

b) Compare the behavior for v = 0 (pure advection), v = 0.01 (advection-dominated), and v = 0.1
(diffusion-dominated).

c) What is the stability condition when both advection and diffusion are present?
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@ Solution
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def
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from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np
import matplotlib.pyplot as plt

solve_advec diff(L, ¢, nu, Nx, T, C, I):
"""Advection-diffusion with upwind advection + centered diffusion."""
dx = L / Nx

# Stability requires both CFL and diffusion conditions
dt_adv = C * dx / c if ¢ > O else np.inf

dt_diff = 0.4 * dx**2 / nu if nu > O else np.inf

dt = min(dt_adv, dt_diff)

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions
t_dim = grid.stepping_dim

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

x_coords = np.linspace(0, L, Nx + 1)
u.datal[0, :] = I(x_coords)

C_const = Constant(name='C', value=c * dt / dx)
F_const = Constant(name='F', value=nu * dt / dx**2)

# Upwind advection + centered diffusion
u_minus = u.subs(x_dim, x_dim - x_dim.spacing)
advection = C_const * (u - u_minus)

F_const * dx**2 * u.dx2

diffusion

stencil = u - advection + diffusion
update = Eq(u.forward, stencil)

# Periodic BCs
bc_left = Eq(ult_dim + 1, 0], ult_dim, Nx])
bc_right = Eq(ult_dim + 1, Nx], ul[t_dim + 1, 0])

op = Operator([update, bc_left, bc_right])
Nt = int(round(T / dt))
for n in range(Nt):

op.apply(time_m=n, time_M=n, dt=dt)

return u.data[Nt % 2, :].copy(), x_coords

I(x):
return np.exp(-0.5*%((x - 0.25)/0.05)**2)

L, ¢, Nx, T, C=1.0, 1.0, 100, 0.5, 0.8

plt

.figure(figsize=(10, 6)) 457
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4.21.9. Exercise 9: Cosine Hat Initial Condition

The “cosine hat” is a smoother alternative to the step function:

I(z) = {cos (5%(:1; — L/lO)) ife <L/5

0 otherwise

a) Implement this initial condition and advect it using all three schemes.
b) Compare the behavior at the sharp cutoff (z = L/5) between schemes.

¢) Does the Lax-Wendroff scheme show oscillations for this smoother discontinuity?
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@ Solution

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs

)

import numpy as np

import matplotlib.pyplot as plt

def cosine_hat(x, L=1.0):
"""Cosine hat initial condition."""
result = np.zeros_like(x)
mask = x < L/5
result[mask] = np.cos(b*np.pi/L * (x[mask] - L/10))
return result

def I(x):
return cosine_hat(x, L=1.0)

L, ¢, Nx, T, C=1.0, 1.0, 100, 0.5, 0.8
r_up = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)

solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
solve_advection_lax_friedrichs(L, c, Nx, T, C, I, periodic_bc=True)

r lw
r_1f

plt.figure(figsize=(10, 6))

plt.plot(r_up.x, I(r_up.x - c*T), 'k-', lw=2, label='Exact')
plt.plot(r_up.x, r_up.u, 'b--', label='Upwind')
plt.plot(r_lw.x, r_lw.u, 'r-.', label='Lax-Wendroff')
plt.plot(r_1f.x, r_1f.u, 'g:', label='Lax-Friedrichs')
plt.legend()

plt.xlabel('x")

plt.ylabel('u')

plt.title('Cosine hat advection')
plt.savefig('cosinehat.pdf')

4.21.10. Exercise 10: Implement Leapfrog Scheme

The leapfrog scheme uses a two-level time difference:

n+1 n—1 n n
u, ' — U, Ul — U
i ) +c i+1 i—1

At I

This is a three-time-level scheme requiring special initialization for u!.

a) Implement the leapfrog scheme using Devito with time_order=2.
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b) Use the upwind scheme to compute u' from u°, then switch to leapfrog.

c) Compare the leapfrog scheme’s dispersion properties with Lax-Wendroff. Does leapfrog preserve
amplitude better?
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@ Solution
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from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np
import matplotlib.pyplot as plt

def solve_advection_leapfrog(L, c, Nx, T, C, I):
"""Leapfrog scheme with upwind initialization."""
dx = L / Nx
dt = C *xdx / ¢

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions
t_dim = grid.stepping_dim

# time_order=2 gives access to u, u.forward, u.backward
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=1)

x_coords = np.linspace(0, L, Nx + 1)

# Set u”0
u.datal0, :] = I(x_coords)

# First step: use upwind to get u"1

courant = Constant(name='C', value=C)

u_minus = u.subs(x_dim, x_dim - x_dim.spacing)
upwind_stencil = u - courant * (u - u_minus)

# For leapfrog: u™{n+1} = u™{n-1} - Cx(u"n_{i+1} - v n_{i-1})
u_plus_x = u.subs(x_dim, x_dim + x_dim.spacing)

u_minus_x = u.subs(x_dim, x_dim - x_dim.spacing)
leapfrog_stencil = u.backward - courant * (u_plus_x - u_minus_x)

# Periodic BCs
bc_left = Eq(ult_dim + 1, 0], ult_dim, Nx])
bc_right = Eq(ult_dim + 1, Nx], ul[t_dim + 1, 0])

# First step with upwind

update_first = Eq(u.forward, upwind_stencil)

op_first = Operator([update_first, bc_left, bc_right])
op_first.apply(time_m=0, time_M=0, dt=dt)

# Leapfrog for remaining steps
update_1f = Eq(u.forward, leapfrog_stencil)
op_lf = Operator([update_1f, bc_left, bc_right])

Nt = int(round(T / dt))
for n in range(1, Nt):
op_lf.apply(time_m=n, time_M=n, dt=dt)

return u.data[Nt % 3, :].copy(), x_coords

def I(x): 462
return np.exp(-0.5%((x - 0.25)/0.05)**2)
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5.1. Linear versus nonlinear equations

5.1.1. Algebraic equations

A linear, scalar, algebraic equation in z has the form
ar+b=0,

for arbitrary real constants a and b. The unknown is a number z. All other algebraic equations,
e.g., 22+ ax + b =0, are nonlinear. The typical feature in a nonlinear algebraic equation is that the
unknown appears in products with itself, like 22 or e* = 1 4+ x + %xz + %:1:3 + -

We know how to solve a linear algebraic equation, = —b/a, but there are no general methods for
finding the exact solutions of nonlinear algebraic equations, except for very special cases (quadratic
equations constitute a primary example). A nonlinear algebraic equation may have no solution,
one solution, or many solutions. The tools for solving nonlinear algebraic equations are iterative
methods, where we construct a series of linear equations, which we know how to solve, and hope
that the solutions of the linear equations converge to a solution of the nonlinear equation we want
to solve. Typical methods for nonlinear algebraic equation equations are Newton’s method, the
Bisection method, and the Secant method.

5.1.2. Differential equations

The unknown in a differential equation is a function and not a number. In a linear differential
equation, all terms involving the unknown function are linear in the unknown function or its
derivatives. Linear here means that the unknown function, or a derivative of it, is multiplied by a
number or a known function. All other differential equations are non-linear.

The easiest way to see if an equation is nonlinear, is to spot nonlinear terms where the unknown
function or its derivatives are multiplied by each other. For example, in

u'(t) = —a(t)u(t) + b(t),

the terms involving the unknown function u are linear: u’ contains the derivative of the unknown
function multiplied by unity, and au contains the unknown function multiplied by a known function.
However,

' (t) = u(t)(1 — u(t)),

is nonlinear because of the term —u? where the unknown function is multiplied by itself. Also

o ou_,
ot " Yor T
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is nonlinear because of the term wu, where the unknown function appears in a product with its
derivative. (Note here that we use different notations for derivatives: u’ or du/dt for a function u(t)
of one variable, %—1; or u; for a function of more than one variable.)

Another example of a nonlinear equation is
u” +sin(u) = 0,

because sin(u) contains products of u, which becomes clear if we expand the function in a Taylor
series:

sin(u):u—§u3—|—...

1 Mathematical proof of linearity

To really prove mathematically that some differential equation in an unknown wu is linear, show
for each term T'(u) that with u = au; + bug for constants a and b,

T(auy + buz) = aT'(uy) + bT (u2) .

For example, the term T'(u) = (sint)u/(¢) is linear because

T(auy + bug) = (sin®t)(auy (t) 4 busa(t))
= a(sin t)uy (t) + b(sin? t)us (t)
= aT(u1) + 0T (uz) .

However, T'(u) = sinu is nonlinear because

T(auy + buy) = sin(au; + bug) # asinu; + bsinuy .

5.2. A simple model problem

A series of forthcoming examples will explain how to tackle nonlinear differential equations with
various techniques. We start with the (scaled) logistic equation as model problem:

W(t) = u(t)(1 — ult)). (5.1)

This is a nonlinear ordinary differential equation (ODE) which will be solved by different strategies
in the following. Depending on the chosen time discretization of (5.1), the mathematical problem
to be solved at every time level will either be a linear algebraic equation or a nonlinear algebraic
equation. In the former case, the time discretization method transforms the nonlinear ODE into
linear subproblems at each time level, and the solution is straightforward to find since linear algebraic
equations are easy to solve. However, when the time discretization leads to nonlinear algebraic
equations, we cannot (except in very rare cases) solve these without turning to approximate, iterative
solution methods.

The next subsections introduce various methods for solving nonlinear differential equations, using
(5.1) as model. We shall go through the following set of cases:
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o explicit time discretization methods (with no need to solve nonlinear algebraic equations)

o implicit Backward Euler time discretization, leading to nonlinear algebraic equations solved by
e an exact analytical technique

e Picard iteration based on manual linearization

e a single Picard step

e Newton’s method

e implicit Crank-Nicolson time discretization and linearization via a geometric mean formula

Thereafter, we compare the performance of the various approaches. Despite the simplicity of (5.1),
the conclusions reveal typical features of the various methods in much more complicated nonlinear
PDE problems.

5.3. Linearization by explicit time discretization

Time discretization methods are divided into explicit and implicit methods. Explicit methods lead
to a closed-form formula for finding new values of the unknowns, while implicit methods give a linear
or nonlinear system of equations that couples (all) the unknowns at a new time level. Here we shall
demonstrate that explicit methods constitute an efficient way to deal with nonlinear differential
equations.

The Forward Euler method is an explicit method. When applied to (5.1), sampled at t = t,, it
results in

B YT e
o =),

which is a linear algebraic equation for the unknown value u"*!

that we can easily solve:
u" ="+ Atu™(1—u").

In this case, the nonlinearity in the original equation poses no difficulty in the discrete algebraic
equation. Any other explicit scheme in time will also give only linear algebraic equations to solve.
For example, a typical 2nd-order Runge-Kutta method for (5.1) leads to the following formulas:

1
Wt = 4 Atz (" (1= u") +u™(1 = u))) .

The first step is linear in the unknown «*. Then u* is known in the next step, which is linear in the
unknown u"t! .

5.4. Exact solution of nonlinear algebraic equations

Switching to a Backward Euler scheme for (5.1),

u — un—l

=" (1), (5.2)
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results in a nonlinear algebraic equation for the unknown value u”. The equation is of quadratic

type:
At(u™)? + (1 — At)u" —u" ' =0,

and may be solved exactly by the well-known formula for such equations. Before we do so, however,
we will introduce a shorter, and often cleaner, notation for nonlinear algebraic equations at a given
time level. The notation is inspired by the natural notation (i.e., variable names) used in a program,
especially in more advanced partial differential equation problems. The unknown in the algebraic
equation is denoted by u, while u") is the value of the unknown at the previous time level (in
general, u(® is the value of the unknown ¢ levels back in time). The notation will be frequently
used in later sections. What is meant by u should be evident from the context: u may either be 1)
the exact solution of the ODE/PDE problem, 2) the numerical approximation to the exact solution,
or 3) the unknown solution at a certain time level.

The quadratic equation for the unknown " in (5.2) can, with the new notation, be written
Fu) = Atu® + (1 — At)u —u) = 0. (5.3)

The solution is readily found to be

1

AEYN

(—1 At (1— Az - 4Atu(1)> | (5.4)

Now we encounter a fundamental challenge with nonlinear algebraic equations: the equation may
have more than one solution. How do we pick the right solution? This is in general a hard problem.
In the present simple case, however, we can analyze the roots mathematically and provide an
answer. The idea is to expand the roots in a series in At and truncate after the linear term since
the Backward Euler scheme will introduce an error proportional to At anyway. Using sympy, we
find the following Taylor series expansions of the roots:

>>> import sympy as sym

>>> dt, u_1, u = sym.symbols('dt u_1 u')

>>> rl, r2 = sym.solve(dt*u*x*2 + (1-dt)*u - u_1, u) # find roots
>>> ril

(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2xdt)

>>> r2
(dt + sqrt(dt**2 + 4xdt*u_1 - 2xdt + 1) - 1)/(2*dt)
>>> print ri.series(dt, 0, 2) # 2 terms in dt, around dt=0

-1/dt + 1 - u_1 + dt*(u_1%*2 - u_1) + 0(dt**2)
>>> print r2.series(dt, 0, 2)
u_ 1 + dtx(—u_1**2 + u_1) + 0(dt**2)

We see that the r1 root, corresponding to a minus sign in front of the square root in (5.4), behaves
as 1/At and will therefore blow up as At — 0! Since we know that u takes on finite values, actually
it is less than or equal to 1, only the r2 root is of relevance in this case: as At — 0, u — ), which
is the expected result.

For those who are not well experienced with approximating mathematical formulas by series
expansion, an alternative method of investigation is simply to compute the limits of the two roots
as At — 0 and see if a limit appears unreasonable:
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>>> print rl.limit(dt, O)
-00
>>> print r2.limit(dt, O0)
u_1

5.5. Linearization

When the time integration of an ODE results in a nonlinear algebraic equation, we must normally
find its solution by defining a sequence of linear equations and hope that the solutions of these
linear equations converge to the desired solution of the nonlinear algebraic equation. Usually, this
means solving the linear equation repeatedly in an iterative fashion. Alternatively, the nonlinear
equation can sometimes be approximated by one linear equation, and consequently there is no need
for iteration.

Constructing a linear equation from a nonlinear one requires linearization of each nonlinear term.
This can be done manually as in Picard iteration, or fully algorithmically as in Newton’s method.
Examples will best illustrate how to linearize nonlinear problems.

5.6. Picard iteration

Let us write (5.3) in a more compact form
F(u) = au®* + bu+c =0,

with a = At, b=1— At, and ¢ = —u®. Let u~ be an available approximation of the unknown u.
Then we can linearize the term u? simply by writing u~u. The resulting equation, F'(u) = 0, is now
linear and hence easy to solve:

Flu)~Fu)=au u+bu+c=0.

Since the equation F=0is only approximate, the solution u does not equal the exact solution
ue of the exact equation F'(ue) = 0, but we can hope that w is closer to ue than u~ is, and hence
it makes sense to repeat the procedure, i.e., set 4~ = u and solve F (u) = 0 again. There is no
guarantee that u is closer to ue than u~, but this approach has proven to be effective in a wide
range of applications.

The idea of turning a nonlinear equation into a linear one by using an approximation v~ of u in
nonlinear terms is a widely used approach that goes under many names: fized-point iteration, the
method of successive substitutions, nonlinear Richardson iteration, and Picard iteration. We will
stick to the latter name.

Picard iteration for solving the nonlinear equation arising from the Backward Euler discretization
of the logistic equation can be written as

C

_7au*+b’ U — u.

467



5. Nonlinear Problems

The < symbols means assignment (we set v~ equal to the value of u). The iteration is started with
the value of the unknown at the previous time level: v~ = u().

Some prefer an explicit iteration counter as superscript in the mathematical notation. Let u* be
the computed approximation to the solution in iteration k. In iteration k£ 4 1 we want to solve

c
aFF Tt bt re=0 = MM =——rT— k=0,1,...
k
au® +b
Since we need to perform the iteration at every time level, the time level counter is often also
included:

_ u"
aun,kun,k—‘rl + bun,k—i—l —u® 1 _ 0 - un,k-l—l —

m, ]620,1,...,

0_,n

with the start value u™ u™1 and the final converged value u” = u™* for sufficiently large k.

However, we will normally apply a mathematical notation in our final formulas that is as close as
possible to what we aim to write in a computer code and then it becomes natural to use v and u~
instead of v+ and u* or w**1 and u™*.

5.6.1. Stopping criteria

The iteration method can typically be terminated when the change in the solution is smaller than a
tolerance €,:
lu —u™| < ey,

or when the residual in the equation is sufficiently small (< €,),
|F(u)| = |au® +bu+ c| < €.

#+#F# A single Picard iteration Instead of iterating until a stopping criterion is fulfilled, one may
iterate a specific number of times. Just one Picard iteration is popular as this corresponds to
the intuitive idea of approximating a nonlinear term like (u™)? by u"~'u™. This follows from the
linearization v~ u" and the initial choice of v~ = u™~! at time level t,,. In other words, a single
Picard iteration corresponds to using the solution at the previous time level to linearize nonlinear
terms. The resulting discretization becomes (using proper values for a, b, and ¢)

1
=u"(1—u"), (5.5)

no_

At

u

which is a linear algebraic equation in the unknown «", making it easy to solve for u™ without any
need for an alternative notation.

We shall later refer to the strategy of taking one Picard step, or equivalently, linearizing terms with
use of the solution at the previous time step, as the Picard! method. It is a widely used approach in
science and technology, but with some limitations if At is not sufficiently small (as will be illustrated
later).
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1 Equation (5.5) does not

correspond to a “pure” finite difference method where the equation is sampled at a point and
derivatives replaced by differences (because the u"~! term on the right-hand side must then
be u™). The best interpretation of the scheme (5.5) is a Backward Euler difference combined
with a single (perhaps insufficient) Picard iteration at each time level, with the value at the
previous time level as start for the Picard iteration.

5.7. Linearization by a geometric mean

We consider now a Crank-Nicolson discretization of (5.1). This means that the time derivative is
approximated by a centered difference,

[Diu = u(1l — u)]”Jr%,

written out as T
n I %
E— = Co— oyt ()2, (5.6)

The term ™3 is normally approximated by an arithmetic mean,

n+ ~ %(un_i_un—i-l)’

N

u

such that the scheme involves the unknown function only at the time levels where we actually intend
to compute it. The same arithmetic mean applied to the nonlinear term gives

1
(un—k%)Q ~ Z(un + un—',—l)Q7

which is nonlinear in the unknown u"*!. However, using a geometric mean for (u"2)? is a way of
linearizing the nonlinear term in (5.6):
1
(un+2)2 ~ unun+1 )

1
Using an arithmetic mean on the linear 412 term in (5.6) and a geometric mean for the second

term, results in a linearized equation for the unknown u"+1:
untt —ym 1
= S )
which can readily be solved:
1
n+1 1+ QAt n

= u- .
1+ Atun — SAt

This scheme can be coded directly, and since there is no nonlinear algebraic equation to iterate
over, we skip the simplified notation with u for «"*! and u(!) for «”. The technique with using
a geometric average is an example of transforming a nonlinear algebraic equation to a linear one,
without any need for iterations.
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The geometric mean approximation is often very effective for linearizing quadratic nonlinearities.
Both the arithmetic and geometric mean approximations have truncation errors of order At? and
are therefore compatible with the truncation error O(At?) of the centered difference approximation
for v/ in the Crank-Nicolson method.

Applying the operator notation for the means and finite differences, the linearized Crank-Nicolson
scheme for the logistic equation can be compactly expressed as

[Diu = @ + ?t’g]’wé .

1 Remark

If we use an arithmetic instead of a geometric mean for the nonlinear term in (5.6), we end up
with a nonlinear term (u"*1)2. This term can be linearized as u~u"*! in a Picard iteration
approach and in particular as u"u"*! in a Picardl iteration approach. The latter gives a
scheme almost identical to the one arising from a geometric mean (the difference in u™*! being
At (ut —u) & $AtR u, de., a difference of size At?).

5.8. Newton’s method

The Backward Euler scheme (5.2) for the logistic equation leads to a nonlinear algebraic equation
(5.3). Now we write any nonlinear algebraic equation in the general and compact form

F(u)=0.

Newton’s method linearizes this equation by approximating F'(u) by its Taylor series expansion
around a computed value v~ and keeping only the linear part:

1

Flu)=Fu )+ F(u )(u—u )+ =F'"(u ) (u—u)?+---

N |

~Fu )+ F'u ) (u—u)=F(u).
The linear equation F(u) = 0 has the solution

_ Fw)
Fr(u=)

Uu=u

Expressed with an iteration index in the unknown, Newton’s method takes on the more familiar
mathematical form )

F(u

s :uk—i( ), kE=0,1,...

F'(uF)
It can be shown that the error in iteration k£ 4+ 1 of Newton’s method is proportional to the square
of the error in iteration k, a result referred to as quadratic convergence. This means that for
small errors the method converges very fast, and in particular much faster than Picard iteration
and other iteration methods. (The proof of this result is found in most textbooks on numerical

analysis.) However, the quadratic convergence appears only if u* is sufficiently close to the solution.
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Further away from the solution the method can easily converge very slowly or diverge. The reader
is encouraged to do Exercise Section 5.38 to get a better understanding for the behavior of the
method.

Application of Newton’s method to the logistic equation discretized by the Backward Euler method
is straightforward as we have

F(u):au2+bu+c, a:Aub:l—At,c:—u(l),

and then
F'(u) =2au+b.

The iteration method becomes

~au )P +bu +c _
= . 5.7
u=u" + Sy eI —u (5.7)

At each time level, we start the iteration by setting v~ = u(!). Stopping criteria as listed for the
Picard iteration can be used also for Newton’s method.

An alternative mathematical form, where we write out a, b, and ¢, and use a time level counter n
and an iteration counter k, takes the form

At(u™F)2 4+ (1 — At)u™F — "t .0

nk+l _ , nk
“ w 2Atu™k 41 — At D

= un_1’ (58)

for k=0,1,.... A program implementation is much closer to (5.7) than to (5.8), but the latter is
better aligned with the established mathematical notation used in the literature.

5.9. Relaxation

One iteration in Newton’s method or Picard iteration consists of solving a linear problem F(u) =0.
Sometimes convergence problems arise because the new solution u of a (u) = 0 is “too far away”
from the previously computed solution u~. A remedy is to introduce a relaxation, meaning that we
first solve F (u*) = 0 for a suggested value u* and then we take u as a weighted mean of what we
had, u~, and what our linearized equation F=0 suggests, u*:

u=wu"+ (1 -whu .
The parameter w is known as a relazation parameter, and a choice w < 1 may prevent divergent
iterations.

Relaxation in Newton’s method can be directly incorporated in the basic iteration formula:

=Uu —w F(u_)
u= ) (5.9)
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5.10. Implementation and experiments

The program logistic.py contains implementations of all the methods described above. Below is
an extract of the file showing how the Picard and Newton methods are implemented for a Backward
FEuler discretization of the logistic equation.

def BE_ logistic(u0, dt, Nt, choice=“Picard”, eps_r=1e-3, omega=1, max__iter=1000): if choice ==
“Picardl”: choice = “Picard” max iter = 1

u = np.zeros(Nt + 1)
iterations = []

ul0] = u0

for n in range(l, Nt + 1):
a =dt
b=1-dt
c = -uln - 1]

if choice in ("ri", "r2"):
rl, r2 = quadratic_roots(a, b, c)
u[n] = r1 if choice == "ri1" else r2
iterations.append(0)

elif choice == "Picard":

def F(u):
return a * ux*2 + b * u + c

u_ = uln - 1]

k=0

while abs(F(u_)) > eps_r and k < max_iter:
u_ = omega * (-c / (a * u_ + b)) + (1 - omega) * u_
k += 1

uln] = u

iterations.append (k)
elif choice == "Newton":

def F(u):
return a * ux*2 + b *x u + c

def dF(u):
return 2 * a *x u + b

u_ = uln - 1]

k=0

while abs(F(u_)) > eps_r and k < max_iter:
u_ =u_ - F(u_ ) / dF(u_)
k += 1

uln] = u_
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iterations.append (k)
return u, iterations

" “python
def BE_logistic(uO, dt, Nt, choice='Picard',
eps_r=1E-3, omega=1, max_iter=1000):
if choice == 'Picardl':
choice = 'Picard'
max_iter = 1

u = np.zeros(Nt+1)

iterations = []
ul0] = u0
for n in range(l, Nt+1):
a = dt
b=1-4dt
¢ = —ul[n-1]
if choice == 'Picard':
def F(u):

return a*u*x*2 + b*u + c

u_ = uln-1]

k=0

while abs(F(u_)) > eps_r and k < max_iter:
u_ = omegax(-c/(a*xu_ + b)) + (l-omega)*u_
k+=1

uln] = u

iterations.append (k)
elif choice == 'Newton':

def F(u):
return a*u*x*2 + b*u + c

def dF(u):
return 2%a*u + b

u_ = uln-1]

k=0

while abs(F(u_)) > eps_r and k < max_iter:
u_=u_ - F(u_)/dF(u_)
k += 1

uln] = u_

iterations.append (k)
return u, iterations
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The Crank-Nicolson method utilizing a linearization based on the geometric mean gives a simpler
algorithm:

def CN_logistic(uO, dt, Nt):
u = np.zeros(Nt + 1)
ul0] = u0
for n in range(0, Nt):
uln + 1] = (1 + 0.5 * dt) / (1 + dt * ul[n] - 0.5 * dt) * uln]
return u

We may run experiments with the model problem (5.1) and the different strategies for dealing with
nonlinearities as described above. For a quite coarse time resolution, At = 0.9, use of a tolerance
€, = 0.1 in the stopping criterion introduces an iteration error, especially in the Picard iterations,
that is visibly much larger than the time discretization error due to a large At. This is illustrated
by comparing the upper two plots in Figure Figure 5.1. The one to the right has a stricter tolerance
€ = 1073, which causes all the curves corresponding to Picard and Newton iteration to be on top
of each other (and no changes can be visually observed by reducing €, further). The reason why
Newton’s method does much better than Picard iteration in the upper left plot is that Newton’s
method with one step comes far below the ¢, tolerance, while the Picard iteration needs on average
7 iterations to bring the residual down to €, = 10~!, which gives insufficient accuracy in the solution
of the nonlinear equation. It is obvious that the Picard1 method gives significant errors in addition
to the time discretization unless the time step is as small as in the lower right plot.

The BE exact curve corresponds to using the exact solution of the quadratic equation at each time
level, so this curve is only affected by the Backward Fuler time discretization. The CN gm curve
corresponds to the theoretically more accurate Crank-Nicolson discretization, combined with a
geometric mean for linearization. This curve appears more accurate, especially if we take the plot
in the lower right with a small At and an appropriately small €, value as the exact curve.

When it comes to the need for iterations, Figure Figure 5.2 displays the number of iterations required
at each time level for Newton’s method and Picard iteration. The smaller At is, the better starting
value we have for the iteration, and the faster the convergence is. With At = 0.9 Picard iteration
requires on average 32 iterations per time step, but this number is dramatically reduced as At is
reduced.

However, introducing relaxation and a parameter w = 0.8 immediately reduces the average of 32 to
7, indicating that for the large At = 0.9, Picard iteration takes too long steps. An approximately
optimal value for w in this case is 0.5, which results in an average of only 2 iterations! An even
more dramatic impact of w appears when At = 1: Picard iteration does not convergence in 1000
iterations, but w = 0.5 again brings the average number of iterations down to 2.

Remark. The simple Crank-Nicolson method with a geometric mean for the quadratic nonlinearity
gives visually more accurate solutions than the Backward Euler discretization. Even with a tolerance
of €, = 1073, all the methods for treating the nonlinearities in the Backward Euler discretization
give graphs that cannot be distinguished. So for accuracy in this problem, the time discretization is
much more crucial than e,. Ideally, one should estimate the error in the time discretization, as the
solution progresses, and set €, accordingly.
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Figure 5.1.: Impact of solution strategy and time step length on the solution.
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5.11. Generalization to a general nonlinear ODE

Let us see how the various methods in the previous sections can be applied to the more generic
model
u' = f(uat)7 (510)

where f is a nonlinear function of w.

5.11.1. Explicit time discretization

Explicit ODE methods like the Forward Euler scheme, Runge-Kutta methods and Adams-Bashforth
methods all evaluate f at time levels where u is already computed, so nonlinearities in f do not
pose any difficulties.

5.11.2. Backward Euler discretization

Approximating u’ by a backward difference leads to a Backward Euler scheme, which can be written
as
F(u™) =u" — At f(u"™,t,) —u""1 =0,

or alternatively
F(u) =u— At fu, t,) —uM =0.

A simple Picard iteration, not knowing anything about the nonlinear structure of f, must approximate

F (s tn) by f(u 1) A
F(u) =u— At f(u™,t,) —u) .

The iteration starts with «~ = u(!) and proceeds with repeating
W= At f(u ) +ulY, u=wut+ (1w, uT <~

until a stopping criterion is fulfilled.

1 Explicit vs implicit treatment of nonlinear terms

Evaluating f for a known u~ is referred to as explicit treatment of f, while if f(u,t) has
some structure, say f(u,t) = u?, parts of f can involve the unknown u, as in the manual
linearization (u~)?u, and then the treatment of f is “more implicit” and “less explicit”. This
terminology is inspired by time discretization of u’ = f(u,t), where evaluating f for known u
values gives explicit schemes, while treating f or parts of f implicitly, makes f contribute to
the unknown terms in the equation at the new time level.

Explicit treatment of f usually means stricter conditions on At to achieve stability of time
discretization schemes. The same applies to iteration techniques for nonlinear algebraic
equations: the “less” we linearize f (i.e., the more we keep of u in the original formula), the
faster the convergence may be.

We may say that f(u,t) = u3 is treated explicitly if we evaluate f as (u~)3, partially implicit if
we linearize as (u~)?u and fully implicit if we represent f by u®. (Of course, the fully implicit
representation will require further linearization, but with f(u,t) = u? a fully implicit treatment
is possible if the resulting quadratic equation is solved with a formula.)
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For the ODE v/ = —u? with f(u,t) = —u?® and coarse time resolution At = 0.4, Picard iteration
with (u™)%u requires 8 iterations with €, = 1073 for the first time step, while (u~)3 leads to
22 iterations. After about 10 time steps both approaches are down to about 2 iterations per
time step, but this example shows a potential of treating f more implicitly.

A trick to treat f implicitly in Picard iteration is to evaluate it as f(u™,t)u/u”. For a
polynomial f, f(u,t) = u™, this corresponds to (u~)™u/u~ = (u~)™ lu. Sometimes this
more implicit treatment has no effect, as with f(u,t) = exp(—u) and f(u,t) = In(1 + u), but
with f(u,t) =sin(2(u + 1)), the f(u™,t)u/u~ trick leads to 7, 9, and 11 iterations during the
first three steps, while f(u™,t) demands 17, 21, and 20 iterations. (Experiments can be done
with the code ODE_Picard_tricks.py.)

Newton’s method applied to a Backward Euler discretization of v’ = f(u,t) requires computation of
the derivative

0
Fl(u)=1- Ata—i(u,tn) :
Starting with the solution at the previous time level, u~ = u) | we can just use the standard
formula "
F(u~ - — At T AN
u=u —w /(u ):u_—wu f(au it) = U . (5.11)
F'(u™) 1 — Aty f(u™, tn)

5.11.3. Crank-Nicolson discretization

The standard Crank-Nicolson scheme with arithmetic mean approximation of f takes the form

wttl — g1

A = oW ) + ().

We can write the scheme as a nonlinear algebraic equation
1 1
Flu) =u—u® — At futagr) - At§f(u(1),tn) =0. (5.12)
A Picard iteration scheme must in general employ the linearization
; W _ At LPYey
F(U’) =u—-u _Atif(u 7tn+1)_At§f(u 7tn)7
while Newton’s method can apply the general formula (5.11) with F'(u) given in (5.12) and
of

1
Fl(u)=1- 5At%(u,tnﬂ) :

5.12. Systems of ODEs

We may write a system of ODEs
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%Uo(t) = fo(uo(t), ul(t), e 7UN(t)7t)7
%ul(t) — Fi(uo(), ur(t), ... un (), 1),

Sot() = Fnluolt) wr (1), un (1), ),

as
u' = f(u,t), u(0) =",

if we interpret u as a vector u = (ug(t),ui(t),...,un(t)) and f as a vector function with components
(fO(ua t)v fl(ua t)’ R fN(ua t))

Most solution methods for scalar ODEs, including the Forward and Backward Euler schemes and
the Crank-Nicolson method, generalize in a straightforward way to systems of ODEs simply by

using vector arithmetics instead of scalar arithmetics, which corresponds to applying the scalar
scheme to each component of the system. For example, here is a backward difference scheme applied

to each component,

ul _un—l

. Ato :fO(un>tn)7
u™ _un—l

! Atl :fl(un>tn)7
u? _unfl
NN = (),

which can be written more compactly in vector form as

1

= f(u",ty).

no_ "

At

u

This is a system of algebraic equations,
u — At f(u t,) —u"t =0,

or written out

uy — At fo(u", tn) — ugfl =0,

uly — At fn(u” ) —ut =0.
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5.12.1. Example

We shall address the 2 x 2 ODE system for oscillations of a pendulum subject to gravity and air
drag. The system can be written as

w = —sinf — fw|w|, (5.13)
0=w, (5.14)

where [ is a dimensionless parameter (this is the scaled, dimensionless version of the original,
physical model). The unknown components of the system are the angle 6(¢) and the angular velocity
w(t). We introduce ugp = w and u; = 6, which leads to

ug = fo(u,t) = —sinwuy — Buo|uol,

u’n—l—l —ul 1 1 1
R el
1 1
~ —sin (2( nil uln)) ~ B )+ o), (5.15)
Tt — ntd 1 e
=u ~ U 5.16
At 0 2( +ug) - (5.16)
This is a coupled system of two nonlinear algebraic equations in two unknowns ugH and u”“.
Using the notation ug and w1 for the unknowns ug'H and )" in this system, writing u( ) and u( )

for the previous values uj and u}, multiplying by At and moving the terms to the left- hand sides,
gives

1
uy — uél) + At sin (2(u1 —i—u(l))) + Atﬁ(uo —|—u )\u —|—u \ =0, (5.17)

1
up — ugl) - §At(u0 + u(()l)) =0. (5.18)

Obviously, we have a need for solving systems of nonlinear algebraic equations, which is the topic of
the next section.

5.13. Systems of nonlinear algebraic equations

Implicit time discretization methods for a system of ODEs, or a PDE, lead to systems of nonlinear
algebraic equations, written compactly as
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where u is a vector of unknowns u = (ug,...,un), and F' is a vector function: F' = (Fp,..., Fy).
The system at the end of Section Section 5.12 fits this notation with N = 1, Fy(u) given by the
left-hand side of (5.17), while F(u) is the left-hand side of (5.18).

Sometimes the equation system has a special structure because of the underlying problem, e.g.,

with A(u) as an (N +1) x (N +1) matrix function of u and b as a vector function: b = (b, ...,bn).

We shall next explain how Picard iteration and Newton’s method can be applied to systems like
F(u) = 0 and A(u)u = b(u). The exposition has a focus on ideas and practical computations.
More theoretical considerations, including quite general results on convergence properties of these
methods, can be found in Kelley (Kelley 1995).

5.14. Picard iteration

We cannot apply Picard iteration to nonlinear equations unless there is some special structure. For
the commonly arising case A(u)u = b(u) we can linearize the product A(u)u to A(u™)u and b(u)
as b(u~). That is, we use the most previously computed approximation in A and b to arrive at a
linear system for u:

A relaxed iteration takes the form
Aw )u* =bu"), w=wu"+ (1 —w)u"

In other words, we solve a system of nonlinear algebraic equations as a sequence of linear systems.

1 Algorithm for relaxed Picard iteration
Given A(u)u = b(u) and an initial guess u ™, iterate until convergence:
1. solve A(u™)u (u™) with respect to u*
* -

*—p
2. u=wu*+ (1 -wu
3. U 4~ u

“Until convergence” means that the iteration is stopped when the change in the unknown, |ju —u~||,
or the residual [|A(u)u — bl], is sufficiently small, see Section Section 5.16 for more details.

5.15. Newton’s method

The natural starting point for Newton’s method is the general nonlinear vector equation F'(u) = 0.
As for a scalar equation, the idea is to approximate F' around a known value u©~ by a linear function
F, calculated from the first two terms of a Taylor expansion of F. In the multi-variate case these
two terms become

Fu )+ Ju ) - (u—u"),
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where J is the Jacobian of F', defined by

OF;

T = G

So, the original nonlinear system is approximated by
Fu)=Fu )+ Ju ) -(u—u") =0,

which is linear in u and can be solved in a two-step procedure: first solve Jéou = —F(u~) with
respect to the vector du and then update u = u~ + du. A relaxation parameter can easily be
incorporated:

u=w(u +ou)+(l-wu =u +wou.

1 Algorithm for Newton’s method
Given F'(u) = 0 and an initial guess u™, iterate until convergence:
1. solve Jéu = —F(u~) with respect to du

2. u=1u" +wou
3. u” +— u

For the special system with structure A(u)u = b(u),
F =" Air(u)ug — bi(u),
k

one gets
o
Zk 8u] Aig ouj

We realize that the Jacobian needed in Newton’s method consists of A(u™) as in the Picard iteration
plus two additional terms arising from the differentiation. Using the notation A’(u) for 9A/du (a
quantity with three indices: 0A;x/0u;), and b'(u) for 9b/Ou (a quantity with two indices: 0b;/du;),
we can write the linear system to be solved as

(A+ Au+V)du=—Au+b,

or

(Au™) + A'(u ) )u™ + b (u))du = —A(u )u™ +b(u”).
Rearranging the terms demonstrates the difference from the system solved in each Picard iteration:
A(u™)(u™ + 6u) — b(u™) + (A (u ) )u” +b'(u™))du=0.

Picard system

Here we have inserted a parameter v such that v = 0 gives the Picard system and v = 1 gives the
Newton system. Such a parameter can be handy in software to easily switch between the methods.
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1 Combined algorithm for Picard and Newton iteration

Given A(u), b(u), and an initial guess u™, iterate until convergence:
1. solve (A+ (A" (v )u™ +b'(u")))du = —A(u~)u™ + b(u~) with respect to du
2. u=u" +wiu

3. u” +— u

v =1 gives a Newton method while v = 0 corresponds to Picard iteration.

5.16. Stopping criteria

Let || - || be the standard Euclidean vector norm. Four termination criteria are much in use:

o Absolute change in solution: ||[u —u™|| < €,

» Relative change in solution: ||u —u™|| < €y||up||, where up denotes the start value of v~ in
the iteration

o Absolute residual: ||F(u)|| < e,

o Relative residual: ||F(u)|| < e.||F(uo)||

To prevent divergent iterations to run forever, one terminates the iterations when the current number
of iterations k exceeds a maximum value kpax.

The relative criteria are most used since they are not sensitive to the characteristic size of w.
Nevertheless, the relative criteria can be misleading when the initial start value for the iteration is
very close to the solution, since an unnecessary reduction in the error measure is enforced. In such
cases the absolute criteria work better. It is common to combine the absolute and relative measures
of the size of the residual, as in

[[F(u)]| < €rr]|F'(u0)|| + €ras

where €, is the tolerance in the relative criterion and €,, is the tolerance in the absolute criterion.
With a very good initial guess for the iteration (typically the solution of a differential equation at
the previous time level), the term ||F(ug)|| is small and €, is the dominating tolerance. Otherwise,
€rr||F'(up)|| and the relative criterion dominates.

With the change in solution as criterion we can formulate a combined absolute and relative measure
of the change in the solution:
[|ou]| < €ur||uoll + €ua,

The ultimate termination criterion, combining the residual and the change in solution with a test
on the maximum number of iterations, can be expressed as

|1F(u)|] < ép||F(uo)|| + €ra  or ||0u]] < eurlluol| + €ua or k> kmax -

## Example: A nonlinear ODE model from epidemiology {#sec-nonlin-systems-alg-SI}

A very simple model for the spreading of a disease, such as a flu, takes the form of a 2 x 2 ODE
system
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S' = —BSI, (5.19)
I' = BSI — v, (5.20)

where S(t) is the number of people who can get ill (susceptibles) and I(¢) is the number of people
who are ill (infected). The constants § > 0 and v > 0 must be given along with initial conditions
S(0) and I(0).

5.16.1. Implicit time discretization

A Crank-Nicolson scheme leads to a 2 x 2 system of nonlinear algebraic equations in the unknowns
St and 17t

n+1 _ Qn

% _ _B[SI]"TE ~ _g(snjn gL, (5.21)
n+l _ n

% = BISI]""2 — vI™ 2 ~ g(snﬂl 4 gttty %(I" + 1", (5.22)

Introducing S for S**1, SM) for §*, I for I"*t! and I for I", we can rewrite the system as

Fs(S,I)=5—5W 4+ %Atﬁ(s(l)l(l) +SI) =0, (5.23)

Fi(S,I)=1—1% — %Atﬁ(s(l)l(l) +SI) + %Atu(l(l) +1)=0. (5.24)

5.16.2. A Picard iteration

We assume that we have approximations S~ and I~ to S and I, respectively. A way of linearizing
the only nonlinear term S/ is to write 1.5 in the Fig = 0 equation and S~ in the F; = 0 equation,
which also decouples the equations. Solving the resulting linear equations with respect to the
unknowns S and I gives

s _ %Aws(l)[(l)
1+ A
I: IO 4+ LABSMH M — LA 1) '
— 3ALBS™ + Aty

Before a new iteration, we must update S~ <« S and I~ «+ I.
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5.16.3. Newton’s method

The nonlinear system (5.23)-(5.24) can be written as F(u) = 0 with F = (Fg, Fr) and u = (5, I).
The Jacobian becomes

J aeFs Fs | _ (1 —1—1%At51’ 1 TALBS 1 '
SF SFy +3AtBI 1— LABS + LAty
The Newton system J(u™)du = —F(u™) to be solved in each iteration is then
< 1+ LAt8I- 1ALBS— ) ( 3s ) B
—IABI- 1 3AtBS + iAaw o1
S~ — S+ IAp(SWIM 4 5717)
1= — 1O — IAB(SWIW 4+ S=17) + LAt (I + 17)

Remark. For this particular system of ODEs, explicit time integration methods work very well.
Even a Forward Euler scheme is fine, but (as also experienced more generally) the 4-th order
Runge-Kutta method is an excellent balance between high accuracy, high efficiency, and simplicity.

5.17. Nonlinear diffusion model

The attention is now turned to nonlinear partial differential equations (PDEs) and application of
the techniques explained above for ODEs. The model problem is a nonlinear diffusion equation for
u(ax,t):

?;; =V (a(u)Vu) + f(u), xeQ, te (0,7, (5.25)
—a(u)gz =g, x € 0y, te (0,T], (5.26)
U = ug, x € dp, te (O,T] . (5.27)

In the present section, our aim is to discretize this problem in time and then present techniques for
linearizing the time-discrete PDE problem “at the PDE level” such that we transform the nonlinear
stationary PDE problem at each time level into a sequence of linear PDE problems, which can be
solved using any method for linear PDEs. This strategy avoids the solution of systems of nonlinear
algebraic equations. In Section Section 5.22 we shall take the opposite (and more common) approach:
discretize the nonlinear problem in time and space first, and then solve the resulting nonlinear
algebraic equations at each time level by the methods of Section Section 5.13. Very often, the two
approaches are mathematically identical, so there is no preference from a computational efficiency
point of view. The details of the ideas sketched above will hopefully become clear through the
forthcoming examples.
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5.18. Explicit time integration

The nonlinearities in the PDE are trivial to deal with if we choose an explicit time integration
method for the nonlinear diffusion equation, such as the Forward Euler method:

(D u =V (a(u)Vu) + f(u)]",

or written out,
un-l—l —um
At
which is a linear equation in the unknown u"

= V- (a@)Vu") + f(u"),

+1 with solution

u" T =y £ ALV - (a(u™) V™) + Atf(u).

The disadvantage with this discretization is the strict stability criterion At < h%/(6 max a) for the
case f =0 and a standard 2nd-order finite difference discretization in 3D space with mesh cell sizes
h=Ax=Ay = Az.

5.19. Backward Euler scheme and Picard iteration

A Backward Euler scheme for the nonlinear diffusion equation reads
[Dyu=V"-(a(u)Vu) + f(u)]".
Written out,

1
=V (a(u")Vu") + f(u"). (5.28)

no_ g n—

At
This is a nonlinear PDE for the unknown function u"(x). Such a PDE can be viewed as a
time-independent PDE where u"~1(z) is a known function.

u

We introduce a Picard iteration with k as iteration counter. A typical linearization of the V -
(a(u™)Vu™) term in iteration k + 1 is to use the previously computed u™* approximation in the
diffusion coefficient: a(u™*). The nonlinear source term is treated similarly: f(u™*). The unknown
function «™**! then fulfills the linear PDE

un,kJrl _ unfl

A =V - (a(u™F)Vu ) 4 fumFy . (5.29)
The initial guess for the Picard iteration at this time level can be taken as the solution at the

previous time level: u™0 = "1,

We can alternatively apply the implementation-friendly notation where u corresponds to the unknown
we want to solve for, i.e., u™**! above, and u~ is the most recently computed value, u™* above.
Moreover, u(!) denotes the unknown function at the previous time level, u"~! above. The PDE to
be solved in a Picard iteration then looks like

u — ul)
At the beginning of the iteration we start with the value from the previous time level: v~ = u{),

and after each iteration, v~ is updated to u.
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(3 .
1 Remark on notation

The previous derivations of the numerical scheme for time discretizations of PDEs have, strictly
speaking, a somewhat sloppy notation, but it is much used and convenient to read. A more
precise notation must distinguish clearly between the exact solution of the PDE problem, here
denoted ue(x, t), and the exact solution of the spatial problem, arising after time discretization
at each time level, where (5.28) is an example. The latter is here represented as u™(x) and is
an approximation to ue(2,t,). Then we have another approximation u™*(x) to u™(x) when
solving the nonlinear PDE problem for u™ by iteration methods, as in (5.29).

In our notation,  is a synonym for v**1 and u™) is a synonym for v"~!, inspired by what
are natural variable names in a code. We will usually state the PDE problem in terms of u and
quickly redefine the symbol u to mean the numerical approximation, while ue is not explicitly
introduced unless we need to talk about the exact solution and the approximate solution at
the same time.

5.20. Backward Euler scheme and Newton’s method

At time level n, we have to solve the stationary PDE (5.28). In the previous section, we saw how
this can be done with Picard iterations. Another alternative is to apply the idea of Newton’s method
in a clever way. Normally, Newton’s method is defined for systems of algebraic equations, but the
idea of the method can be applied at the PDE level too.

5.20.1. Linearization via Taylor expansions

Let ™" be an approximation to the unknown u”. We seek a better approximation on the form
u = u™F 4 Su. (5.31)

The idea is to insert (5.31) in (5.28), Taylor expand the nonlinearities and keep only the terms that
are linear in du (which makes (5.31) an approximation for v™). Then we can solve a linear PDE for
the correction du and use (5.31) to find a new approximation

un,k—i—l _ un,k: + du

to u™. Repeating this procedure gives a sequence u™**1 k =0,1,... that hopefully converges to
the goal u™.

Let us carry out all the mathematical details for the nonlinear diffusion PDE discretized by the
Backward Euler method. Inserting (5.31) in (5.28) gives

un,k: 4 du— un—l

As =V - (a(u™F + 5u)V(u™ 4 6u)) + f(u™F + u). (5.32)

We can Taylor expand a(u™* + du) and f(u™F 4 du):
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a(u™* + 6u) = a(u™*) + Z—i(u"’kﬁu + O(0u?) ~ a(u™) + o/ (u™*)éu,
P ) = Fr )+ L@ k)u + 06u) & f) 4 ()

Inserting the linear approximations of o and f in (5.32) results in

uk 4 Sy — !
At

=V - (a(u™*)Vu™F) + fuF)+
V- (a(u™)Véu) + V - (o (1" F)5uTu*) + (5.33)
V- (o (u™F)ouVeu) + f'(uF)ou .
The term o (u™*)6uVéu is of order du? and therefore omitted since we expect the correction du to
be small (§u > du?). Reorganizing the equation gives a PDE for du that we can write in short form

as
SF (Suyu™F) = —F(u™F),

where

A = V(@) Vet £ fth),

SF (bu;u™F) = _Aitéu + V- (a(u™F)Véu)+ (5.34)

V- (o () ouVu™F) + ' (u™F)ou .

Note that dF is a linear function of du, and F' contains only terms that are known, such that the
PDE for du is indeed linear.

[J .
1 Observations

The notational form § F' = —F resembles the Newton system Jéu = —F for systems of algebraic
equations, with §F as Jdu. The unknown vector in a linear system of algebraic equations
enters the system as a linear operator in terms of a matrix-vector product (Jdu), while at the
PDE level we have a linear differential operator instead (0F).

5.20.2. Similarity with Picard iteration

We can rewrite the PDE for du in a slightly different way too if we define u™* 4 du as u*+1.

u

A —V- (a(un,k)vun,kJrl) + f(un,k:)
+ V- (o/ (W™*)ouVu™*) + f(u™F)ou. (5.35)

un,k-l—l _n—1

Note that the first line is the same PDE as arises in the Picard iteration, while the remaining terms
arise from the differentiations that are an inherent ingredient in Newton’s method.
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5.20.3. Implementation

For coding we want to introduce u for u™, v~ for «™* and v for u"!. The formulas for F and
O0F are then more clearly written as

Flum) =" = V- (a(w”)Vur) + f(u),

SF(busu™) = —ééu + V- (a(u)Viu)+

V(& (u")ouVu™) + f'(u”)ou.

The form that orders the PDE as the Picard iteration terms plus the Newton method’s derivative
terms becomes

(5.36)

u—u®
NI V- (a(u")Vu) + f(u™)+
YV - (@ (u)(u—u")Vu™) + fl(u" ) (u—=u")). (5.37)

The Picard and full Newton versions correspond to v = 0 and « = 1, respectively.

5.20.4. Derivation with alternative notation

Some may prefer to derive the linearized PDE for du using the more compact notation. We start
with inserting 4" = u~ 4 du to get

u” + du —u!
At

=V (a(u” +0u)V(u~ +du)) + f(u™ + ou).

Taylor expanding,

a(u” +6u) =~ a(u”) + o' (u”)du,
flu™ +6u) ~ f(u™) + f'(u”)ou,

and inserting these expressions gives a less cluttered PDE for du:

u” + ou—unt
At

=V (a(u)Vu )+ f(u")+

V- (a(u™)Véu) + V- (o' (u™)ouVu~ )+
V- (' (u™)ouVu) + f(u™)du.
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5.21. Crank-Nicolson discretization

A Crank-Nicolson discretization of the nonlinear diffusion equation applies a centered difference at
t

n+%:
[Dyu =V - (a(u)Vu) + f(u)]"z .

The standard technique is to apply an arithmetic average for quantities defined between two mesh
points, e.g.,
1
n+ n n+1
~—-(u"+u .

However, with nonlinear terms we have many choices of formulating an arithmetic mean:

NI

u

P % f(Gn +um)) = [FE) (5.39)
P & L) + Fm) = (F) 7, (539)
[(u) V"2 ~ a(%(u" + u”“))V(%(u” +urtY) = [a(@)Val]"ts, (5.40)
(0()Vu" ~ L (") + ol ) V(5" +um) = @l VAT, (5.41)
[o(u) V"2 ~ %(a(u")VU" + a™)Vur ) = [a(w)Va' ]z . (5.42)

A big question is whether there are significant differences in accuracy between taking the products
of arithmetic means or taking the arithmetic mean of products. Exercise Section 5.41 investigates
this question, and the answer is that the approximation is O(A#?) in both cases.

5.22. Discretization in space and Newton’s method

Section Section 5.17 presented methods for linearizing time-discrete PDEs directly prior to dis-
cretization in space. We can alternatively carry out the discretization in space of the time-discrete
nonlinear PDE problem and get a system of nonlinear algebraic equations, which can be solved by
Picard iteration or Newton’s method as presented in Section Section 5.13. This latter approach will
now be described in detail.

We shall work with the 1D problem
—(a(uw) +au= f(u), z€(0,L), au0)'(0)=C, u(L)=D. (5.43)

The problem (5.43) arises from the stationary limit of a diffusion equation,

o = o (a3) —au+ s, (5.44)

as t — oo and Ju/0t — 0. Alternatively, the problem (5.43) arises at each time level from implicit
time discretization of (5.44). For example, a Backward Euler scheme for (5.44) leads to

u — L d du™

At drx (O‘(“n)dx> —au” + f(u"). (5.45)
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Introducing u(z) for u™(x), u") for w*~', and defining f(u) in (5.43) to be f(u) in (5.45) plus
u 1/ At, gives (5.43) with a = 1/At.

5.23. Finite difference discretization

The nonlinearity in the differential equation (5.43) poses no more difficulty than a variable coefficient,
as in the term (a(z)u’)’. We can therefore use a standard finite difference approach when discretizing
the Laplace term with a variable coefficient:

[—DyaDyu+ au = fl;.

Writing this out for a uniform mesh with points z; = iAz, i =0,..., N,, leads to
1
_TZ'Q (ai+%(ui+1 — ul) — O‘if%(ui — uigl)) + au; = f(ul) . (5.46)

This equation is valid at all the mesh points i = 0,1,..., N, — 1. At i = N, we have the Dirichlet
condition u; = 0. The only difference from the case with (a(z)u') and f(x) is that now «a and f
are functions of u and not only of z: (a(u(x))u’) and f(u(z)).

The quantity «;_ 1, evaluated between two mesh points, needs a comment. Since a depends on u
2

and u is only known at the mesh points, we need to express «;,, 1 in terms of u; and wu;41. For this
2

_l’_
purpose we use an arithmetic mean, although a harmonic mean is also common in this context if «

features large jumps. There are two choices of arithmetic means:
1 —T\1t+ 5
il ~ 0‘(5(%‘ + 1) = [a(@”)]"72,
1 — 2 1
Grp1 ® G lau) + aluis) = [alw) ]+ (5.47)
Equation (5.46) with the latter approximation then looks like

((or(ui) + oluiv1)) (wivr — ui) — (a(uiz1) + o(ui))(us — ui-1))

- 2Ax2 (5.48)
+ au; = f(ul),
or written more compactly,
[—Dya"Dyu + au = f; .
At mesh point 7 = 0 we have the boundary condition a(u)u’ = C, which is discretized by
[a(u) Dagu = Clo,
meaning
Uy —U—_1
——=C. 5.49
o) (5.49)

The fictitious value u_; can be eliminated with the aid of (5.48) for ¢ = 0. Formally, (5.48) should
be solved with respect to u;—; and that value (for 7« = 0) should be inserted in (5.49), but it is
algebraically much easier to do it the other way around. Alternatively, one can use a ghost cell
[-Ax, 0] and update the u_; value in the ghost cell according to (5.49) after every Picard or Newton
iteration. Such an approach means that we use a known u_; value in (5.48) from the previous
iteration.
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5.24. Solution of algebraic equations

5.24.1. The structure of the equation system

The nonlinear algebraic equations (5.48) are of the form A(u)u = b(u) with

A = leg(a(uifl) + 2a(us)a(uiv1)) + a,
Aijq = ToAL2 (a(ui—1) + a(ui)),
Aiiv1 = —m(a(ui) + a(uit1)),
bi = f(wi).

The matrix A(u) is tridiagonal: A; ;j =0for j >i+1and j <i—1.

The above expressions are valid for internal mesh points 1 < i < N, — 1. For ¢ = 0 we need to
express u;—1 = u_1 in terms of u; using (5.49):

2Ax

a(up)

U_1 =Ulp — (5.50)
This value must be inserted in Ago. The expression for A; ;41 applies for 7 = 0, and A; ;1 does not
enter the system when ¢ = 0.

Regarding the last equation, its form depends on whether we include the Dirichlet condition
u(L) = D, meaning uy, = D, in the nonlinear algebraic equation system or not. Suppose we choose
(ug,uq,...,un,—1) as unknowns, later referred to as systems without Dirichlet conditions. The last
equation corresponds to ¢ = N, — 1. It involves the boundary value uy,, which is substituted by D.
If the unknown vector includes the boundary value, (ug,u1,...,un,), later referred to as system
including Dirichlet conditions, the equation for ¢« = N, — 1 just involves the unknown uy,, and the
final equation becomes uy, = D, corresponding to A;; =1 and b; = D for i = N,.

5.24.2. Picard iteration

The obvious Picard iteration scheme is to use previously computed values of u; in A(u) and b(u),
as described more in detail in Section Section 5.13. With the notation v~ for the most recently
computed value of u, we have the system F(u) ~ F(u) = A(u" ) u—b(u™), with F = (Fy, F1, ..., Fp),
u = (ug, Uy, ..., Uny). The index m is N, if the system includes the Dirichlet condition as a separate
equation and N, — 1 otherwise. The matrix A(u™) is tridiagonal, so the solution procedure is to fill
a tridiagonal matrix data structure and the right-hand side vector with the right numbers and call
a Gaussian elimination routine for tridiagonal linear systems.
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5.24.3. Mesh with two cells
It helps on the understanding of the details to write out all the mathematics in a specific case with
a small mesh, say just two cells (N, = 2). We use u; for the i-th component in u™.

The starting point is the basic expressions for the nonlinear equations at mesh point ¢ = 0 and
1= 1:

Apg,—1u—1 + Agpup + Ao,1u1 = bo, (5.51)
At oug + A1 ur + Arpug = b1 . (5.52)
Equation (5.51) written out reads

1

m( — (a(u—1) + alup))u_1 +

(a(u—1) + 2a(up) + a(uy))ug —
(a(uo) + a(u1)))ur +aug = f(uo) -

We must then replace u_; by (5.50). With Picard iteration we get

ﬁ( — (au # +=1) + 2a(u *%0) + a(uy))ur +
(a(u™ *x—1) + 2a(u” * %x0) + a(u] ))uo + aug
= 159) — i s7as (O * =)+ au))C.
where oA
SIS

Equation (5.52) contains the unknown ug for which we have a Dirichlet condition. In case we omit
the condition as a separate equation, (5.52) with Picard iteration becomes

1

m( — (a(u™ *x0) + a(u™ * *1))ug +

(a(u™ *%0) + 2a(u™ * *1) + a(uy ))us —
(a(u™ * 1) + a(u™ *%2)))ug + au; = f(uy ).

We must now move the uy term to the right-hand side and replace all occurrences of us by D:

1
m( — (a(u™ *%0) + a(u™ * *1))ug +
(a(u™ *%0) + 2a(u™ x 1) + a(D)))uy + auq
= Fum s +1) + QAle (a(u~ % +1) + a(D))D.

493



5. Nonlinear Problems

The two equations can be written as a 2 x 2 system:

Boo Boa up \ _ ( do
Bio Bia uy di )’

where

Boo = flﬁ(a(u— k1) + 20(u % 40) + a(ur)) + a,

Boi = — 5 (@(u™ 1) + 2a(u * +0) + a(up)),

Bio=—5a (ol +0) + a(u” 1),

Biy = 5y (0(u” 50) + 20(u” « 1) 4 a(D)) + a,
o= 1(0y) = g7 (o # =D + 0()C,
dy = Flu *+1) + 2Alx2 (a(u™ % %1) + a(D))D.

The system with the Dirichlet condition becomes

Boo Boxi 0 Ug do
Bio Bi1 Bip up | =1 dp |,
0 0 1 U9 D
with
Biy = = (afu™ + %0) + 2a(u” + +1) + a(us)) +
171—2Ax204u alu a\u9 a,
1 _
By = —m(a(% ) + a(u2))),
di = f(uy).

Other entries are as in the 2 x 2 system.

5.24.4. Newton’s method

(5.53)
(5.54)
(5.55)
(5.56)

(5.57)

(5.58)

The Jacobian must be derived in order to use Newton’s method. Here it means that we need to

differentiate F'(u) = A(u)u — b(u) with respect to the unknown parameters ug, uy, . .

U (M = Ny

or m = N, — 1, depending on whether the Dirichlet condition is included in the nonlinear system

F(u) = 0 or not). Nonlinear equation number i has the structure

Fy = Aj i (wit, wi)ui—1 + A i (wim1, i, wig1)ws + Ag i1 (Wi, Wir1)uipr — bi(ug) -

Computing the Jacobian requires careful differentiation. For example,
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0 0A;; Ou;
%(Ai,i(ui—lyuivui—l—l)ui) = 8uz~7 u; + A”aTL,
0 1
= %(m(a(ui—l) + 2a(ui) + a(uit1)) + a)uit+
1
oAz (i) +2a(w) + a(uir1)) +a
= W@a’(ui)ui + a(ui—1) + 20(w;) + auir1)) + a.
The complete Jacobian becomes
_O0F;  0Aii 04 0A; i1 ob;
Jz,z = s = s Ui—1 + s Usj +A7,,z + e Ui+1 — O
1
= AL (= (ui)ui—1 + 20" (ui)ui + a(ui—1) + 2a(uy) + a(uir))+
1
a— A L2 o (ui)uipr — b (),
OF; 04; -1 04;; ob;
Jii-1 = = ’ i1+ A1 =u; —
T Bugy Ou;—1 i1 At 3Uz‘—1u Ou;—1
1
= TN (—a'(ui_l)ui_l — (a(uj—1) + alu;)) + a’(ui_l)ui),
0A; 11 0A;; 0b;
Jiit1 = 5 uip1 + Aig1i Uy —
T Gy, T Ay aUz’+1u Ouit
1

= m(—a,(uiﬂ)uiﬂ — (aug) + a(uiy1)) + o (uir1)u;)

.The explicit expression for nonlinear equation number i, F;(ug,u,...), arises from moving the
f(u;) term in (5.48) to the left-hand side:

Fy = —flﬁ ((a(ui) + auit1)) (it — ui) — (e(ui—1) + a(u;))(u; — ui-1))

+ au; — f(ui) =0.

(5.62)

At the boundary point ¢ = 0, u—; must be replaced using the formula (5.50). When the Dirichlet
condition at ¢ = N, is not a part of the equation system, the last equation F,, =0 for m = N, — 1
involves the quantity uy,—; which must be replaced by D. If uy, is treated as an unknown in the
system, the last equation F,, = 0 has m = N, and reads

FNI(UQ,...,U,NI) = UN,, —-D=0.

Similar replacement of u_; and uy, must be done in the Jacobian for the first and last row. When
up, is included as an unknown, the last row in the Jacobian must help implement the condition
dupn, = 0, since we assume that u contains the right Dirichlet value at the beginning of the iteration
(un, = D), and then the Newton update should be zero for ¢ = 0, i.e., duy, = 0. This also forces
the right-hand side to be b; =0, i = N,.

We have seen, and can see from the present example, that the linear system in Newton’s method
contains all the terms present in the system that arises in the Picard iteration method. The extra
terms in Newton’s method can be multiplied by a factor such that it is easy to program one linear
system and set this factor to 0 or 1 to generate the Picard or Newton system.
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5.25. Solving Nonlinear PDEs with Devito

Having established the finite difference discretization of nonlinear PDEs, we now implement several
solvers using Devito. The symbolic approach allows us to express nonlinear equations and handle
the time-lagged coefficients naturally.

5.25.1. Nonlinear Diffusion: The Explicit Scheme

The nonlinear diffusion equation
ug =V - (D(u)Vu)

with solution-dependent diffusivity D(u) requires special treatment. In 1D, the equation becomes:

up = 51 (D(u)?i)

For explicit time stepping, we evaluate D at the previous time level:

At
U?H = uj' + Az2 { zn+1/2(“zn+1 —ug) — D?—1/2(u? o u?—l)}
where D?+1/2 = %(D(U?) + D(uyy)).

5.25.2. The Devito Implementation

from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np

# Domain and discretization

L= il,0 # Domain length

Nx = 100 # Grid points

T=20.1 # Final time

F=0.4 # Target Fourier number

dx = L / Nx

D max = 1.0 # Maximum diffusion coefficient

dt = F * dx**2 / D_max # Time step from stability

# Create Devito grid
grid = Grid(shape=(Nx + 1,), extent=(L,))

# Time-varying field with space_order=2 for halo access
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)
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5.25.3. Handling the Nonlinear Diffusion Coefficient

For nonlinear diffusion, the diffusivity depends on the solution. Common forms include:

Type D(u) Application
Constant Dy Linear heat conduction
Linear Dy(1+4 au) Temperature-dependent conductivity

m—1

Porous medium Dymu Flow in porous media

The src.nonlin module provides several diffusion coefficient functions:
from src.nonlin import (
constant_diffusion,

linear_diffusion,
porous_medium_diffusion,

# Constant D(u) = 1.0
D_const = lambda u: constant_diffusion(u, D0=1.0)

# Linear D(u) = 1 + 0.5*u
D_linear = lambda u: linear_diffusion(u, D0=1.0, alpha=0.5)

# Porous medium D(u) = 2*u (m=2)

D_porous = lambda u: porous_medium_diffusion(u, m=2.0, D0=1.0)
5.25.4. Complete Nonlinear Diffusion Solver

The src.nonlin module provides solve_nonlinear_diffusion_explicit:

from src.nonlin import solve_nonlinear_diffusion_explicit
import numpy as np

# Initial condition: smooth bump
def I(x):

return np.sin(np.pi * x)

result = solve_nonlinear_diffusion_explicit(

L=l . O # Domain length
Nx=100, # Grid points
T=0.1, # Final time

F=0.4, # Fourier number
I=I, # Initial condition

D_func=lambda u: linear_diffusion(u, DO=1.0, alpha=0.5),
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print(f"Final time: {result.t:.4f}")
print (f"Max solution: {result.u.max():.6f}")

5.25.5. Reaction-Diffusion with Operator Splitting
The reaction-diffusion equation
Ut = gy + R(u)
combines diffusion with a nonlinear reaction term. Operator splitting separates these effects:
Lie Splitting (first-order): 1. Solve u; = auy, for time At 2. Solve u; = R(u) for time At

Strang Splitting (second-order): 1. Solve u; = R(u) for time At/2 2. Solve u; = auy, for time
At 3. Solve uy = R(u) for time At/2

5.25.6. Reaction Terms

The module provides common reaction terms:

from src.nonlin import (
logistic_reaction,

fisher_reaction,
allen_cahn_reaction,

# Logistic growth: R(u) = r*ux(1 - u/K)
R_logistic = lambda u: logistic_reaction(u, r=1.0, K=1.0)

# Fisher-KPP: R(u) = r*ux(1 - u)
R_fisher = lambda u: fisher reaction(u, r=1.0)

# Allen-Cahn: R(u) = u - u”3
R_allen_cahn = lambda u: allen_cahn_reaction(u, epsilon=1.0)

5.25.7. Reaction-Diffusion Solver

from src.nonlin import solve_reaction_diffusion_splitting
# Initial condition with small perturbation
def I(x):

return 0.5 * np.sin(np.pi * x)

# Strang splitting (second-order)
result = solve_reaction_diffusion_splitting(
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L=1.0,

a=0.1, # Diffusion coefficient
Nx=100,

T=0.5,

F=0.4,

I=1,

R_func=lambda u: fisher_reaction(u, r=1.0),
splitting="strang",

The Strang splitting achieves second-order accuracy in time, while Lie splitting is only first-order.
For problems with fast reactions or long simulation times, the higher accuracy of Strang splitting is
beneficial.

5.25.8. Burgers’ Equation

The viscous Burgers’ equation
Ut + Uy = VUgy

is a prototype for nonlinear advection with viscous dissipation. The nonlinear term uu, can cause
shock formation for small v.

We use the conservative form (u?/2), with centered differences:
from src.nonlin import solve_burgers_equation

result = solve_burgers_equation(

L=2.0, # Domain length
nu=0.01, # Viscosity

Nx=100, # Grid points
T=0.5, # Final time

C=0.5, # Target CFL number

5.25.9. Stability for Burgers’ Equation

The time step must satisfy both the CFL condition for advection:

_ |u’maXAt <

C 1
Ax
and the diffusion stability condition:
P VAL <05
Ax2 T

The solver automatically chooses At to satisfy both conditions with a safety factor.
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5.25.10. The Effect of Viscosity

import matplotlib.pyplot as plt
fig, axes = plt.subplots(l, 2, figsize=(12, 5))

for ax, nu in zip(axes, [0.1, 0.01]):
result = solve_burgers_equation(
L=2.0, nu=nu, Nx=100, T=0.5, C=0.3,
I=lambda x: np.sin(np.pi * %),
save_history=True,

for i in range(0, len(result.t_history), len(result.t_history)//5):
ax.plot(result.x, result.u_historyl[i],
label=f't = {result.t_history[i]:.2f}')

ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(f'Burgers, nu = {nu}')
ax.legend ()

Higher viscosity (v = 0.1) smooths the solution, while lower viscosity (v = 0.01) allows steeper
gradients to develop.

5.25.11. Picard Iteration for Implicit Schemes

For stiff nonlinear problems, implicit time stepping may be necessary. Picard iteration solves the
nonlinear system by repeated linearization:

1. Guess u"t1(0) = yn
2. For k=0,1,2,...:

o Evaluate D®) = D(u"+17(k))

e Solve the linear system for u"t1:(k:+1)
« Check convergence: [[u"ThFE+D) —ynt1(R)|| < ¢

from src.nonlin import solve_nonlinear_diffusion_picard

result = solve_nonlinear_diffusion_picard(
L=1.0,
Nx=50,
T=0.05,
dt=0.001, # Can use larger dt than explicit
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The implicit scheme removes the time step restriction but requires solving a linear system at each
iteration.

5.25.12. Summary

Key points for nonlinear PDEs with Devito:

1. Nonlinear diffusion: Use explicit scheme with lagged coefficient evaluation and Fourier
number F' < 0.5

2. Operator splitting: Separates diffusion and reaction for reaction-diffusion equations; Strang
is second-order

3. Burgers’ equation: Requires both CFL and diffusion stability conditions; viscosity controls
smoothness

4. Picard iteration: Enables implicit schemes for stiff problems at the cost of solving linear
systems

The src.nonlin module provides: - solve_nonlinear_diffusion_explicit - solve_reaction_diffusion_splif
- solve_burgers_equation - solve_nonlinear_diffusion_picard - Diffusion coefficients:
constant_diffusion, linear_diffusion, porous_medium_diffusion - Reaction terms:
logistic_reaction, fisher_reaction, allen_cahn_reaction

The fundamental ideas in the derivation of F; and J; ; in the 1D model problem are easily generalized
to multi-dimensional problems. Nevertheless, the expressions involved are slightly different, with
derivatives in = replaced by V, so we present some examples below in detail.

5.26. Finite difference discretization

A typical diffusion equation
up =V - (a(u)Vu) + f(u),
can be discretized by (e.g.) a Backward Euler scheme, which in 2D can be written

[D;u = DxWxDxu + Dya(u) Dyu + f(u)mj :

We do not dive into the details of handling boundary conditions now. Dirichlet and Neumann
conditions are handled as in corresponding linear, variable-coefficient diffusion problems.

Writing the scheme out, putting the unknown values on the left-hand side and known values on the
right-hand side, and introducing Az = Ay = h to save some writing, one gets

At 1
(s ﬁ%(a(u?g) +a(uityg ) (Ui j — ui'y)
1
- 5(04(@0?—14) + a(u;)) (ugy — uity ;)
1

+ g (aluiy) +alugj)(uij — uiy)

5(“(“%—1) + a(“?g))(uzng - u?—l,j—l)) - Atf(qu) = U?J_l

This defines a nonlinear algebraic system on the form A(u)u = b(u).
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5.26.1. Picard iteration

The most recently computed values u~ of u™ can be used in a and f for a Picard iteration, or
equivalently, we solve A(u~)u = b(u~). The result is a linear system of the same type as arising
from uy = V - (a(x)Vu) + f(x,1).

The Picard iteration scheme can also be expressed in operator notation:
(D u = Dea{u™) Dou+ Dya(u™) Dyu+ f(u7)]i;
##4# Newton’s method

As always, Newton’s method is technically more involved than Picard iteration. We first define the
nonlinear algebraic equations to be solved, drop the superscript n (use u for u™), and introduce u®

for w1

At

Fij = uij— 55 (
5 (@(wig) + i ) (i1, — i)~
%(a(ui_m) + (i g)) (i — uio1,5)+
glaluig) + a(uigin)) (uign = i) =
%(O‘(Ui,jfl) i) (g — wim1 1)) = At f(ui;) —ul) =0.

It is convenient to work with two indices ¢ and j in 2D finite difference discretizations, but it
complicates the derivation of the Jacobian, which then gets four indices. (Make sure you really
understand the 1D version of this problem as treated in Section Section 5.23.) The left-hand
expression of an equation Fj; = 0 is to be differentiated with respect to each of the unknowns u,. s
(recall that this is short notation for uy;), r € Z,, s € I,

Jijrs =

The Newton system to be solved in each iteration can be written as

Z Z Ji7j7r785ur75 = _E:vj7 Z € Iﬂ;’ j € Iy :
r€ly €Ly

Given ¢ and j, only a few r and s indices give nonzero contribution to the Jacobian since Fj ;
contains w;+1j, U; j+1, and u; ;. This means that J; ;. s has nonzero contributions only if r =i £ 1,
s =j=x1, as well as r = 7 and s = j. The corresponding terms in J; ;s are J;ji—1j, Jiji+1,j,
Jijij—1s Jijij+1 and J; ;; ;. Therefore, the left-hand side of the Newton system, >, >, J; jr 50Uy s
collapses to

JijirsOurs = Jijij0uij + Jijio1,0Ui—15 + Jijit1,j0Uit1,5 + i j—10 -1

+ Jijij+10Ui 11
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The specific derivatives become

OF;,

i1,

At

= ﬁ(a'(%—l,j)(uz‘,j —ui—15) — o(ui—15)(=1)),
OF;

Ot

At

= p(—a'(uz‘ﬂ,j)(uz'ﬂ,j — i) — a(ui—1,)),
OF; ;

6ui7j,1

At

= ﬁ(a’(uz‘,jfl)(uiu’ — 1) = ofuij-1)(—1)),
OF; ;

U ji1

At
- ﬁ(_o‘/<“i,j+1)(ui,j+1 — ;) —alujj—1)).

Jiji-15 =

Jijit1, =

Jijij—1 =

Jijij+1 =

The J;;;; entry has a few more terms and is left as an exercise. Inserting the most recent
approximation u~ for u in the J and F formulas and then forming Jéu = —F gives the linear
system to be solved in each Newton iteration. Boundary conditions will affect the formulas when
any of the indices coincide with a boundary value of an index.

5.27. Continuation methods

Picard iteration or Newton’s method may diverge when solving PDEs with severe nonlinearities.
Relaxation with w < 1 may help, but in highly nonlinear problems it can be necessary to introduce a
continuation parameter A in the problem: A = 0 gives a version of the problem that is easy to solve,
while A = 1 is the target problem. The idea is then to increase A in steps, Ag = 0,A1 < --- < A, =1,
and use the solution from the problem with A;_; as initial guess for the iterations in the problem
corresponding to A;.

The continuation method is easiest to understand through an example. Suppose we intend to solve
=V - (IIVul[*Vu) = f,

which is an equation modeling the flow of a non-Newtonian fluid through a channel or pipe. For
g = 0 we have the Poisson equation (corresponding to a Newtonian fluid) and the problem is linear.
A typical value for pseudo-plastic fluids may be ¢, = —0.8. We can introduce the continuation
parameter A € [0,1] such that ¢ = g,A. Let {As}}_, be the sequence of A values in [0,1], with
corresponding ¢ values {q/}}_,. We can then solve a sequence of problems

~v- (IVu'|ivu) =, £=0,....n,

where the initial guess for iterating on u! is the previously computed solution u‘~!. If a particular
Ay leads to convergence problems, one may try a smaller increase in A: A, = %(Ag,l + Ay), and
repeat halving the step in A until convergence is reestablished.
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5.28. Operator splitting methods

Operator splitting is a natural and old idea. When a PDE or system of PDEs contains different
terms expressing different physics, it is natural to use different numerical methods for different
physical processes. This can optimize and simplify the overall solution process. The idea was
especially popularized in the context of the Navier-Stokes equations and reaction-diffusion PDEs.
Common names for the technique are operator splitting, fractional step methods, and split-step
methods. We shall stick to the former name. In the context of nonlinear differential equations,
operator splitting can be used to isolate nonlinear terms and simplify the solution methods.

A related technique, often known as dimensional splitting or alternating direction implicit (ADI)
methods, is to split the spatial dimensions and solve a 2D or 3D problem as two or three consecutive
1D problems, but this type of splitting is not to be further considered here.

5.29. Ordinary operator splitting for ODEs

Consider first an ODE where the right-hand side is split into two terms:
u' = fo(u) + fi(u).

In case fo and f; are linear functions of u, fo = au and f; = bu, we have u(t) = Ie(@tD? if 4(0) = I.
When going one time step of length At from ¢,, to ¢,,41, we have

U(tps1) = u(ty)el@TIAL

This expression can be also be written as

or

u* = u(ty)e™, (5.63)
w(tni1) = u*ePAt (5.64)

The first step (5.63) means solving v’ = fy over a time interval At with wu(t,) as start value. The
second step (5.64) means solving v’ = f; over a time interval At with the value at the end of the
first step as start value. That is, we progress the solution in two steps and solve two ODEs v’ = fy
and v’ = fi. The order of the equations is not important. From the derivation above we see that
solving v/ = fy prior to v’ = fy can equally well be done.

The technique is exact if the ODEs are linear. For nonlinear ODEs it is only an approximate method
with error At¢. The technique can be extended to an arbitrary number of steps; i.e., we may split
the PDE system into any number of subsystems. Examples will illuminate this principle.
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5.30. Strange splitting for ODEs

The accuracy of the splitting method in Section Section 5.29 can be improved from O(At) to O(At?)
using so-called Strange splitting, where we take half a step with the fy operator, a full step with
the f1 operator, and finally half another step with the fy operator. During a time interval At the
algorithm can be written as follows.

= o), () =ulta), € [t + AT
du*** kkk kkok *
o = fiu™), u(t,) =u (tn_%), t € [tn,tn + At],
= fo(), W) = (bner), £ [t S A b+ A

The global solution is set as u(tp4+1) = w**(tns1).

There is no use in combining higher-order methods with ordinary splitting since the error due to
splitting is O(At), but for Strange splitting it makes sense to use schemes of order O(At?).

With the notation introduced for Strange splitting, we may express ordinary first-order splitting
as

d *

th = fo(u®), u(tn) =ultn), tE€ [tn,tn+ Al],
du** *kk *k3k *

i = fi(u™), u*(ty) =u"(tn+1), tE [tn,tn + At],

with global solution set as u(tn4+1) = v (tp+1)-

5.31. Example: Logistic growth

Let us split the (scaled) logistic equation
u' =u(l—u), u(0)=0.1,
with solution u = (9e~* + 1)1, into

u'=u—u®= fo(u) + fi(u), fo(u)=u, fi(u)=—u’.

We solve v/ = fo(u) and v’ = fi(u) by a Forward Euler step. In addition, we add a method where
we solve u' = fo(u) analytically, since the equation is actually v’ = u with solution e’. The software
that accompanies the following methods is the file split_logistic.py.
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5.31.1. Splitting techniques

Ordinary splitting takes a Forward Euler step for each of the ODEs according to

u*,n—H —

At
skn+1

At

EER S

= folu™), w =u(ty), tE€ [tutn + Al

EEN )

u
= fi(u™™), w™t =yt e [t t, 4 A,

u

with u(tp4+1) = u

Strange splitting takes the form

u*vn-i-% —usm 1
— 1A, fo(u*’n)? ut" = u(tn)7 te [tnytn + iAtL

TAL
u***,n+1 _ u***,n L
At = f(u™™),  w = u*,n—l—E’ t € [tn,tn + At],
u**,n+1 _ u**,n-}—% 1
lAt _ fo(u**,n—ké)’ u**,n—l—% _ u***,n-{-l, te [tn + iAt, ty, + At] .

2

5.31.2. Verbose implementation

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

The following function computes four solutions arising from the Forward Euler method, ordinary

splitting, Strange splitting, as well as Strange splitting with exact treatment of v’ = f(u):

import numpy as np

def solver(dt, T, £, £ 0, f_1):
Solve u'=f by the Forward Euler method and by ordinary and
Strange splitting: f(u) = £f_0(w) + f_1(u).
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1)
u_FE = np.zeros(len(t))

u_splitl = np.zeros(len(t)) # 1st-order splitting

u_split2 = np.zeros(len(t)) # 2nd-order splitting

u_split3 = np.zeros(len(t)) # 2nd-order splitting w/exact f_0
u_FE[0] = 0.1

u_split1[0] = 0.1

u_split2[0] = 0.1

u_split3[0] = 0.1
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for n in range(len(t) - 1):
u_FE[n + 1] = u_FE[n] + dt * f(u_FE[n])

u_s_n = u_splitl[n]
us=usmn+dt * £ 0(u_s_n)
u_ss n = u_s

uss =ussn+dt *x £ 1(u_ss_n)
u_spliti[n + 1] = u_ss

u_s_n = u_split2[n]

us=usmn+dt / 2.0 *x f 0(u_s_n)
u_sss_ n = u_s

u_sss = u_sss_n + dt * f_1(u_sss_n)
u_sSs_n = u_sss

uss =ussn+dt / 2.0 x f_0(u_ss_n)
u_split2[n + 1] = u_ss

u_s_n = u_split3[n]

u_s = u_s_n * np.exp(dt / 2.0) # exact
u_sss_n = u_s

u_sss = u_sss_n + dt * f_1(u_sss_n)
u_ss_n = u_sss

u_ss = u_ss_n * np.exp(dt / 2.0) # exact
u_split3[n + 1] = u_ss

return u_FE, u_splitl, u_split2, u_split3, t

5.31.3. Compact implementation

We have used quite many lines for the steps in the splitting methods. Many will prefer to condense
the code a bit, as done here:

5.31.4. Results

Figure Figure 5.3 shows that the impact of splitting is significant. Interestingly, however, the
Forward Euler method applied to the entire problem directly is much more accurate than any of
the splitting schemes. We also see that Strange splitting is definitely more accurate than ordinary
splitting and that it helps a bit to use an exact solution of v’ = fy(u). With a large time step
(At = 0.2, left plot in Figure Figure 5.3), the asymptotic values are off by 20-30%. A more reasonable
time step (At = 0.05, right plot in Figure Figure 5.3) gives better results, but still the asymptotic
values are up to 10% wrong.

As technique for solving nonlinear ODEs, we realize that the present case study is not particularly
promising, as the Forward Euler method both linearizes the original problem and provides a solution
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that is much more accurate than any of the splitting techniques. In complicated multi-physics
settings, on the other hand, splitting may be the only feasible way to go, and sometimes you really
need to apply different numerics to different parts of a PDE problem. But in very simple problems,
like the logistic ODE, splitting is just an inferior technique. Still, the logistic ODE is ideal for
introducing all the mathematical details and for investigating the behavior.

10 ‘T\me sifep: 0.2‘ 10 T|me stgp: 0.0;

0.9+ 0.9+
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0.7+ 0.7

0.6 0.6 -
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- - exact -- exact
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P

Figure 5.3.: Effect of ordinary and Strange splitting for the logistic equation.

5.32. Reaction-diffusion equation

Consider a diffusion equation coupled to chemical reactions modeled by a nonlinear term f(u):

ou
E—av u+ f(u).

This is a physical process composed of two individual processes: u is the concentration of a substance
that is locally generated by a chemical reaction f(u), while u is spreading in space because of
diffusion. There are obviously two time scales: one for the chemical reaction and one for diffusion.
Typically, fast chemical reactions require much finer time stepping than slower diffusion processes.
It could therefore be advantageous to split the two physical effects in separate models and use
different numerical methods for the two.

A natural spitting in the present case is

ou* 2, %
W = aV u ,
ou** -
el fu™). (5.70)

Looking at these familiar problems, we may apply a 6 rule (implicit) scheme for (5.70) over one
time step and avoid dealing with nonlinearities by applying an explicit scheme for (5.70) over the
same time step.

Suppose we have some solution u at time level ¢,,. For flexibility, we define a § method for the
diffusion part (5.70) by
[Dyu* = a(DyDyu* 4 DyDyu*)]" .
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We use u" as initial condition for u*.

The reaction part, which is defined at each mesh point (without coupling values in different mesh
points), can employ any scheme for an ODE. Here we use an Adams-Bashforth method of order 2.
Recall that the overall accuracy of the splitting method is maximum O(At?) for Strange splitting,
otherwise it is just O(At). Higher-order methods for ODEs will therefore be a waste of work. The
2nd-order Adams-Bashforth method reads

1 *kk kk - . .
u**,n—i—l * *Z,] =y« *’L,] + iAt (3f<uz7]’n7tn) - f(u et * *Zhy?t * KT — 1)) .

We can use a Forward Euler step to start the method, i.e, compute ufjl

The algorithm goes like this:

1. Solve the diffusion problem for one time step as usual.

2. Solve the reaction ODEs at each mesh point in [t,, t, + At], using the diffusion solution in 1.
as initial condition. The solution of the ODEs constitutes the solution of the original problem
at the end of each time step.

We may use a much smaller time step when solving the reaction part, adapted to the dynamics of
the problem w = f(u). This gives great flexibility in splitting methods.

5.33. Example: Reaction-Diffusion with linear reaction term

The methods above may be explored in detail through a specific computational example in which
we compute the convergence rates associated with four different solution approaches for the reaction-
diffusion equation with a linear reaction term, i.e. f(u) = —bu. The methods comprise solving
without splitting (just straight Forward Euler), ordinary splitting, first order Strange splitting, and
second order Strange splitting. In all four methods, a standard centered difference approximation is
used for the spatial second derivative. The methods share the error model £ = Ch", while differing
in the step h (being either Az? or Ax) and the convergence rate r (being either 1 or 2).

All code commented below is found in the file split_diffu_react.py. When executed, a function
convergence_rates is called, from which all convergence rate computations are handled:

def convergence_rates(scheme="diffusion"):
"""Computes empirical conv. rates for the different

splitting schemes"""

I
= = W~ O
g N O

.5
=np.pi / L

~ o A7
I

def exact(x, t):
""Mexact sol. to: du/dt = a*d"2u/dx"2 - b*xu"""
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return np.exp(-(a * k**2 + b) * t) * np.sin(k * x)

def f(u, t):
return -b * u

def I(x):
return exact(x, 0)

global error # error computed in the user action function
error = 0

def action(u, x, t, n):

global error

if n == 1: # New simulation, - reset error
0

error
else:
error = max(error, np.abs(u - exact(x, t[n])).max())

E=1]
h =[]
Nx_values = [10, 20, 40, 80, 160]
for Nx in Nx_values:
dx = L / Nx
dt = F / a * dx**2
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points, global time

if scheme == "diffusion":
print ("Running FE on whole egn...")
diffusion_FE(I, a, f, L, dt, F, t, T, step_no=0, user_action=action)
elif scheme == "ordinary_splitting":
print ("Running ordinary splitting...")
ordinary_splitting(
I=I,
a=a,
b=b,
f=f,
L=L,
dt=dt,
dt_Rfactor=1,
F=F,
t=t,
T=T,
user_action=action,
)
elif scheme == "Strange_splitting_lstOrder":
print ("Running Strange splitting with 1st order schemes...")
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Strange_splitting_1st0Order (
I=I,
a=a,
b=b,

dt=dt,
dt_Rfactor=1,
F=F,
T=
T=T,
user_action=action,
)
elif scheme == "Strange_splitting_2andOrder":
print ("Running Strange splitting with 2nd order schemes...")
Strange_splitting_2andOrder (
I=T,
a=a,
b=b,
f=f,
L=,
dt=dt,
dt_Rfactor=1,
F=F,
t=t,
T=T,
user_action=action,
)
else:
print ("Unknown scheme requested!")
sys.exit (0)

h.append(dt)
E.append (error)

print("E:", E)
print("h:", h)

w =
np.log(E[i]l / E[i - 11) / np.log(h[i] / h[i - 11)
for i in range(l, len(Nx_values))

]

print ("Computed rates:", r)

if __name__ == "__main__":

schemes = [
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"diffusion",
"ordinary_splitting",
"Strange_splitting_lstOrder",
"Strange_splitting_2andOrder",

for scheme in schemes:
convergence_rates (scheme=scheme)

Now, with respect to the error (E = Ch"), the Forward Euler scheme, the ordinary splitting scheme

and first order Strange splitting scheme are all first order (r = 1), with a step h = Az? = K1 At,

where K is some constant. This implies that the ratio % must be held constant during convergence

rate calculations. Furthermore, the Fourier number F' = Z—ﬁé is upwards limited to F' = 0.5, being
the stability limit with explicit schemes. Thus, in these cases, we use the fixed value of F' and a
given (but changing) spatial resolution Az to compute the corresponding value of At according to
the expression for F. This assures that AA;Q is kept constant. The loop in convergence_rates runs
over a chosen set of grid points (Nx_values) which gives a doubling of spatial resolution with each

iteration (Az is halved).

For the second order Strange splitting scheme, we have r = 2 and a step h = Az = K ~!At, where
K again is some constant. In this case, it is thus the ratio % that must be held constant during the
convergence rate calculations. From the expression for F', it is clear then that F' must change with
each halving of Az. In fact, if F' is doubled each time Ax is halved, the ratio % will be constant

(this follows, e.g., from the expression for F'). This is utilized in our code.

A solver diffusion_theta is used in each of the four solution approaches:

def diffusion_theta(
I, a, £, L, dt, F, t, T, step_no, theta=0.5, u_L=0, u_R=0, user_action=None

Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5).

Vectorized implementation and sparse (tridiagonal)

coefficient matrix.
nmnn

Nt = int(round(T / float(dt)))

dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]

dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array at t[n+1]
u_1l = np.zeros(Nx + 1) # solution at t[n]
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diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx + 1)

F1 = F * theta

Fr = F x (1 - theta)
diagonall[:] =1 + 2 * F1
lower[:] = -F1 # 1
upper[:] = -F1 # 1
diagonal[0] = 1

upper [0] = 0O

diagonal [Nx] = 1
lower[-1] = 0O

diags = [0, -1, 1]

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

if £ is None or f ==
f = lambda x, t: np.zeros(x.size) if isinstance(x, np.ndarray) else O

if isinstance(I, np.ndarray): # I is an array
u_1 = np.copy(I)
else: # I is a function
for i in range(0, Nx + 1):
u_1[i] = I(x[il)

if user_action is not None:
user_action(u_1, x, t, step_no + 0)

for n in range(0, Nt):
bl1:-1] = (
u_1[1:-1]
+ Fr * (u_1[:-2] - 2 *x u_1[1:-1] + u_1[2:1)
+ dt * theta * f(u_1[1:-1], t[step_no + n + 1])
+ dt * (1 - theta) * f(u_1[1:-1], t[step_no + n])
)
b[0] = u_L
b[-1] = u_R # boundary conditions
ul:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
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user_action(u, x, t, step_no + (n + 1))

return u_1

For the no splitting approach with Forward Euler in time, this solver handles both the diffusion and
the reaction term. When splitting, diffusion_theta takes care of the diffusion term only, while
the reaction term is handled either by a Forward Euler scheme in reaction_FE, or by a second
order Adams-Bashforth scheme from Odespy. The reaction_FE function covers one complete time
step dt during ordinary splitting, while Strange splitting (both first and second order) applies it
with dt/2 twice during each time step dt. Since the reaction term typically represents a much
faster process than the diffusion term, a further refinement of the time step is made possible in
reaction_FE. It was implemented as

def reaction_FE(I, f, L, Nx, dt, dt_Rfactor, t, step_no, user_action=None):
"""Reaction solver, Forward Euler method.
Note that t covers the whole global time interval.
dt is the step of the diffustion part, i.e. there
is a local time interval [0, dt] the reaction_FE
deals with each time it is called. step_no keeps
track of the (global) time step number (required
for lookup in t).

u = np.copy(I)

dt_local = dt / float(dt_Rfactor)

Nt_local = int(round(dt / float(dt_local)))
x = np.linspace(0, L, Nx + 1)

for n in range(Nt_local):
time = t[step_no] + n * dt_local
ul1:Nx] = ul[1:Nx] + dt_local * f(ul[1:Nx], time)

return u

With the ordinary splitting approach, each time step dt is covered twice. First computing the
impact of the reaction term, then the contribution from the diffusion term:

def ordinary_splitting(I, a, b, f, L, dt, dt_Rfactor, F, t, T, user_action=None):
"""1st order scheme, i.e. Forward Euler is enough for both
the diffusion and the reaction part. The time step dt is
given for the diffusion step, while the time step for the
reaction part is found as dt/dt_Rfactor, where dt_Rfactor >= 1.
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Nt = int(round(T / float(dt)))

dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

x = np.linspace(0, L, Nx + 1) # Mesh points in space
u = np.zeros(Nx + 1)

for i in range(0, Nx + 1):

uli] = I(x[i])
for n in range(0, Nt):

u_s = diffusion_FE(
I=u, a=a, f=0, L=L, dt=dt, F=F, t=t, T=dt, step_no=n, user_action=None

)
u = reaction_FE(

dt_Rfactor=dt_Rfactor,
B=B

step_no=n,
user_action=None,

if user_action is not None:
user_action(u, x, t, n + 1)

For the two Strange splitting approaches, each time step dt is handled by first computing the
reaction step for (the first) dt/2, followed by a diffusion step dt, before the reaction step is treated
once again for (the remaining) dt/2. Since first order Strange splitting is no better than first order
accurate, both the reaction and diffusion steps are computed explicitly. The solver was implemented
as

def Strange_splitting 1stOrder(I, a, b, f, L, dt, dt_Rfactor, F, t, T, user_action=None):
"""Strange splitting while still using FE for the diffusion
step and for the reaction step. Gives 1st order scheme.
Introduce an extra time mesh t2 for the diffusion part,
since it steps dt/2.
Nt = int(round(T / float(dt)))
t2 = np.linspace(0, Nt * dt, (Nt + 1) + Nt) # Mesh points in diff
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1)
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u = np.zeros(Nx + 1)

for i in range(0, Nx + 1):

uli] = I(x[i])

for n in range(0, Nt):
u_s = diffusion FE(

I=u,
a=a,
£=0,
L=L,
dt=d4dt / 2.0,
F=F / 2.0,
t=t2,
T=dt / 2.0,
step_no=2 * n,
user_action=None,

u_sss = reaction_FE(
I=u_s,

dt=dt,
dt_Rfactor=dt_Rfactor,
B=,

step_no=n,
user_action=None,

u = diffusion_ FE(
I=u_sss,
a=a,
£=0,
L=L,
dt=dt / 2.0,
F=F / 2.0,
=62,
T=dt / 2.0,
step_no=2 * n + 1,
user_action=None,

if user_action is not None:
user_action(u, x, t, n + 1)
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The second order version of the Strange splitting approach utilizes a second order Adams-Bashforth
solver for the reaction part and a Crank-Nicolson scheme for the diffusion part. The solver has the
same structure as the one for first order Strange splitting and was implemented as

def Strange_splitting 2andOrder(I, a, b, f, L, dt, dt_Rfactor, F, t, T, user_action=None):
"""Strange splitting using Crank-Nicolson for the diffusion
step (theta-rule) and Adams-Bashforth 2 for the reaction step.
Gives 2nd order scheme. Introduce an extra time mesh t2 for
the diffusion part, since it steps dt/2.

import odespy

Nt = int(round(T / float(dt)))

t2 = np.linspace(0, Nt * dt, (Nt + 1) + Nt) # Mesh points in diff
dx = np.sqrt(a * dt / F)

Nx = int(round(L / dx))

np.linspace(0, L, Nx + 1)

np.zeros(Nx + 1)

X

u

for i in range(0, Nx + 1):

uli] = I(x[iD)
reaction_solver = odespy.AdamsBashforth2(f)

for n in range(0, Nt):
u_s = diffusion_theta(

I=u,
a=a,
£=0,
L=L,
dt=d4dt / 2.0,
F=F / 2.0,
t=t2,
T=dt / 2.0,
step_no=2 * n,
theta=0.5,
u_L=0,
u_R=0,
user_action=None,

reaction_solver.set_initial condition(u_s)

t_points = np.linspace(0, dt, dt_Rfactor + 1)

u_AB2, t_ = reaction_solver.solve(t_points) # t_ not needed
u_sss = u_AB2[-1, :] # pick sol at last point in time
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u = diffusion_theta(
I=u_sss,
a=a,
£=0,
L=L,
dt=dt / 2.0,
F=F / 2.0,
t=t2,
T=dt / 2.0,
step_no=2 * n + 1,
theta=0.5,
u_L=0,
u_R=0,
user_action=None,

if user_action is not None:
user_action(u, x, t, n + 1)

When executing split_diffu_react.py, we find that the estimated convergence rates are as
expected. The second order Strange splitting gives the least error (about 4e~°) and has second order
convergence (r = 2), while the remaining three approaches have first order convergence (r = 1).

5.34. Analysis of the splitting method

Let us address a linear PDE problem for which we can develop analytical solutions of the discrete
equations, with and without splitting, and discuss these. Choosing f(u) = —fu for a constant [
gives a linear problem. We use the Forward Euler method for both the PDE and ODE problems.

We seek a 1D Fourier wave component solution of the problem, assuming homogeneous Dirichlet
conditions at x =0 and x = L:

—ak2t—Bt - T
u= e *F 1 Btgin ky, k:Z.

This component fits the 1D PDE problem (f = 0). On complex form we can write
u =

—ak?t—pt+ike
€ )

where i = v/—1 and the imaginary part is taken as the physical solution.

We refer to Section 3.15 and to the book (Langtangen 2016b) for a discussion of exact numerical
solutions to diffusion and decay problems, respectively. The key idea is to search for solutions
A"e™** and determine A. For the diffusion problem solved by a Forward Euler method one has

A=1-—4Fsin?,
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where F' = aAt/Axz? is the mesh Fourier number and p = kAxz/2 is a dimensionless number

reflecting the spatial resolution (number of points per wave length in space). For the decay problem

u' = —fu, we have A =1 — g, where ¢ is a dimensionless parameter for the resolution in the decay

problem: ¢ = SAt.
The original model problem can also be discretized by a Forward Euler scheme,
[Djfu = aD,Dyu — Bu)? .
Assuming A"e*** we find that
uf = (1 —4Fsin? —q)" sinkx .
We are particularly interested in what happens at one time step. That is,
ul' = (1 — 4F sin® p)u .
In the two stage algorithm, we first compute the diffusion step

w = (1 — 4Fsin? p)ul !

Then we use this as input to the decay algorithm and arrive at
w T = (1 — gut"T = (1 — q)(1 — 4F sin® p)ul’ .
The splitting approximation over one step is therefore

E=1-4Fsin? —q — (1 — ¢)(1 — 4F sin®p) = —¢q(2 — Fsin®p)).

5.35. Problem: Determine if equations are nonlinear or not

Classify each term in the following equations as linear or nonlinear. Assume that u, u, and p are
unknown functions and that all other symbols are known quantities.

mu” + Blu |u' + cu = F(t)

Up = QUgy

Uit = c2V2u

up = V- (a(u)Vu) + f(z,y)

uy+u-Vu=-Vp+rViu, V-u =0 (u is a vector field)
u = f(u,t)

V2u = et

S IR N

@ Solution

1. mu” is linear; B|u/|u’ is nonlinear; cu is linear; F(¢) does not contain the unknown u and
is hence constant in u, so the term is linear.

2. uy is linear; oy, is linear.

3. uy is linear; ¢?V>2u is linear.
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u is linear; V - (a(u)Vu) is nonlinear; f(x,y) is constant in u and hence linear.

uy is linear; f(u), is nonlinear if f is nonlinear in w.

u; is linear; w - Vu is nonlinear; —Vp is linear (in p); rV2u is linear; V - u is linear.
u’ is linear; f(u,t) is nonlinear if f is nonlinear in w.

V2u is linear; \e® is nonlinear.

X NSO

5.36. Exercise: Derive a relaxation formula

Derive (5.9) in Section Section 5.9.

5.37. Problem: Derive and investigate a generalized logistic model

The logistic model for population growth is derived by assuming a nonlinear growth rate,
' =alu)u, u(0)=1I, (5.71)

and the logistic model arises from the simplest possible choice of a(u): r(u) = o(1 —u/M), where M
is the maximum value of u that the environment can sustain, and g is the growth under unlimited
access to resources (as in the beginning when u is small). The idea is that a(u) ~ ¢ when u is small
and that a(t) — 0 as u — M.

An a(u) that generalizes the linear choice is the polynomial form
a(u) = o(1 —u/M)?, (5.72)

where p > 0 is some real number.

a)

Formulate a Forward Euler, Backward Euler, and a Crank-Nicolson scheme for (5.71).

@ Use a geometric mean approximation in the Crank-Nicolson scheme:

[a(u)u]"+1/2 ~ a(un)un+1.

@ Solution

The Forward Euler scheme reads
[Difu = a(u)u]”,

or written out,
The scheme is linear in the unknown u"*1:

u" = u + Ata(u™)u" .
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The Backward Euler scheme,

becomes

which is a nonlinear equation in the unknown wu, here expressed as u"*!:
™t — Ata(u " = "

The standard Crank-Nicolson scheme,

Dy = a(u)ut]”+%,
takes the form

1 1
— = §a(u")u" + ia(u""'l)u”+1 .

This is a nonlinear equation in the unknown u"*1,
n+1 1 n+1y, n+1 n 1 ny,,n
u" T — iAta(u Jurmt =u" + §Ata(u Ju™.
However, with the suggested geometric mean, the a(u)u term is linearized:
= a(u™)u",
leading to a linear equation in u"*1:

(1 — Ata(u™))u" ™t =u".

b)

Formulate Picard and Newton iteration for the Backward Euler scheme in a).

@ Solution

A Picard iteration for
™ — Ata(u Ty = o

applies old values in for «"*! in a(u"*!). If v~ is the most recently computed approximation
to u™t!, we can write the Picard linearization as

(1 — Ata(u™))u =™,
Alternatively, with an iteration index k,
(1 — Ata(uTHE))n AL — gn
Newton’s method starts with identifying the nonlinear equation as F(u) = 0, and here

F(u) =u— Ata(u)u — u" .
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The Jacobian is .
J(u) = ;Z) =1— At(d (u)u + a(u)).

The key equation in Newton’s method is then

Ju )ou=—-F(u"), u<+u—du.

c)

Implement the numerical solution methods from a) and b). Use logistic.py to compare the case
p =1 and the choice (5.72).

@ Solution

We specialize the code for a(u) to (5.72) since the code was developed from logistic.py. It
is convenient to work with a dimensionless form of the problem. Choosing a time scale t. = 1o
and a scale for u, u. = M, leads to

v =o(1 —u)Pu, u(0)=a,

where « is a dimensionless number I
a=—.

M
The three schemes can be implemented as follows.
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import numpy as np

def FE_logistic(p, u0, dt, Nt):
u = np.zeros(Nt + 1)
ul0] = u0
for n in range(Nt):
uln + 1] = uln] + dt * (1 - uln]) **x p * uln]
return u

def BE_logistic(p, uO, dt, Nt, choice="Picard", eps_r=1le-3, omega=1, max_iter=1Q
if choice == "Picardil":
choice = "Picard"

max_iter = 1

u = np.zeros(Nt + 1)
iterations = []
ul0] = u0
for n in range(1, Nt + 1):
c = -uln - 1]
if choice == "Picard":

def F(u):
return -dt * (1 - uw) *kx p * u + u + c

u_ = uln - 1]

k=0

while abs(F(u_)) > eps_r and k < max_iter:
u_ = omega * (-c / (1 - dt * (1 - u_) ** p)) + (1 - omega) * u_
k+=1

uln] = u_

iterations.append (k)

elif choice == "Newton":

def F(u):
return -dt * (1 - u) ** p * u + u + c

def dF(u):
return dt * p * (1 - u) **x (p - 1) * u - dt * (1 - u) *x p + 1

u_ = uln - 1]

k=20

while abs(F(u_)) > eps_r and k < max_iter:
u =u_ - F(u) / dF(u_)
k +=1

uln] = u_
iterations.append (k)
return u, iterations
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A first verification is to choose p = 1 and compare the results with those from logistic.py.
The number of iterations and the final numerical answers should be identical.

d)

Implement unit tests that check the asymptotic limit of the solutions: v — M as t — oo.

@ You need to experiment to find what “infinite time” is

(increases substantially with p) and what the appropriate tolerance is for testing the asymptotic
limit.

@ Solution

The test function may look like

def test_asymptotic_value():

T = 100
dt = 0.1
Nt = int(round(T / float(dt)))
u0 = 0.1
p=1.8

u_CN = CN_logistic(p, u0, dt, Nt)
u_BE_Picard, iter_Picard = BE_logistic(

p, u0, dt, Nt, choice="Picard", eps_r=1le-5, omega=1, max_iter=1000
)
u_BE_Newton, iter_Newton = BE_logistic(

p, u0, dt, Nt, choice="Newton", eps_r=1le-5, omega=1, max_iter=1000
)
u_FE = FE_logistic(p, u0, dt, Nt)

for arr in u_CN, u_BE_Picard, u_BE_Newton, u_FE:
expected = 1
computed = arr[-1]

tol = 0.01
msg = f"expected={expected}, computed={computed}"
print (msg)

assert abs(expected - computed) < tol

It is important with a sufficiently small eps_r tolerance for the asymptotic value to be accurate
(using eps_r=1E-3 leads to a value 0.92 at ¢t = T instead of 0.994 when eps_r=1E-5).

e)
Perform experiments with Newton and Picard iteration for the model (5.72). See how sensitive the
number of iterations is to At and p.
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@ Solution

Appropriate code is
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import matplotlib.pyplot as plt

def demo():
T =12
p=1.2
try:
dt = float(sys.argv[1])
eps_r = float(sys.argv[2])
omega = float(sys.argv[3])

except:
dt = 0.8
eps_r = le-3
omega = 1

N = int(round(T / float(dt)))

u_FE = FE_logistic(p, 0.1, dt, N)

u_BE31, iter_BE31 = BE_logistic(p, 0.1, dt, N, "Picardl", eps_r, omega)
u_BE3, iter_BE3 = BE_logistic(p, 0.1, dt, N, "Picard", eps_r, omega)
u_BE4, iter_ BE4 BE_logistic(p, 0.1, dt, N, "Newton", eps_r, omega)
u_CN = CN_logistic(p, 0.1, dt, N)

print (f"Picard mean no of iterations (dt={dt:g}):", int(round(np.mean(iter_B
print(f"Newton mean no of iterations (dt={dt:g}):", int(round(np.mean(iter_B

t = np.linspace(0, dt * N, N + 1)
plt.figure()

plt.plot(t, u_FE, label="FE")
plt.plot(t, u_BE3, label="BE Picard")
plt.plot(t, u_BE31, label="BE Picardl")
plt.plot(t, u_BE4, label="BE Newton")
plt.plot(t, u_CN, label="CN gm")
plt.legend(loc="lower right")
plt.title(£f"dt={dt:g}, eps={eps_r:.0E}")
plt.xlabel("t")

plt.ylabel("u")

filestem = "logistic_N%d_eps%03d" % (N, np.loglO(eps_r))
plt.savefig(filestem + "_u.png")
plt.savefig(filestem + "_u.pdf")

plt.figure()

plt.plot(range(l, len(iter_BE3) + 1), iter_BE3, "r-o", label="Picard")
plt.plot(range(1l, len(iter_BE4) + 1), iter_BE4, "b-o0", label="Newton")
plt.legend()

plt.title(£f"dt={dt:g}, eps={eps_r:.0E}")

plt.axis([1, N + 1, 0, max(iter_BE3 + iter_BE4) + 1])

plt.xlabel("Time level")
plt.ylabel("No of iterations")
plt.savefig(filestem + "_iter.png")

plt.savefig(filestem + "_iter.pdf")
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5.38. Problem: Experience the behavior of Newton’s method

The program Newton_demo.py illustrates graphically each step in Newton’s method and is run
like

Terminal> python Newton_demo.py f dfdx xO xmin xmax

Use this program to investigate potential problems with Newton’s method when solving
0527 cos(mx) = 0. Try a starting point o = 0.8 and xp = 0.85 and watch the different behavior.
Just run

Terminal> python Newton_demo.py '0.2 + exp(-0.5*x**2)*cos(pi*x)' \
'—x*xexp (—x**2) *cos (pi*x) - pikexp(-x**2)*sin(pixx)' \
0.85 -3 3

and repeat with 0.85 replaced by 0.8.

5.39. Exercise: Compute the Jacobian of a 2 x 2 system

Write up the system (5.17)-(5.18) in the form F(u) =0, F = (Fy, F1), u = (ug, u1), and compute
the Jacobian J; ; = 0F;/0u;.

5.40. Problem: Solve nonlinear equations arising from a vibration ODE

Consider a nonlinear vibration problem
mu” + bu'|u'| + s(u) = F(t),

where m > 0 is a constant, b > 0 is a constant, s(u) a possibly nonlinear function of u, and F(t)
is a prescribed function. Such models arise from Newton’s second law of motion in mechanical
vibration problems where s(u) is a spring or restoring force, mu” is mass times acceleration, and
bu'|u’| models water or air drag.

a)

Rewrite the equation for u as a system of two first-order ODEs, and discretize this system by a

1
Crank-Nicolson (centered difference) method. With v = «/, we get a nonlinear term v"*2|v"*2].
1
Use a geometric average for v 12,
b)
Formulate a Picard iteration method to solve the system of nonlinear algebraic equations.

c)

Explain how to apply Newton’s method to solve the nonlinear equations at each time level. Derive
expressions for the Jacobian and the right-hand side in each Newton iteration.
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5.41. Exercise: Find the truncation error of arithmetic mean of products

In Section Section 5.21 we introduce alternative arithmetic means of a product. Say the product is
P(t)Q(t) evaluated at t =t 1. The exact value is
2

[PQI™T? = Pt

There are two obvious candidates for evaluating [PQ]”JF% as a mean of values of P and @) at t,, and
tn+1. Either we can take the arithmetic mean of each factor P and @,

1
5

N

[PQI™E & S(P"+ P (@ +Q), (573)

or we can take the arithmetic mean of the product PQ:

N

PQITE ~ L(PMQ" + PRHIQMY). (5.74)

The arithmetic average of P(tn+%) is O(At?):

—Lipr ey poan).

A fundamental question is whether (5.73) and (5.74) have different orders of accuracy in At =
tn+1 — tn. To investigate this question, expand quantities at t,41 and t, in Taylor series around
byt and subtract the true value [PQ]”*é from the approximations (5.73) and (5.74) to see what
the order of the error terms are.

@ You may explore sympy for carrying out the tedious calculations.

A general Taylor series expansion of P(t + %At) around t involving just a general function
P(t) can be created as follows:

>>> from sympy import x*

>>> t, dt = symbols('t dt')

>>> P = symbols('P', cls=Function)

>>> P(t).series(t, 0, 4)

P(0) + t*Subs(Derivative(P(_x), _x), ( x,), (0,)) +

t**x2*Subs (Derivative(P(_x), _x, _x), ( x,), (0,))/2 +

t**3*%Subs (Derivative (P(_x), _x, .x, x), (_x,), (0,))/6 + 0(t**x4)
>>> P_p = P(t).series(t, 0, 4).subs(t, dt/2)

>>> P_p

P(0) + dt*Subs(Derivative(P(_x), _x), ( x,), (0,))/2 +
dt**2*xSubs (Derivative(P(_x), x, x), (x,), (0,))/8 +
dt**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/48 + 0(dt**4)

The error of the arithmetic mean, (P(—3At) + P(—1At)) for ¢t = 0 is then
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>>> P m = P(t).series(t, 0, 4).subs(t, -dt/2)

>>> mean = Rational(1,2)*(P_m + P_p)

>>> error = simplify(expand(mean) - P(0))

>>> error

dt**2*xSubs (Derivative(P(_x), _x, _x), ( x,), (0,))/8 + 0(dt**4)

Use these examples to investigate the error of (5.73) and (5.74) for n = 0. (Choosing n = 0 is
necessary for not making the expressions too complicated for sympy, but there is of course no
lack of generality by using n = 0 rather than an arbitrary n - the main point is the product
and addition of Taylor series.)

5.42. Problem: Newton’s method for linear problems

Suppose we have a linear system F(u) = Au—b = 0. Apply Newton’s method to this system, and
show that the method converges in one iteration.

5.43. Problem: Discretize a 1D problem with a nonlinear coefficient

We consider the problem
(14+u®)u) =1, 2€(0,1), u0)=u(l)=0. (5.75)

Discretize (5.75) by a centered finite difference method on a uniform mesh.

5.44. Problem: Linearize a 1D problem with a nonlinear coefficient

We have a two-point boundary value problem

(A +v*)u) =1, 2€(0,1), u0)=u(l)=0. (5.76)

a)

Construct a Picard iteration method for (5.76) without discretizing in space.
b)

Apply Newton’s method to (5.76) without discretizing in space.

c)

Discretize (5.76) by a centered finite difference scheme. Construct a Picard method for the resulting
system of nonlinear algebraic equations.

d)

Discretize (5.76) by a centered finite difference scheme. Define the system of nonlinear algebraic
equations, calculate the Jacobian, and set up Newton’s method for solving the system.
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5.45. Problem: Finite differences for the 1D Bratu problem
5.46. Good: http://faculty.oxy.edu/ron/research/bratu/bratu.pdf

5.47. It has a collocation method too

We address the so-called Bratu problem
u + X" =0, z€(0,1), u(0)=u(l)=0, (5.77)

where A is a given parameter and u is a function of x. This is a widely used model problem for
studying numerical methods for nonlinear differential equations. The problem (5.77) has an exact
solution
cosh((z — %)9/2)
cosh(6/4) ) ’

ue(xr) = —21In (
where 0 solves
6 = Vv2\cosh(6/4) .

There are two solutions of (5.77) for 0 < A < A. and no solution for A > \.. For A = )\, there is one
unique solution. The critical value A, solves

1= \/ﬁi sinh(6(Ac)/4) .
A numerical value is A\, = 3.513830719.
a)
Discretize (5.77) by a centered finite difference method.
b)
Set up the nonlinear equations Fj(ug, u1,...,uy,) = 0 from a). Calculate the associated Jacobian.
c)

Implement a solver that can compute u(x) using Newton’s method. Plot the error as a function of
x in each iteration.

d)

Investigate whether Newton’s method gives second-order convergence by computing ||ue — ul|/||ue —
u~||? in each iteration, where u is solution in the current iteration and «~ is the solution in the
previous iteration.
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5.48. Problem: Discretize a nonlinear 1D heat conduction PDE by finite
differences

We address the 1D heat conduction PDE
oc(T)Ty = (K(T) Ty ),

for z € [0, L], where p is the density of the solid material, ¢(T") is the heat capacity, T is the
temperature, and k(7') is the heat conduction coefficient. T'(z,0) = I(x), and ends are subject to a
cooling law:

k(T)Tle=0 = M(T)T = Ts),  —k(T)Tile=r = MT)(T = Ts),
where h(T) is a heat transfer coefficient and Ty is the given surrounding temperature.
a)
Discretize this PDE in time using either a Backward Euler or Crank-Nicolson scheme.
b)

Formulate a Picard iteration method for the time-discrete problem (i.e., an iteration method before
discretizing in space).

c)
Formulate a Newton method for the time-discrete problem in b).
d)

Discretize the PDE by a finite difference method in space. Derive the matrix and right-hand side of
a Picard iteration method applied to the space-time discretized PDE.

o)

Derive the matrix and right-hand side of a Newton method applied to the discretized PDE in d).

5.49. Problem: Differentiate a highly nonlinear term

The operator V - (a(u)Vu) with a(u) = |Vu|? appears in several physical problems, especially
flow of Non-Newtonian fluids. The expression |Vu| is defined as the Euclidean norm of a vector:
|Vu? = Vu - Vu. In a Newton method one has to carry out the differentiation da(u)/dc;, for
u =Y cpYk. Show that

;%\Vur] = q|Vu|T?Vu - V.
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@ Solution

0 0 q q g_l 0

P — 9= —_ . 2 = = . 2 _— .

aCj!Vu| o, (Vu - Vu) 2(Vu Vu) o, (Vu - Vu)
0

_ 4 -2 9 ) .9
—2|Vu] (8Cj(Vu) Vu+ Vu 8Cj(Vu))

_ ou _
= q|Vu|"*(Vu - V%) = q|VulT*(Vu - Vi;)
7

5.50. Exercise: Crank-Nicolson for a nonlinear 3D diffusion equation

Redo Section Section 5.26 when a Crank-Nicolson scheme is used to discretize the equations in time
and the problem is formulated for three spatial dimensions.

@ Express the Jacobian as Jij kst = 8Fi,j,k/8urvs’t and observe, as in the 2D case, that
Ji jk,rs,t 1S VETy sparse:

Jijkrst70only forr=i+i, s=jEf1l,andt=k+tlaswellasr =1, s=j, andt = k.

5.51. Problem: Find the sparsity of the Jacobian

Consider a typical nonlinear Laplace term like V - a(u)Vu discretized by centered finite differences.
Explain why the Jacobian corresponding to this term has the same sparsity pattern as the matrix
associated with the corresponding linear term aV?u.

@ Set up the unknowns that enter the difference equation at a

point (¢, 7) in 2D or (4,7, k) in 3D, and identify the nonzero entries of the Jacobian that can
arise from such a type of difference equation.

5.52. Problem: Investigate a 1D problem with a continuation method

Flow of a pseudo-plastic power-law fluid between two flat plates can be modeled by

@
dr Ho
where 8 > 0 and pg > 0 are constants. A target value of n may be n = 0.2.

a)

Formulate a Picard iteration method directly for the differential equation problem.

d7u
dzx

n—1 du , B B

532



5. Nonlinear Problems

b)

Perform a finite difference discretization of the problem in each Picard iteration. Implement a solver
that can compute v on a mesh. Verify that the solver gives an exact solution for n = 1 on a uniform
mesh regardless of the cell size.

)

Given a sequence of decreasing n values, solve the problem for each n using the solution for the
previous n as initial guess for the Picard iteration. This is called a continuation method. Experiment
with n = (1,0.6,0.2) and n = (1,0.9,0.8,...,0.2) and make a table of the number of Picard iterations
Versus 1.

d)

Derive a Newton method at the differential equation level and discretize the resulting linear equations
in each Newton iteration with the finite difference method.

e)

Investigate if Newton’s method has better convergence properties than Picard iteration, both in
combination with a continuation method.

5.53. Exercises: Nonlinear PDEs with Devito

These exercises explore nonlinear PDEs using Devito’s symbolic finite difference framework.

5.563.1. Exercise 1: Nonlinear Diffusion Stability

The explicit scheme for nonlinear diffusion requires F < 0.5 where F' = Dy, At/Ax?,

a) Use solve_nonlinear_diffusion_explicit with F' = 0.4 and verify stability.
b) Observe the solution behavior as F' approaches 0.5.
¢) Compare the decay rate for constant D(u) = 1 vs linear D(u) = 1 + u.
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1 Solution
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from src.nonlin import (
solve_nonlinear_diffusion_explicit,
constant_diffusion,
linear_diffusion,

)

import numpy as np

import matplotlib.pyplot as plt

def I(x):
return np.sin(np.pi * x)

fig, axes = plt.subplots(l, 2, figsize=(12, 5))

# Constant diffusion

result_const = solve_nonlinear_diffusion_explicit(
L=1.0, Nx=50, T=0.2, F=0.4, I=I,
D_func=lambda u: constant diffusion(u, D0=1.0),
save_history=True,

# Linear diffusion

result_linear = solve_nonlinear_diffusion_explicit(
L=1.0, Nx=50, T=0.2, F=0.4, I=I,
D_func=lambda u: linear_diffusion(u, D0=1.0, alpha=0.5),
save_history=True,

# Plot

for ax, result, title in [
(axes[0], result _const, 'Constant D(u) = 1'),
(axes[1], result_linear, 'Linear D(u) = 1 + 0.5u')

for i in range(0, len(result.t_history), len(result.t_history)//5):
ax.plot(result.x, result.u_historyl[i],
label=f't = {result.t_history[i]:.3f}")
ax.set_xlabel('x"')
ax.set_ylabel('u')
ax.set_title(title)
ax.legend ()

plt.tight_layout ()
# The linear diffusion case diffuses faster because D increases with u

print (f"Constant D: final max = {result_const.u.max():.4f}")
print(f"Linear D: final max = {result_linear.u.max():.4f}")
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5.53.2. Exercise 2: Porous Medium Equation

The porous medium equation has D(u) = mu™ !, giving:
ug =V - (mu™'Vu) = V- V(u™)

a) Simulate with m = 2 (nonlinear diffusion).
b) Compare with m =1 (linear diffusion).
¢) Observe the “finite speed of propagation” for m > 1.

1 Solution

from src.nonlin import solve_nonlinear_diffusion_explicit, porous_medium_diffusi
import numpy as np
import matplotlib.pyplot as plt

# Compactly supported initial condition
def I(x):
return np.maximum(0, 1 - 4*(x - 0.5)%*%2)

fig, axes = plt.subplots(l, 2, figsize=(12, 5))
for ax, m, title in [

(axes[0], 1.0, 'm
(axes[1], 2.0, 'm

1 (linear)'),
2 (porous medium)')

result = solve_nonlinear_diffusion_explicit(
L=1.0, Nx=100, T=0.1, F=0.3, I=I,
D_func=lambda u, m=m: porous_medium_diffusion(u, m=m, D0=1.0),
save_history=True,

for i in range(0, len(result.t_history), max(1, len(result.t_history)//5)):
ax.plot(result.x, result.u_historyl[i],
label=f't = {result.t_history[i]:.3f}"')
ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(title)
ax.legend()

plt.tight_layout ()

For m > 1, the solution maintains compact support (finite speed of propagation), unlike linear
diffusion which spreads instantly.

5.563.3. Exercise 3: Fisher-KPP Equation

The Fisher-KPP equation uy = Dug, +ru(1 —u) models population dynamics with logistic growth.
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a) Simulate with a localized initial condition.
b) Observe the traveling wave behavior.
¢) Measure the wave speed and compare with theory: ¢ = 2v/Dr.
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1 Solution
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from src.nonlin import solve_reaction_diffusion_splitting, fisher_reaction
import numpy as np
import matplotlib.pyplot as plt

# Initial condition: localized population
def I(x):
return np.where(x < 0.2, 1.0, 0.0)

D=20.1

1.0
result = solve_reaction_diffusion_splitting(
L=5.0, a=D, Nx=200, T=5.0, F=0.3, I=I,
R_func=lambda u: fisher reaction(u, r=r),
splitting="strang",
save_history=True,

# Plot traveling wave
plt.figure(figsize=(10, 6))
for i in range(0, len(result.t_history), len(result.t_history)//10):
plt.plot(result.x, result.u_historyl[i],
label=f't = {result.t_history[i]:.1f}"')
plt.xlabel('x")
plt.ylabel('u')
plt.title('Fisher-KPP Traveling Wave')
plt.legend ()

# Theoretical wave speed
c_theory = 2 * np.sqrt(D * r)
print (f"Theoretical wave speed: {c_theory:.3f}")

# Estimate numerical wave speed from front position
threshold = 0.5
front_positions = []
for i, u in enumerate(result.u_history):
idx = np.argmax(u < threshold)
if idx > O:
front_positions.append((result.t_history[i], result.x[idx]))

if len(front_positions) > 2:
t_vals = [p[0] for p in front_positions]
x_vals [p[1] for p in front_positions]
c_numerical = np.polyfit(t_vals, x_vals, 1)[0]
print (f"Numerical wave speed: {c_numerical:.3f}")
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5.563.4. Exercise 4: Strang vs Lie Splitting

Compare the accuracy of Strang and Lie splitting.

a) Solve the reaction-diffusion equation with both methods.
b) Use a fine time step as reference solution.

c) Plot error vs time step size on a log-log scale.

d) Verify that Strang is second-order and Lie is first-order.
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1 Solution

from src.nonlin import solve_reaction_diffusion_splitting, logistic_reaction
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return 0.5 * np.sin(ap.pi * x)

# Reference solution with very fine time step

ref = solve_reaction_diffusion_splitting(
L=1.0, a=0.1, Nx=100, T=0.1, F=0.1, I=I,
R_func=lambda u: logistic_reaction(u, r=1.0, K=1.0),
splitting="strang",

# Test different Fourier numbers (time step sizes)
F_values = [0.4, 0.3, 0.2, 0.1]

errors_lie = []

errors_strang = []

for F in F_values:
for splitting, errors in [("lie", errors_lie), ("strang", errors_strang)]:

result = solve_reaction_diffusion_splitting(
L=1.0, a=0.1, Nx=100, T=0.1, F=F, I=I,
R_func=lambda u: logistic_reaction(u, r=1.0, K=1.0),
splitting=splitting,

)

error = np.max(np.abs(result.u - ref.u))

errors.append (error)

# Plot

dt_values = [F * (1.0/100)**2 / 0.1 for F in F_values]

plt.figure(figsize=(8, 6))

plt.loglog(dt_values, errors_lie, 'bo-', label='Lie (0(dt))')

plt.loglog(dt_values, errors_strang, 'rs-', label='Strang (0(dt"2))')

plt.loglog(dt_values, [errors_lie[0]*(dt/dt_values[0]) for dt in dt_values],
'b--', alpha=0.5)

plt.loglog(dt_values, [errors_strang[0]*(dt/dt_values[0])*+*2 for dt in dt_values
'r--', alpha=0.5)

plt.xlabel('Time step')

plt.ylabel('Error')

plt.legend()

plt.title('Splitting Method Comparison')

plt.grid(True)

Lie splitting shows first-order convergence (O(At)) while Strang splitting achieves second-order
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(O(A2)).

5.563.5. Exercise 5: Burgers Shock Formation

Burgers’ equation can develop steep gradients (shocks) for small viscosity.

a) Simulate with » = 0.1,0.01,0.001.
b) Observe the shock steepening for small v.
c¢) Plot the maximum gradient vs time.
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1 Solution

from src.nonlin import solve_burgers_equation
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(ap.pi * x)

fig, axes = plt.subplots(2, 3, figsize=(15, 10))

for col, nu in enumerate([0.1, 0.01, 0.001]):
result = solve_burgers_equation(
L=2.0, nu=nu, Nx=200, T=0.5, C=0.3, I=I,
save_history=True,

# Plot solution at several times
ax = axes[0, col]
for i in range(0, len(result.t_history), max(l, len(result.t_history)//5)):
ax.plot(result.x, result.u_historyl[i],
label=f't = {result.t_history[i]:.2f}"')
ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(f'nu = {nu}')
ax.legend(fontsize=8)

# Plot maximum gradient vs time

ax = axes[1, col]

max_grads = []

for u in result.u_history:
grad = np.abs(np.diff(u) / (result.x[1] - result.x[0]))
max_grads.append(grad.max())

ax.plot(result.t_history, max_grads)

ax.set_xlabel('Time')

ax.set_ylabel('Max |du/dx|"')

ax.set_title(f'Gradient evolution, nu = {nu}')

plt.tight_layout ()

As viscosity decreases, the solution develops steeper gradients. For very small v, the gradient
can become large, approaching shock behavior.

5.53.6. Exercise 6: Allen-Cahn Equation

The Allen-Cahn equation w; = €?uyy + u — u® models phase transitions.
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a) Start with random initial data in [—1,1].
b) Observe how the solution evolves toward +1.
c¢) Study the effect of € on interface width.

1 Solution

from src.nonlin import solve_reaction_diffusion_splitting, allen_cahn_reaction
import numpy as np
import matplotlib.pyplot as plt

# Random initial condition

np.random. seed (42)

x_init = np.linspace(0, 2.0, 101)

u_init = 0.2 * np.sin(3 * np.pi * x_init) + 0.1 * np.random.randn(101)

fig, axes = plt.subplots(l, 3, figsize=(15, 5))

for ax, epsilon in zip(axes, [0.1, 0.05, 0.02]):
result = solve_reaction_diffusion_splitting(
L=2.0, a=epsilon**2, Nx=100, T=1.0, F=0.3,
I=lambda x, u_init=u_init: np.interp(x, x_init, u_init),
R_func=lambda u: allen_cahn_reaction(u, epsilon=1.0),
splitting="strang",
save_history=True,

for i in range(0, len(result.t_history), max(l, len(result.t_history)//5)):
ax.plot(result.x, result.u_history[i], alpha=0.7,
label=f't = {result.t_history[i]:.2f}"')
ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(f'epsilon = {epsilon}')
ax.axhline(l, color='k', linestyle='--', alpha=0.3)
ax.axhline(-1, color='k', linestyle='--', alpha=0.3)
ax.legend(fontsize=8)

plt.tight_layout ()

The solution evolves toward +1 with sharp interfaces. Smaller e gives sharper interfaces but
requires finer resolution.

5.63.7. Exercise 7: Energy Decay in Nonlinear Diffusion

For nonlinear diffusion with homogeneous Dirichlet BCs, the “energy”

E(t)zi/o u”dx
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should decrease.

a) Compute E(t) for nonlinear diffusion.
b) Verify monotonic decrease.
c) Compare decay rates for different D(u).
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1 Solution

from src.nonlin import (
solve_nonlinear_diffusion_explicit,
constant_diffusion,
linear_diffusion,

)

import numpy as np

import matplotlib.pyplot as plt

def I(x):
return np.sin(ap.pi * x)

plt.figure(figsize=(10, 6))

for D_func, label in [
(lambda u: constant_diffusion(u, DO=1.0), 'Constant D=1'),
(lambda u: linear_diffusion(u, DO=1.0, alpha=0.5), 'D=1+0.5u'),
(lambda u: linear_diffusion(u, D0O=1.0, alpha=1.0), 'D=1+u'),

result = solve_nonlinear_diffusion_explicit(
L=1.0, Nx=100, T=0.5, F=0.4, I=I, D_func=D_func,
save_history=True,

# Compute energy

energies = []

for u in result.u_history:
E = 0.5 * np.trapz(u**2, result.x)
energies.append (E)

plt.semilogy(result.t_history, energies, label=label)

plt.xlabel('Time")

plt.ylabel('Energy E(t)')

plt.legend()

plt.title('Energy Decay in Nonlinear Diffusion')
plt.grid(True)

# Verify monotonic decrease
dE = np.diff(energies)
print (f"Energy monotonically decreasing: {np.all(dE <= 0)}")

The energy decreases monotonically. Nonlinear diffusion with D(u) increasing with u can lead
to faster decay.
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5. Nonlinear Problems

5.563.8. Exercise 8: Convergence of Burgers Solver

Verify the spatial convergence of the Burgers equation solver.

a) Use grid sizes N, = 25,50, 100, 200.
b) Compare with a fine-grid reference solution.
c) Compute the observed convergence rate.
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5. Nonlinear Problems

1 Solution

from src.nonlin import solve_burgers_equation
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(ap.pi * x)

# Reference solution
ref = solve_burgers_equation(
L=2.0, nu=0.1, Nx=400, T=0.2, C=0.3, I=I,

grid_sizes = [25, 50, 100, 200]
errors = []

for Nx in grid_sizes:
result = solve_burgers_equation(
L=2.0, nu=0.1, Nx=Nx, T=0.2, C=0.3, I=I,
)
# Interpolate to reference grid for comparison
u_interp = np.interp(ref.x, result.x, result.u)
error = np.sqrt(np.mean((u_interp - ref.u)**2))
errors.append (error)
print (£"Nx = {Nx:3d}, error = {error:.4e}")

# Compute convergence rate

errors = np.a