
DRAFT
Finite Difference Computing with PDEs

A Devito Approach

Hans Petter Langtangen Svein Linge

2026-01-29

DRAFT
Table of contents

Welcome 1
About this Edition . 1
License . 1
What is Devito? . 1
Book Structure . 2
Getting Started . 2

Preface 3
About This Adaptation . 3

What Has Changed . 3
Acknowledgment . 4

Original Preface . 4
Why finite differences? . 4
Simplify, understand, generalize . 5
Constructive mathematics . 5
All nuts and bolts . 6
Python as programming language . 6
Program verification . 6
Vectorized code . 6
Analysis via exact solutions of discrete equations . 7
Code-inspired mathematical notation . 7
Limited scope . 7
Focus on wave phenomena . 7
Independent chapters . 8
Supplementary materials . 8
Acknowledgments . 8

I. Main Chapters 9

1. Introduction to Devito 10
1.1. What is Devito? . 10

1.1.1. The Traditional Approach . 10
1.1.2. The Devito Approach . 11
1.1.3. How Devito Works . 12
1.1.4. When to Use Devito . 12
1.1.5. Installation . 12
1.1.6. What You’ll Learn . 13

1.2. Your First PDE: The 1D Wave Equation . 13
1.2.1. The Mathematical Model . 13

ii

DRAFT

Table of contents

1.2.2. Finite Difference Discretization . 13
1.2.3. The Devito Implementation . 14
1.2.4. Understanding the Code . 15
1.2.5. Visualizing the Solution . 16
1.2.6. The CFL Condition . 16
1.2.7. What Devito Does Behind the Scenes . 16

1.3. Core Devito Abstractions . 17
1.3.1. Grid: The Computational Domain . 17
1.3.2. Function: Static Fields . 17
1.3.3. TimeFunction: Time-Varying Fields . 18
1.3.4. Derivative Notation . 18
1.3.5. Eq: Defining Equations . 19
1.3.6. Operator: Compilation and Execution . 19
1.3.7. Complete Example: 2D Diffusion . 20
1.3.8. Summary of Core Abstractions . 20

1.4. Boundary Conditions in Devito . 21
1.4.1. Dirichlet Boundary Conditions . 21
1.4.2. Neumann Boundary Conditions . 22
1.4.3. Mixed Boundary Conditions . 23
1.4.4. 2D Boundary Conditions . 23
1.4.5. Time-Dependent Boundary Conditions . 23
1.4.6. Absorbing Boundary Conditions . 24
1.4.7. Periodic Boundary Conditions . 24
1.4.8. Best Practices . 25
1.4.9. Example: Complete Wave Equation Solver 25

1.5. Verification and Convergence Testing . 26
1.5.1. The Importance of Verification . 26
1.5.2. Convergence Rate Testing . 26
1.5.3. Implementing a Convergence Test . 26
1.5.4. Method of Manufactured Solutions (MMS) 28
1.5.5. Quick Verification Checks . 30
1.5.6. Debugging Tips . 31
1.5.7. Summary . 31

2. Wave Equations 33
2.1. Simulation of waves on a string . 33
2.2. Discretizing the domain . 34

2.2.1. Uniform meshes . 34
2.3. The discrete solution . 35
2.4. Fulfilling the equation at the mesh points . 35
2.5. Replacing derivatives by finite differences . 35

2.5.1. Interpretation of the equation as a stencil . 36
2.5.2. Algebraic version of the initial conditions . 36

2.6. Formulating a recursive algorithm . 37
2.7. Sketch of an implementation . 38
2.8. A slightly generalized model problem . 39
2.9. Using an analytical solution of physical significance 40

iii

DRAFT

Table of contents

2.10. Manufactured solution and estimation of convergence rates 40
2.10.1. Specifying the solution and computing corresponding data 40
2.10.2. Defining a single discretization parameter . 41
2.10.3. Computing rates . 42

2.11. Constructing an exact solution of the discrete equations 42
2.12. Solving the Wave Equation with Devito . 44

2.12.1. From Mathematics to Devito Code . 44
2.12.2. The Devito Grid . 44
2.12.3. TimeFunction for the Wave Field . 44
2.12.4. Symbolic Derivatives . 45
2.12.5. Formulating the PDE . 45
2.12.6. Boundary Conditions . 45
2.12.7. Creating and Running the Operator . 45
2.12.8. Complete Solver Implementation . 46
2.12.9. The Courant Number and Stability . 46
2.12.10.Handling Initial Velocity . 47
2.12.11.Verification: Standing Wave Solution . 47
2.12.12.Visualization . 47
2.12.13.Summary: Devito vs. NumPy . 48

2.13. Source Terms and Variable Coefficients . 48
2.13.1. Adding a Source Term . 48
2.13.2. Source Wavelets . 49
2.13.3. The Ricker Wavelet . 49
2.13.4. Point Sources in Devito . 50
2.13.5. Variable Wave Speed . 50
2.13.6. Implementing Variable Velocity in Devito . 50
2.13.7. CFL Condition with Variable Velocity . 51
2.13.8. Example: Wave Propagation in Layered Medium 51
2.13.9. Reflection and Transmission Coefficients . 52
2.13.10.Absorbing Boundary Conditions . 52
2.13.11.Summary . 53

2.14. Implementation . 53
2.15. Callback function for user-specific actions . 53
2.16. The solver function . 54
2.17. Verification: exact quadratic solution . 56
2.18. Verification: convergence rates . 57
2.19. Visualization: animating the solution . 63

2.19.1. Function for administering the simulation . 63
2.19.2. Dissection of the code . 65
2.19.3. Making movie files . 65
2.19.4. Skipping frames for animation speed . 65

2.20. Running a case . 66
2.21. Working with a scaled PDE model . 67
2.22. Vectorized computations . 68
2.23. Operations on slices of arrays . 69
2.24. Finite difference schemes expressed as slices . 71
2.25. Verification . 72

iv

DRAFT

Table of contents

2.26. Efficiency measurements . 73
2.26.1. Solution 1 . 73
2.26.2. Solution 2 . 76
2.26.3. Efficiency experiments . 77

2.27. Remark on the updating of arrays . 77
2.28. Making Movies . 78
2.29. Exercise: Simulate a standing wave . 79
2.30. Exercise: Add storage of solution in a user action function 82
2.31. Exercise: Use a class for the user action function . 83
2.32. Exercise: Compare several Courant numbers in one movie 85
2.33. Exercise: Implementing the solver function as a generator 87
2.34. Project: Calculus with 1D mesh functions . 87
2.35. Neumann boundary conditions . 91
2.36. Neumann boundary condition . 91
2.37. Discretization of derivatives at the boundary . 92
2.38. Implementation of Neumann conditions . 93
2.39. Index set notation . 94
2.40. Verifying the implementation of Neumann conditions 95
2.41. Alternative implementation via ghost cells . 98

2.41.1. Idea . 98
2.41.2. Implementation . 99

2.42. Variable wave velocity . 101
2.43. The model PDE with a variable coefficient . 101
2.44. Computing the coefficient between mesh points . 103
2.45. How a variable coefficient affects the stability . 103
2.46. Neumann condition and a variable coefficient . 104
2.47. Implementation of variable coefficients . 105
2.48. A more general PDE model with variable coefficients 106
2.49. Building a general 1D wave equation solver . 107
2.50. User action function as a class . 107

2.50.1. The code . 108
2.50.2. Dissection . 109

2.51. Pulse propagation in two media . 110
2.52. Exercise: Find the analytical solution to a damped wave equation 113
2.53. Problem: Explore symmetry boundary conditions . 115
2.54. Exercise: Send pulse waves through a layered medium 118
2.55. Exercise: Explain why numerical noise occurs . 119
2.56. Exercise: Investigate harmonic averaging in a 1D model 119
2.57. Problem: Implement open boundary conditions . 119
2.58. Exercise: Implement periodic boundary conditions 121
2.59. Exercise: Compare discretizations of a Neumann condition 122
2.60. Exercise: Verification by a cubic polynomial in space 123
2.61. Analysis of the wave equation . 126

2.61.1. Properties of the solution . 126
2.62. More precise definition of Fourier representations . 127
2.63. Stability . 129

2.63.1. Preliminary results . 129
2.64. Numerical dispersion relation . 130

v

DRAFT

Table of contents

2.65. Extending the analysis to 2D and 3D . 134
2.66. Multi-dimensional wave equations . 136
2.67. Multi-dimensional wave equations . 137
2.68. Mesh . 138
2.69. Discretization . 138

2.69.1. Discretizing the PDEs . 138
2.69.2. Handling boundary conditions where u is known 139
2.69.3. Discretizing the Neumann condition . 140

2.70. The 2D Wave Equation with Devito . 140
2.70.1. The 2D Wave Equation . 140
2.70.2. Devito’s Dimension-Agnostic Laplacian . 141
2.70.3. CFL Stability Condition in 2D . 141
2.70.4. The 2D Solver . 141
2.70.5. 2D Boundary Conditions . 142
2.70.6. Standing Waves in 2D . 142
2.70.7. Visualizing 2D Solutions . 143
2.70.8. Animation of 2D Waves . 143
2.70.9. From 2D to 3D . 144
2.70.10.Computational Considerations . 144
2.70.11.Summary . 145

2.71. Implementation of 2D and 3D wave equations . 145
2.72. Scalar computations . 146

2.72.1. Domain and mesh . 146
2.72.2. Solution arrays . 147
2.72.3. Index sets . 147
2.72.4. Computing the solution . 147

2.73. Vectorized computations . 148
2.74. Verification . 150

2.74.1. Testing a quadratic solution . 150
2.75. Visualization . 151

2.75.1. Matplotlib . 152
2.75.2. Gnuplot . 152
2.75.3. Mayavi . 153

2.76. Exercise: Check that a solution fulfills the discrete model 156
2.77. Project: Calculus with 2D mesh functions . 156
2.78. Exercise: Implement Neumann conditions in 2D . 157
2.79. Exercise: Test the efficiency of compiled loops in 3D 157
2.80. Applications of wave equations . 157
2.81. Waves on a string . 157

2.81.1. Damping . 160
2.81.2. External forcing . 160
2.81.3. Modeling the tension via springs . 160

2.82. Elastic waves in a rod . 161
2.83. Waves on a membrane . 161
2.84. The acoustic model for seismic waves . 161

2.84.1. Anisotropy . 163
2.85. Sound waves in liquids and gases . 163
2.86. Spherical waves . 164

vi

DRAFT

Table of contents

2.87. The linear shallow water equations . 165
2.87.1. Wind drag on the surface . 166
2.87.2. Bottom drag . 167
2.87.3. Effect of the Earth’s rotation . 167

2.88. Waves in blood vessels . 167
2.89. Electromagnetic waves . 169
2.90. Exercise: Simulate waves on a non-homogeneous string 169
2.91. Exercise: Simulate damped waves on a string . 170
2.92. Exercise: Simulate elastic waves in a rod . 170
2.93. Exercise: Simulate spherical waves . 170
2.94. Problem: Earthquake-generated tsunami over a subsea hill 171
2.95. Problem: Earthquake-generated tsunami over a 3D hill 173
2.96. Problem: Investigate Mayavi for visualization . 174
2.97. Problem: Investigate visualization packages . 174
2.98. Problem: Implement loops in compiled languages . 174
2.99. Exercise: Simulate seismic waves in 2D . 174
2.100.Project: Model 3D acoustic waves in a room . 175
2.101.Project: Solve a 1D transport equation . 176
2.102.Problem: General analytical solution of a 1D damped wave equation 179
2.103.For solution, see damped_wave_equation.pdf in joakibo on bitbucket. 179
2.104.Problem: General analytical solution of a 2D damped wave equation 180
2.105.Exercises: Wave Equations with Devito . 181

2.105.1.Exercise 1: Standing Wave Simulation . 181
2.105.2.Exercise 2: Convergence Rate Verification . 182
2.105.3.Exercise 3: Guitar String . 183
2.105.4.Exercise 4: Source Wavelets . 184
2.105.5.Exercise 5: 2D Wave Propagation . 185
2.105.6.Exercise 6: Reflection from Interface . 186
2.105.7.Exercise 7: Manufactured Solution . 189
2.105.8.Exercise 8: Wave Energy Conservation . 189
2.105.9.Exercise 9: Numerical Dispersion . 191
2.105.10.Exercise 10: Extension to Higher Order . 192

3. Diffusion Equations 193
3.1. An explicit method for the 1D diffusion equation . 193
3.2. The initial-boundary value problem for 1D diffusion 194
3.3. Forward Euler scheme . 194
3.4. Implementation . 196
3.5. Verification . 209

3.5.1. Exact solution of discrete equations . 209
3.5.2. Checking convergence rates . 211

3.6. Numerical experiments . 212
3.7. Implicit methods for the 1D diffusion equation . 214
3.8. Backward Euler scheme . 219
3.9. Sparse matrix implementation . 222
3.10. Crank-Nicolson scheme . 223
3.11. The unifying θ rule . 225
3.12. Experiments . 226

vii

DRAFT

Table of contents

3.13. The Laplace and Poisson equation . 227
3.14. Solving the Diffusion Equation with Devito . 229

3.14.1. From Discretization to Devito . 229
3.14.2. The Devito Implementation . 229
3.14.3. Key Differences from the Wave Equation . 230
3.14.4. Symbolic PDE Definition . 230
3.14.5. Boundary Conditions . 230
3.14.6. Complete Solver . 231
3.14.7. Verification with Exact Solution . 231
3.14.8. Convergence Testing . 231
3.14.9. Visualizing the Solution Evolution . 232
3.14.10.The Fourier Number and Physical Interpretation 232
3.14.11.Handling Different Initial Conditions . 233
3.14.12.Summary . 233

3.15. Analysis of schemes for the diffusion equation . 234
3.16. Properties of the solution . 234

3.16.1. Similarity solution . 234
3.16.2. Solution for a Gaussian pulse . 235
3.16.3. Solution for a sine component . 235

3.17. Analysis of discrete equations . 236
3.18. Analysis of the finite difference schemes . 237

3.18.1. Stability . 237
3.18.2. Accuracy . 238
3.18.3. Truncation error . 238

3.19. Analysis of the Forward Euler scheme . 238
3.19.1. Accuracy . 239

3.20. Analysis of the Backward Euler scheme . 240
3.20.1. Truncation error . 240

3.21. Analysis of the Crank-Nicolson scheme . 240
3.21.1. Truncation error . 241

3.22. Summary of accuracy of amplification factors . 243
3.23. Analysis of the 2D diffusion equation . 243

3.23.1. The Backward Euler scheme . 244
3.23.2. The Crank-Nicolson scheme . 244

3.24. Explanation of numerical artifacts . 245
3.25. Exercise: Explore symmetry in a 1D problem . 246
3.26. Exercise: Investigate approximation errors from a ux = 0 boundary condition 246
3.27. Exercise: Experiment with open boundary conditions in 1D 247
3.28. Exercise: Simulate a diffused Gaussian peak in 2D/3D 248
3.29. Exercise: Examine stability of a diffusion model with a source term 248
3.30. Diffusion with variable coefficient . 249
3.31. Discretization . 249
3.32. Stationary solution . 251
3.33. Piecewise constant medium . 251
3.34. Implementation of diffusion in a piecewise constant medium 252
3.35. Axi-symmetric diffusion . 254
3.36. Spherically-symmetric diffusion . 256

3.36.1. Discretization in spherical coordinates . 256

viii

DRAFT

Table of contents

3.36.2. Discretization in Cartesian coordinates . 257
3.37. Diffusion in 2D . 258
3.38. Discretization . 258
3.39. Numbering of mesh points versus equations and unknowns 260
3.40. Algorithm for setting up the coefficient matrix . 264
3.41. Implementation with a dense coefficient matrix . 265
3.42. Verification: exact numerical solution . 268
3.43. Verification: convergence rates . 269
3.44. Implementation with a sparse coefficient matrix . 270

3.44.1. Understanding the diagonals . 270
3.44.2. Filling the diagonals . 271
3.44.3. Filling the right-hand side; scalar version . 273
3.44.4. Filling the right-hand side; vectorized version 274
3.44.5. Verification . 275

3.45. The Jacobi iterative method . 275
3.45.1. Numerical scheme and linear system . 275
3.45.2. Iterations . 275
3.45.3. Initial guess . 276
3.45.4. Relaxation . 276
3.45.5. Stopping criteria . 276
3.45.6. Generalization of the scheme . 277

3.46. Test problem: diffusion of a sine hill . 279
3.47. The relaxed Jacobi method and its relation to the Forward Euler method 280
3.48. The Gauss-Seidel and SOR methods . 281
3.49. Scalar implementation of the SOR method . 282
3.50. Vectorized implementation of the SOR method . 283
3.51. Direct versus iterative methods . 287

3.51.1. Direct methods . 287
3.51.2. Iterative methods . 288

3.52. The Conjugate gradient method . 289
3.53. What is the recommended method for solving linear systems? 291
3.54. Random walk . 292
3.55. Random walk in 1D . 292
3.56. Statistical considerations . 294
3.57. Playing around with some code . 295

3.57.1. Scalar code . 295
3.57.2. Vectorized code . 295
3.57.3. Fixing the random sequence . 296
3.57.4. Verification . 297

3.58. Equivalence with diffusion . 298
3.59. Implementation of multiple walks . 299

3.59.1. Scalar version . 299
3.59.2. Vectorized version . 302
3.59.3. Improved vectorized version . 303
3.59.4. Remark on vectorized code and parallelization 304
3.59.5. Test function . 306

3.60. Demonstration of multiple walks . 307
3.61. Empty figure cache . 311

ix

DRAFT

Table of contents

3.62. Random walk as a stochastic equation . 312
3.63. Random walk in 2D . 312
3.64. Random walk in any number of space dimensions . 313
3.65. Multiple random walks in any number of space dimensions 335

3.65.1. Scalar code . 335
3.65.2. Vectorized code . 346

3.66. Applications . 346
3.66.1. Diffusion of a substance . 346
3.66.2. Heat conduction . 348
3.66.3. Porous media flow . 350
3.66.4. Potential fluid flow . 350
3.66.5. Streamlines for 2D fluid flow . 351
3.66.6. The potential of an electric field . 351
3.66.7. Development of flow between two flat plates 352
3.66.8. Tribology: thin film fluid flow . 353
3.66.9. Propagation of electrical signals in the brain 354

3.67. 2D Diffusion with Devito . 354
3.67.1. The 2D Diffusion Equation . 354
3.67.2. Devito’s Dimension-Agnostic Laplacian . 354
3.67.3. Stability Condition in 2D . 355
3.67.4. The 2D Solver . 355
3.67.5. 2D Boundary Conditions . 355
3.67.6. Exact Solution for Verification . 356
3.67.7. Visualizing 2D Solutions . 356
3.67.8. Heat Diffusion from a Point Source . 357
3.67.9. Animation of 2D Diffusion . 357
3.67.10.From 2D to 3D . 358
3.67.11.Computational Efficiency . 358
3.67.12.Comparison: Diffusion vs Wave Equation . 358
3.67.13.Summary . 359

3.68. Exercise: Stabilizing the Crank-Nicolson method by Rannacher time stepping 359
3.69. Project: Energy estimates for diffusion problems . 359
3.70. Exercise: Splitting methods and preconditioning . 362
3.71. Problem: Oscillating surface temperature of the earth 362
3.72. Problem: Oscillating and pulsating flow in tubes . 366
3.73. Problem: Scaling a welding problem . 369
3.74. Exercise: Implement a Forward Euler scheme for axi-symmetric diffusion 377
3.75. Exercises: Diffusion with Devito . 378

3.75.1. Exercise 1: Verify the Fourier Stability Limit 378
3.75.2. Exercise 2: Convergence Rate Verification . 379
3.75.3. Exercise 3: Gaussian Initial Condition . 380
3.75.4. Exercise 4: Discontinuous Initial Condition 382
3.75.5. Exercise 5: 2D Heat Diffusion . 382
3.75.6. Exercise 6: Variable Diffusion Coefficient . 383
3.75.7. Exercise 7: Manufactured Solution . 386
3.75.8. Exercise 8: Energy Decay . 389
3.75.9. Exercise 9: 2D Convergence Test . 392
3.75.10.Exercise 10: Comparison with Legacy Code 392

x

DRAFT

Table of contents

4. Advection-Dominated Equations 395
4.1. 1D linear advection equations with constant velocity 395
4.2. Simplest scheme: forward in time, centered in space 396

4.2.1. Method . 396
4.2.2. Test cases . 404
4.2.3. Bug? . 409

4.3. Analysis of the scheme . 409
4.4. Leapfrog in time, centered differences in space . 410

4.4.1. Method . 410
4.4.2. Implementation . 410
4.4.3. Running a test case . 411
4.4.4. Running more test cases . 411
4.4.5. Analysis . 413

4.5. Upwind differences in space . 413
4.6. Periodic boundary conditions . 415
4.7. Implementation . 416

4.7.1. Test condition . 416
4.7.2. The code . 416
4.7.3. Solving a specific problem . 418

4.8. A Crank-Nicolson discretization in time and centered differences in space 420
4.9. The Lax-Wendroff method . 422
4.10. Analysis of dispersion relations . 423
4.11. Stationary 1D advection-diffusion . 426
4.12. A simple model problem . 427
4.13. A centered finite difference scheme . 428
4.14. Remedy: upwind finite difference scheme . 431

4.14.1. Analytical insight . 432
4.15. Forward in time, centered in space scheme . 432
4.16. Forward in time, upwind in space scheme . 433
4.17. Applications of advection equations . 433
4.18. Exercise: Analyze 1D stationary convection-diffusion problem 434
4.19. Exercise: Interpret upwind difference as artificial diffusion 434
4.20. Advection Schemes with Devito . 435

4.20.1. The Advection Equation . 435
4.20.2. Devito Implementation Patterns . 435
4.20.3. Comparison with Wave and Diffusion Equations 436
4.20.4. Upwind Scheme Implementation . 436
4.20.5. Lax-Wendroff Scheme Implementation . 437
4.20.6. Lax-Friedrichs Scheme Implementation . 438
4.20.7. Periodic Boundary Conditions . 439
4.20.8. Using the Solvers . 439
4.20.9. Scheme Comparison . 439
4.20.10.Convergence Testing . 440
4.20.11.Key Takeaways . 441

4.21. Exercises: Advection with Devito . 441
4.21.1. Exercise 1: Verify CFL Stability Condition 441
4.21.2. Exercise 2: Compare Numerical Diffusion . 442
4.21.3. Exercise 3: Convergence Rate Verification . 445

xi

DRAFT

Table of contents

4.21.4. Exercise 4: Step Function Advection . 447
4.21.5. Exercise 5: Long-Time Integration . 448
4.21.6. Exercise 6: Effect of Courant Number . 449
4.21.7. Exercise 7: Variable Velocity Field . 452
4.21.8. Exercise 8: Advection-Diffusion Equation . 455
4.21.9. Exercise 9: Cosine Hat Initial Condition . 458
4.21.10.Exercise 10: Implement Leapfrog Scheme . 459

5. Nonlinear Problems 463
5.1. Linear versus nonlinear equations . 463

5.1.1. Algebraic equations . 463
5.1.2. Differential equations . 463

5.2. A simple model problem . 464
5.3. Linearization by explicit time discretization . 465
5.4. Exact solution of nonlinear algebraic equations . 465
5.5. Linearization . 467
5.6. Picard iteration . 467

5.6.1. Stopping criteria . 468
5.7. Linearization by a geometric mean . 469
5.8. Newton’s method . 470
5.9. Relaxation . 471
5.10. Implementation and experiments . 472
5.11. Generalization to a general nonlinear ODE . 477

5.11.1. Explicit time discretization . 477
5.11.2. Backward Euler discretization . 477
5.11.3. Crank-Nicolson discretization . 478

5.12. Systems of ODEs . 478
5.12.1. Example . 480

5.13. Systems of nonlinear algebraic equations . 480
5.14. Picard iteration . 481
5.15. Newton’s method . 481
5.16. Stopping criteria . 483

5.16.1. Implicit time discretization . 484
5.16.2. A Picard iteration . 484
5.16.3. Newton’s method . 485

5.17. Nonlinear diffusion model . 485
5.18. Explicit time integration . 486
5.19. Backward Euler scheme and Picard iteration . 486
5.20. Backward Euler scheme and Newton’s method . 487

5.20.1. Linearization via Taylor expansions . 487
5.20.2. Similarity with Picard iteration . 488
5.20.3. Implementation . 489
5.20.4. Derivation with alternative notation . 489

5.21. Crank-Nicolson discretization . 490
5.22. Discretization in space and Newton’s method . 490
5.23. Finite difference discretization . 491
5.24. Solution of algebraic equations . 492

5.24.1. The structure of the equation system . 492

xii

DRAFT

Table of contents

5.24.2. Picard iteration . 492
5.24.3. Mesh with two cells . 493
5.24.4. Newton’s method . 494

5.25. Solving Nonlinear PDEs with Devito . 496
5.25.1. Nonlinear Diffusion: The Explicit Scheme . 496
5.25.2. The Devito Implementation . 496
5.25.3. Handling the Nonlinear Diffusion Coefficient 497
5.25.4. Complete Nonlinear Diffusion Solver . 497
5.25.5. Reaction-Diffusion with Operator Splitting 498
5.25.6. Reaction Terms . 498
5.25.7. Reaction-Diffusion Solver . 498
5.25.8. Burgers’ Equation . 499
5.25.9. Stability for Burgers’ Equation . 499
5.25.10.The Effect of Viscosity . 500
5.25.11.Picard Iteration for Implicit Schemes . 500
5.25.12.Summary . 501

5.26. Finite difference discretization . 501
5.26.1. Picard iteration . 502

5.27. Continuation methods . 503
5.28. Operator splitting methods . 504
5.29. Ordinary operator splitting for ODEs . 504
5.30. Strange splitting for ODEs . 505
5.31. Example: Logistic growth . 505

5.31.1. Splitting techniques . 506
5.31.2. Verbose implementation . 506
5.31.3. Compact implementation . 507
5.31.4. Results . 507

5.32. Reaction-diffusion equation . 508
5.33. Example: Reaction-Diffusion with linear reaction term 509
5.34. Analysis of the splitting method . 518
5.35. Problem: Determine if equations are nonlinear or not 519
5.36. Exercise: Derive a relaxation formula . 520
5.37. Problem: Derive and investigate a generalized logistic model 520
5.38. Problem: Experience the behavior of Newton’s method 527
5.39. Exercise: Compute the Jacobian of a 2× 2 system 527
5.40. Problem: Solve nonlinear equations arising from a vibration ODE 527
5.41. Exercise: Find the truncation error of arithmetic mean of products 528
5.42. Problem: Newton’s method for linear problems . 529
5.43. Problem: Discretize a 1D problem with a nonlinear coefficient 529
5.44. Problem: Linearize a 1D problem with a nonlinear coefficient 529
5.45. Problem: Finite differences for the 1D Bratu problem 530
5.46. Good: http://faculty.oxy.edu/ron/research/bratu/bratu.pdf 530
5.47. It has a collocation method too . 530
5.48. Problem: Discretize a nonlinear 1D heat conduction PDE by finite differences 531
5.49. Problem: Differentiate a highly nonlinear term . 531
5.50. Exercise: Crank-Nicolson for a nonlinear 3D diffusion equation 532
5.51. Problem: Find the sparsity of the Jacobian . 532
5.52. Problem: Investigate a 1D problem with a continuation method 532

xiii

DRAFT

Table of contents

5.53. Exercises: Nonlinear PDEs with Devito . 533
5.53.1. Exercise 1: Nonlinear Diffusion Stability . 533
5.53.2. Exercise 2: Porous Medium Equation . 536
5.53.3. Exercise 3: Fisher-KPP Equation . 536
5.53.4. Exercise 4: Strang vs Lie Splitting . 540
5.53.5. Exercise 5: Burgers Shock Formation . 542
5.53.6. Exercise 6: Allen-Cahn Equation . 543
5.53.7. Exercise 7: Energy Decay in Nonlinear Diffusion 544
5.53.8. Exercise 8: Convergence of Burgers Solver . 547
5.53.9. Exercise 9: Picard Iteration Convergence . 549
5.53.10.Exercise 10: Traveling Wave in Burgers . 550

II. Appendices 554

6. Formulas 555
6.1. Finite difference operator notation . 555
6.2. Truncation errors of finite difference approximations 556

6.2.1. Complex exponentials . 556
6.2.2. Real exponentials . 557

6.3. Finite difference formulas for powers of t . 557
6.4. Software . 558

7. Truncation Error Analysis 560
7.1. Abstract problem setting . 560
7.2. Error measures . 561
7.3. Truncation errors in finite difference formulas . 562
7.4. Example: The backward difference for u′(t) . 562
7.5. Example: The forward difference for u′(t) . 563
7.6. Example: The central difference for u′(t) . 563
7.7. Overview of leading-order error terms in finite difference formulas 564
7.8. Software for computing truncation errors . 566
7.9. Truncation errors in exponential decay ODE . 567
7.10. Forward Euler scheme . 567
7.11. Crank-Nicolson scheme . 568
7.12. The θ-rule . 568
7.13. Using symbolic software . 569
7.14. Empirical verification of the truncation error . 570
7.15. Increasing the accuracy by adding correction terms 575
7.16. Extension to variable coefficients . 577
7.17. Exact solutions of the finite difference equations . 577
7.18. Computing truncation errors in nonlinear problems 578
7.19. Linear model without damping . 578

7.19.1. The truncation error of a centered finite difference scheme 578
7.19.2. Truncation error of the equation for the first step 579

7.20. Model with damping and nonlinearity . 581
7.21. Extension to quadratic damping . 582

xiv

DRAFT

Table of contents

7.22. The general model formulated as first-order ODEs 583
7.22.1. The Euler-Cromer scheme . 583
7.22.2. A centered scheme on a staggered mesh . 585

7.23. Linear wave equation in 1D . 585
7.24. Finding correction terms . 586
7.25. Extension to variable coefficients . 587
7.26. Linear wave equation in 2D/3D . 589
7.27. Linear diffusion equation in 1D . 590

7.27.1. The Forward Euler scheme in time . 590
7.28. Nonlinear diffusion equation in 1D . 591
7.29. Devito and Truncation Errors . 591

7.29.1. The space_order Parameter . 592
7.29.2. Viewing Generated Stencils . 592
7.29.3. Trading Accuracy for Performance . 593
7.29.4. Matching Temporal and Spatial Accuracy . 593
7.29.5. Verifying Convergence Rates . 593

7.30. Exercise: Truncation error of a weighted mean . 594
7.31. Exercise: Simulate the error of a weighted mean . 594
7.32. Exercise: Verify a truncation error formula . 595
7.33. Problem: Truncation error of the Backward Euler scheme 595
7.34. Exercise: Empirical estimation of truncation errors 595
7.35. Exercise: Correction term for a Backward Euler scheme 595
7.36. Problem: Verify the effect of correction terms . 595
7.37. Problem: Truncation error of the Crank-Nicolson scheme 596
7.38. Problem: Truncation error of u′ = f(u, t) . 596
7.39. Exercise: Truncation error of [DtDtu]n . 596
7.40. Exercise: Investigate the impact of approximating u′(0) 597
7.41. Problem: Investigate the accuracy of a simplified scheme 597

8. Software Engineering 598
8.1. Mathematical model . 598
8.2. Numerical discretization . 598
8.3. A solver function . 598
8.4. Storing simulation data in files . 599
8.5. Using savez to store arrays in files . 599

8.5.1. Storing individual arrays . 599
8.5.2. Merging zip archives . 599
8.5.3. Reading arrays from zip archives . 600

8.6. Using joblib to store arrays in files . 600
8.7. Using a hash to create a file or directory name . 602
8.8. Making hash strings from input data . 604
8.9. Avoiding rerunning previously run cases . 604
8.10. Verification . 605

8.10.1. Vanishing approximation error . 605
8.10.2. Convergence rates . 605

8.11. Class Parameters . 606
8.12. Class Problem . 608
8.13. Class Mesh . 609

xv

DRAFT

Table of contents

8.14. Class Function . 613
8.15. Class Solver . 615
8.16. Speeding up Cython code . 621
8.17. Declaring variables and annotating the code . 622
8.18. Visual inspection of the C translation . 624
8.19. Building the extension module . 625
8.20. Calling the Cython function from Python . 626

8.20.1. Efficiency . 627
8.21. The Fortran subroutine . 627
8.22. Building the Fortran module with f2py . 628
8.23. How to avoid array copying . 630

8.23.1. Efficiency . 631
8.24. Translating index pairs to single indices . 632
8.25. The complete C code . 632
8.26. The Cython interface file . 633
8.27. Building the extension module . 634

8.27.1. Efficiency . 635
8.28. Migrating loops to C++ via f2py . 636
8.29. Software Engineering with Devito . 636

8.29.1. The Devito Approach . 636
8.29.2. Project Structure for Devito Applications . 637
8.29.3. Pytest Fixtures for Devito Testing . 637
8.29.4. Convergence Testing Pattern . 638
8.29.5. Performance Profiling with Devito . 640
8.29.6. Caching and Compilation . 640
8.29.7. Result Classes for Solver Output . 641
8.29.8. Comparison with Manual Optimization . 641

8.30. Exercise: Explore computational efficiency of numpy.sum versus built-in sum 642
8.31. Exercise: Make an improved numpy.savez function 643
8.32. Exercise: Visualize the impact of the Courant number 645
8.33. Exercise: Visualize the impact of the resolution . 646

xvi

DRAFT
Welcome

This book teaches finite difference methods for solving partial differential equations, featuring Devito
for high-performance PDE solvers.

About this Edition

This is an adaptation of Finite Difference Computing with PDEs: A Modern Software Approach by
Hans Petter Langtangen and Svein Linge (Springer, 2017). This Devito edition features:

• Devito - A domain-specific language for symbolic PDE specification and automatic code
generation

• Quarto - Modern scientific publishing for web and PDF output
• Modern Python - Type hints, testing, and CI/CD practices

Adapted by Gerard J. Gorman (Imperial College London).

License

This work is licensed under CC BY 4.0, the same license as the original work.

What is Devito?

Devito allows you to write PDEs symbolically and automatically generates optimized finite difference
code:

from devito import Grid, TimeFunction, Eq, Operator, solve, Constant

grid = Grid(shape=(101,), extent=(1.0,))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)
c = Constant(name='c') # wave speed

Write the wave equation symbolically: u_tt = cˆ2 * u_xx
pde = Eq(u.dt2, c**2 * u.dx2)

Solve for u at the next time step
update = Eq(u.forward, solve(pde, u.forward))

1

https://www.devitoproject.org/
https://doi.org/10.1007/978-3-319-55456-3
https://www.devitoproject.org/
https://quarto.org/
https://creativecommons.org/licenses/by/4.0/

DRAFT

Book Structure

Devito generates optimized C code
op = Operator([update])
op.apply(time_M=100, dt=0.001, c=1.0)

Book Structure

The book covers:

1. Introduction to Devito - Grid, Function, TimeFunction, Operator, and boundary conditions
2. Wave Equations - 1D/2D wave propagation, sources, absorbing boundaries
3. Diffusion Equations - Heat equation, stability analysis, 2D extension
4. Advection Equations - Upwind schemes, Lax-Wendroff, CFL condition
5. Nonlinear Problems - Operator splitting, Burgers’ equation, Picard iteration

Plus appendices on finite difference formulas, truncation error analysis, and software engineering.

Getting Started

git clone https://github.com/devitocodes/devito_book.git
cd devito_book
pip install -e ".[devito]"

See the GitHub repository for full installation instructions.

2

https://github.com/devitocodes/devito_book

DRAFT
Preface

About This Adaptation

This book is an adaptation of Finite Difference Computing with PDEs: A Modern Software Approach
by Hans Petter Langtangen and Svein Linge, originally published by Springer in 2017 under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).

Original Work:

Langtangen, H.P., Linge, S. (2017). Finite Difference Computing with PDEs: A Modern
Software Approach. Texts in Computational Science and Engineering, vol 16. Springer,
Cham. https://doi.org/10.1007/978-3-319-55456-3

What Has Changed

This edition has been substantially adapted to feature Devito, a domain-specific language for
symbolic PDE specification and automatic code generation.

New Content:

• Introduction to Devito chapter covering Grid, Function, TimeFunction, and Operator
• Devito solver implementations for wave, diffusion, advection, and nonlinear equations
• Comprehensive exercises using Devito
• Test suite with verification of all numerical methods

Technical Updates:

• Conversion from DocOnce to Quarto publishing format
• Modern Python practices
• Continuous integration and testing infrastructure
• Updated external links and references

Preserved Content:

• Mathematical derivations and theoretical foundations
• Pedagogical structure and learning philosophy
• Appendices on truncation errors and finite difference formulas

3

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-55456-3
https://www.devitoproject.org/
https://quarto.org/

DRAFT

Original Preface

Acknowledgment

This adaptation was prepared by Gerard J. Gorman (Imperial College London) in collaboration
with the Devito development team.

Professor Hans Petter Langtangen passed away in October 2016. His profound contributions to
computational science education continue to benefit students and practitioners worldwide. This
adaptation aims to honor his legacy by bringing his pedagogical approach to modern tools.

Original Preface

The following preface is from the original work by Langtangen and Linge.

There are so many excellent books on finite difference methods for ordinary and partial differential
equations that writing yet another one requires a different view on the topic. The present book is
not so concerned with the traditional academic presentation of the topic, but is focused at teaching
the practitioner how to obtain reliable computations involving finite difference methods. This focus
is based on a set of learning outcomes:

1. understanding of the ideas behind finite difference methods,
2. understanding how to transform an algorithm to a well-designed computer code,
3. understanding how to test (verify) the code,
4. understanding potential artifacts in simulation results.

Compared to other textbooks, the present one has a particularly strong emphasis on computer
implementation and verification. It also has a strong emphasis on an intuitive understanding of
constructing finite difference methods. To learn about the potential non-physical artifacts of various
methods, we study exact solutions of finite difference schemes as these give deeper insight into the
physical behavior of the numerical methods than the traditional (and more general) asymptotic
error analysis. However, asymptotic results regarding convergence rates, typically truncation errors,
are crucial for testing implementations, so an extensive appendix is devoted to the computation of
truncation errors.

Why finite differences?

One may ask why we do finite differences when finite element and finite volume methods have
been developed to greater generality and sophistication than finite differences and can cover more
problems. The finite element and finite volume methods are also the industry standard nowadays.
Why not just those methods? The reason for finite differences is the method’s simplicity, both from
a mathematical and coding perspective. Especially in academia, where simple model problems are
used a lot for teaching and in research (e.g., for verification of advanced implementations), there
is a constant need to solve the model problems from scratch with easy-to-verify computer codes.
Here, finite differences are ideal. A simple 1D heat equation can of course be solved by a finite
element package, but a 20-line code with a difference scheme is just right to the point and provides
an understanding of all details involved in the model and the solution method. Everybody nowadays

4

DRAFT

Original Preface

has a laptop and the natural method to attack a 1D heat equation is a simple Python or Matlab
program with a difference scheme. The conclusion goes for other fundamental PDEs like the wave
equation and Poisson equation as long as the geometry of the domain is a hypercube. The present
book contains all the practical information needed to use the finite difference tool in a safe way.

Various pedagogical elements are utilized to reach the learning outcomes, and these are commented
upon next.

Simplify, understand, generalize

The book’s overall pedagogical philosophy is the three-step process of first simplifying the problem to
something we can understand in detail, and when that understanding is in place, we can generalize
and hopefully address real-world applications with a sound scientific problem-solving approach.
For example, in the chapter on a particular family of equations we first simplify the problem in
question to a 1D, constant-coefficient equation with simple boundary conditions. We learn how to
construct a finite difference method, how to implement it, and how to understand the behavior of
the numerical solution. Then we can generalize to higher dimensions, variable coefficients, a source
term, and more complicated boundary conditions. The solution of a compound problem is in this
way an assembly of elements that are well understood in simpler settings.

Constructive mathematics

This text favors a constructive approach to mathematics. Instead of a set of definitions followed by
popping up a method, we emphasize how to think about the construction of a method. The aim is
to obtain a good intuitive understanding of the mathematical methods.

The text is written in an easy-to-read style much inspired by the following quote.

Some people think that stiff challenges are the best device to induce learning, but I am
not one of them. The natural way to learn something is by spending vast amounts of
easy, enjoyable time at it. This goes whether you want to speak German, sight-read at
the piano, type, or do mathematics. Give me the German storybook for fifth graders
that I feel like reading in bed, not Goethe and a dictionary. The latter will bring rapid
progress at first, then exhaustion and failure to resolve.

The main thing to be said for stiff challenges is that inevitably we will encounter them,
so we had better learn to face them boldly. Putting them in the curriculum can help teach
us to do so. But for teaching the skill or subject matter itself, they are overrated.

— Lloyd N. Trefethen, Applied Mathematician, 1955-.

This book assumes some basic knowledge of finite difference approximations, differential equations,
and scientific Python or MATLAB programming, as often met in an introductory numerical methods
course. Readers without this background may start with the light companion book “Finite Difference
Computing with Exponential Decay Models” (Langtangen 2016b). That book will in particular be
a useful resource for the programming parts of the present book. Since the present book deals with
partial differential equations, the reader is assumed to master multi-variable calculus and linear
algebra.

5

DRAFT

Original Preface

Fundamental ideas and their associated scientific details are first introduced in the simplest possible
differential equation setting, often an ordinary differential equation, but in a way that easily allows
reuse in more complex settings with partial differential equations. With this approach, new concepts
are introduced with a minimum of mathematical details. The text should therefore have a potential
for use early in undergraduate student programs.

All nuts and bolts

Many have experienced that “vast amounts of easy, enjoyable time”, as stated in the quote above,
arises when mathematics is implemented on a computer. The implementation process triggers
understanding, creativity, and curiosity, but many students find the transition from a mathematical
algorithm to a working code difficult and spend a lot of time on”programming issues”.

Most books on numerical methods concentrate on the mathematics of the subject while details on
going from the mathematics to a computer implementation are less in focus. A major purpose of
this text is therefore to help the practitioner by providing all nuts and bolts necessary for safely
going from the mathematics to a well-designed and well-tested computer code. A significant portion
of the text is consequently devoted to programming details.

Python as programming language

While MATLAB enjoys widespread popularity in books on numerical methods, we have chosen to
use the Python programming language. Python is very similar to MATLAB, but contains a lot of
modern software engineering tools that have become standard in the software industry and that
should be adopted also for numerical computing projects. Python is at present also experiencing an
exponential growth in popularity within the scientific computing community. One of the book’s
goals is to present an up-to-date Python eco system for implementing finite difference methods.

Program verification

Program testing, called verification, is a key topic of the book. Good verification techniques
are indispensable when debugging computer code, but also fundamental for achieving reliable
simulations. Two verification techniques saturate the book: exact solution of discrete equations
(where the approximation error vanishes) and empirical estimation of convergence rates in problems
with exact (analytical or manufactured) solutions of the differential equation(s).

Vectorized code

Finite difference methods lead to code with loops over large arrays. Such code in plain Python is
known to run slowly. We demonstrate, especially in Appendix Chapter 8, how to port loops to
fast, compiled code in C or Fortran. However, an alternative is to vectorize the code to get rid
of explicit Python loops, and this technique is met throughout the book. Vectorization becomes
closely connected to the underlying array library, here numpy, and is often thought of as a difficult
subject by students. Through numerous examples in different contexts, we hope that the present
book provides a substantial contribution to explaining how algorithms can be vectorized. Not

6

DRAFT

Original Preface

only will this speed up serial code, but with a library that can produce parallel code from numpy
commands (such as Numba), vectorized code can be automatically turned into parallel code and
utilize multi-core processors and GPUs. Also when creating tailored parallel code for today’s
supercomputers, vectorization is useful as it emphasizes splitting up an algorithm into plain and
simple array operations, where each operation is trivial to parallelize efficiently, rather than trying
to develop a “smart” overall parallelization strategy.

Analysis via exact solutions of discrete equations

Traditional asymptotic analysis of errors is important for verification of code using convergence
rates, but gives a limited understanding of how and why a correctly implemented numerical method
may give non-physical results. By developing exact solutions, usually based on Fourier methods,
of the discrete equations, one can obtain a physical understanding of the behavior of a numerical
method. This approach is favored for analysis of methods in this book.

Code-inspired mathematical notation

Our primary aim is to have a clean and easy-to-read computer code, and we want a close one-to-one
relationship between the computer code and mathematical description of the algorithm. This
principle calls for a mathematical notation that is governed by the natural notation in the computer
code. The unknown is mostly called u, but the meaning of the symbol u in the mathematical
description changes as we go from the exact solution fulfilling the differential equation to the symbol
u that is naturally used for the associated data structure in the code.

Limited scope

The aim of this book is not to give an overview of a lot of methods for a wide range of mathematical
models. Such information can be found in numerous existing, more advanced books. The aim is
rather to introduce basic concepts and a thorough understanding of how to think about computing
with finite difference methods. We therefore go in depth with only the most fundamental methods
and equations. However, we have a multi-disciplinary scope and address the interplay of mathematics,
numerics, computer science, and physics.

Focus on wave phenomena

Most books on finite difference methods, or books on theory with computer examples, have their
emphasis on diffusion phenomena. Half of this book (Chapters Chapter 1, Chapter 2, and Appendix
Chapter 8) is devoted to wave phenomena. Extended material on this topic is not so easy find in the
literature, so the book should be a valuable contribution in this respect. Wave phenomena is also a
good topic in general for choosing the finite difference method over other discretization methods
since one quickly needs fine resolution over the entire mesh and uniform meshes are most natural.

Instead of introducing the finite difference method for diffusion problems, where one soon ends up
with matrix systems, we do the introduction in a wave phenomena setting where explicit schemes
are most relevant. This slows down the learning curve since we can introduce a lot of theory for

7

http://numba.pydata.org

DRAFT

Original Preface

differences and for software aspects in a context with simple, explicit stencils for updating the
solution.

Independent chapters

Most book authors are careful with avoiding repetitions of material. The chapters in this book,
however, contain some overlap, because we want the chapters to appear meaningful on their own.
Modern publishing technology makes it easy to take selected chapters from different books to make
a new book tailored to a specific course. The more a chapter builds on details in other chapters, the
more difficult it is to reuse chapters in new contexts. Also, most readers find it convenient that
important information is explicitly stated, even if it was already met in another chapter.

Supplementary materials

All program and data files referred to in this book are available from the book’s primary web site:
URL: https://github.com/devitocodes/devito_book/.

Acknowledgments

Professor Kent-Andre Mardal at the University of Oslo has kindly contributed to enlightening
discussions on several issues. Many students have provided lots of useful feedback on the exposition
and found many errors in the text. Special efforts in this regard were made by Imran Ali, Shirin
Fallahi, Anders Hafreager, Daniel Alexander Mo Søreide Houshmand, Kristian Gregorius Hustad,
Mathilde Nygaard Kamperud, and Fatemeh Miri. The collaboration with the Springer team, with
Dr.~Martin Peters, Thanh-Ha Le Thi, and their production staff has always been a great pleasure
and a very efficient process.

Finally, want really appreciate the strong push from the COE of Simula Research Laboratory,
Aslak Tveito, for publishing and financing books in open access format, including this one. We
are grateful for the laboratory’s financial contribution as well as to the financial contribution from
the Department of Process, Energy and Environmental Technology at the University College of
Southeast Norway.

Oslo, July 2016 — Hans Petter Langtangen, Svein Linge

8

https://github.com/devitocodes/devito_book/

DRAFTPart I.

Main Chapters

9

DRAFT
1. Introduction to Devito

This chapter introduces Devito, a domain-specific language (DSL) for solving partial differential
equations using finite differences. We begin with the motivation for symbolic PDE specification,
then work through a complete example using the 1D wave equation.

1.1. What is Devito?

Devito is a Python-based domain-specific language (DSL) for expressing and solving partial differ-
ential equations using finite difference methods. Rather than writing low-level loops that update
arrays at each time step, you write the mathematical equations symbolically and let Devito generate
optimized code automatically.

1.1.1. The Traditional Approach

Consider solving the 1D diffusion equation:

∂u

∂t
= α

∂2u

∂x2

A traditional NumPy implementation might look like:

import numpy as np

Parameters
Nx, Nt = 100, 1000
dx, dt = 0.01, 0.0001
alpha = 1.0
F = alpha * dt / dx**2 # Fourier number

Initialize
u = np.zeros(Nx + 1)
u_new = np.zeros(Nx + 1)
u[Nx//2] = 1.0 # Initial impulse

Time stepping loop
for n in range(Nt):

for i in range(1, Nx):
u_new[i] = u[i] + F * (u[i+1] - 2*u[i] + u[i-1])

u, u_new = u_new, u # Swap arrays

10

DRAFT

1. Introduction to Devito

This approach has several limitations:

1. Error-prone: Manual index arithmetic is easy to get wrong
2. Hard to optimize: Achieving good performance requires expertise in vectorization, paral-

lelization, and cache optimization
3. Dimension-specific: The code must be rewritten for 2D or 3D problems
4. Not portable: Optimizations for one architecture don’t transfer to others

1.1.2. The Devito Approach

With Devito, the same problem becomes:

from devito import Grid, TimeFunction, Eq, Operator, solve, Constant

Problem parameters
Nx = 100
L = 1.0
alpha = 1.0 # diffusion coefficient
F = 0.5 # Fourier number (for stability, F <= 0.5)

Compute dt from stability condition: F = alpha * dt / dxˆ2
dx = L / Nx
dt = F * dx**2 / alpha

Create computational grid
grid = Grid(shape=(Nx + 1,), extent=(L,))

Define the unknown field
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

Set initial condition
u.data[0, Nx // 2] = 1.0

Define the PDE symbolically and solve for u.forward
a = Constant(name='a')
pde = u.dt - a * u.dx2
update = Eq(u.forward, solve(pde, u.forward))

Create and run the operator
op = Operator([update])
op(time=1000, dt=dt, a=alpha)

This approach offers significant advantages:

1. Mathematical clarity: The PDE u.dt - a * u.dx2 = 0 is written symbolically, and
Devito derives the update formula automatically using solve()

11

DRAFT

1. Introduction to Devito

2. Automatic optimization: Devito generates C code with loop tiling, SIMD vectorization,
and OpenMP parallelization

3. Dimension-agnostic: The same code structure works for 1D, 2D, or 3D
4. Portable performance: Generated code adapts to the target architecture

1.1.3. How Devito Works

Devito’s workflow consists of three stages:

Python DSL → Symbolic Processing → C Code Generation → Compilation → Execution

1. Symbolic representation: Your Python code creates SymPy expressions that represent the
PDE and its discretization

2. Code generation: Devito analyzes the expressions and generates optimized C code with
appropriate loop structures

3. Just-in-time compilation: The C code is compiled (and cached) the first time the operator
runs

4. Execution: Subsequent runs use the cached compiled code for maximum performance

1.1.4. When to Use Devito

Devito excels at:

• Explicit time-stepping schemes: Forward Euler, leapfrog, Runge-Kutta
• Structured grids: Regular Cartesian meshes in 1D, 2D, or 3D
• Stencil computations: Any PDE discretized with finite differences
• Large-scale problems: Where performance optimization matters

Common applications include:

• Wave propagation (acoustic, elastic, electromagnetic)
• Heat conduction and diffusion
• Computational fluid dynamics
• Seismic imaging (reverse time migration, full waveform inversion)

1.1.5. Installation

Devito can be installed via pip:

pip install devito

For this book, we recommend installing the optional dependencies as well:

12

DRAFT

1. Introduction to Devito

pip install devito[extras]

This includes visualization tools and additional solvers that we’ll use in later chapters.

1.1.6. What You’ll Learn

In this chapter, you will:

1. Solve your first PDE (the 1D wave equation) using Devito
2. Understand the core abstractions: Grid, Function, TimeFunction, Eq, and Operator
3. Implement boundary conditions in Devito
4. Verify your numerical solutions using convergence testing

1.2. Your First PDE: The 1D Wave Equation

We begin our exploration of Devito with the one-dimensional wave equation, a fundamental PDE
that describes vibrations in strings, sound waves in tubes, and many other physical phenomena.

1.2.1. The Mathematical Model

The 1D wave equation is:
∂2u

∂t2
= c2∂

2u

∂x2 (1.1)

where:

• u(x, t) is the displacement at position x and time t
• c is the wave speed (a constant)

We solve this on a domain x ∈ [0, L] for t ∈ [0, T] with:

• Initial conditions: u(x, 0) = I(x) and ∂u
∂t (x, 0) = 0

• Boundary conditions: u(0, t) = u(L, t) = 0 (fixed ends)

1.2.2. Finite Difference Discretization

Using central differences in both space and time, we approximate:
∂2u

∂t2
≈ un+1

i − 2un
i + un−1

i

∆t2
∂2u

∂x2 ≈
un

i+1 − 2un
i + un

i−1
∆x2

Substituting into 1.1 and solving for un+1
i :

un+1
i = 2un

i − un−1
i + C2(un

i+1 − 2un
i + un

i−1) (1.2)

where C = c∆t/∆x is the Courant number. The scheme is stable for C ≤ 1.

13

DRAFT

1. Introduction to Devito

1.2.3. The Devito Implementation

Let’s implement this step by step:

from devito import Grid, TimeFunction, Eq, Operator
import numpy as np

Problem parameters
L = 1.0 # Domain length
c = 1.0 # Wave speed
T = 1.0 # Final time
Nx = 100 # Number of grid points
C = 0.5 # Courant number (for stability)

Derived parameters
dx = L / Nx
dt = C * dx / c
Nt = int(T / dt)

Create the computational grid
grid = Grid(shape=(Nx + 1,), extent=(L,))

Create a time-varying field
time_order=2 because we have second derivative in time
space_order=2 for standard second-order accuracy
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

Set initial condition: a Gaussian pulse
x = grid.dimensions[0]
x_coord = 0.5 * L # Center of domain
sigma = 0.1 # Width of pulse
u.data[0, :] = np.exp(-((np.linspace(0, L, Nx+1) - x_coord)**2) / (2*sigma**2))
u.data[1, :] = u.data[0, :] # Zero initial velocity

Define the update equation
u.forward is u at time n+1, u is at time n, u.backward is at time n-1
u.dx2 is the second spatial derivative
eq = Eq(u.forward, 2*u - u.backward + (c*dt)**2 * u.dx2)

Create the operator
op = Operator([eq])

Run the simulation
op(time=Nt, dt=dt)

The solution is now in u.data
print(f"Simulation complete: {Nt} time steps")
print(f"Max amplitude at t={T}: {np.max(np.abs(u.data[0, :])):.6f}")

14

DRAFT

1. Introduction to Devito

1.2.4. Understanding the Code

Let’s examine each component:

Grid creation:

grid = Grid(shape=(Nx + 1,), extent=(L,))

This creates a 1D grid with Nx + 1 points spanning a domain of length L. The grid spacing is
automatically computed as dx = L / Nx.

TimeFunction:

u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

• name='u': The symbolic name for this field
• time_order=2: We need values at three time levels (n − 1, n, n + 1) for the second time

derivative
• space_order=2: Use second-order accurate spatial stencils

Initial conditions:

u.data[0, :] = ... # u at t=0
u.data[1, :] = ... # u at t=dt (for zero initial velocity, same as t=0)

The data attribute provides direct access to the underlying NumPy arrays. Index 0 and 1 represent
the two most recent time levels.

Update equation:

eq = Eq(u.forward, 2*u - u.backward + (c*dt)**2 * u.dx2)

• u.forward: The solution at the next time step (un+1)
• u: The solution at the current time step (un)
• u.backward: The solution at the previous time step (un−1)
• u.dx2: The second spatial derivative, computed using finite differences

Operator and execution:

op = Operator([eq])
op(time=Nt, dt=dt)

The Operator compiles the equations into optimized C code. Calling it runs the time-stepping loop
for Nt steps with time increment dt.

15

DRAFT

1. Introduction to Devito

1.2.5. Visualizing the Solution

import matplotlib.pyplot as plt

Get spatial coordinates
x_vals = np.linspace(0, L, Nx + 1)

Plot the solution at the final time
plt.figure(figsize=(10, 4))
plt.plot(x_vals, u.data[0, :], 'b-', linewidth=2)
plt.xlabel('x')
plt.ylabel('u')
plt.title(f'Wave equation solution at t = {T}')
plt.grid(True)
plt.show()

1.2.6. The CFL Condition

The Courant-Friedrichs-Lewy (CFL) condition states that for stability:

C = c∆t
∆x ≤ 1

Physically, this means information cannot travel more than one grid cell per time step. If C > 1,
the numerical solution will grow without bound.

Exercise: Try running the code with C = 1.5 and observe what happens.

1.2.7. What Devito Does Behind the Scenes

When you create the Operator, Devito:

1. Analyzes the symbolic equations
2. Determines the stencil pattern and data dependencies
3. Generates optimized C code with:

• Proper loop ordering for cache efficiency
• SIMD vectorization where possible
• OpenMP parallelization for multi-core execution

4. Compiles the code and caches the result

You can inspect the generated code:

print(op.ccode)

This reveals the low-level implementation that Devito creates automatically.

16

DRAFT

1. Introduction to Devito

1.3. Core Devito Abstractions

Devito provides a small set of powerful abstractions for expressing PDEs. Understanding these
building blocks is essential for writing effective Devito code.

1.3.1. Grid: The Computational Domain

The Grid defines the discrete domain on which we solve our PDE:

from devito import Grid

1D grid: 101 points over [0, 1]
grid_1d = Grid(shape=(101,), extent=(1.0,))

2D grid: 101x101 points over [0, 1] x [0, 1]
grid_2d = Grid(shape=(101, 101), extent=(1.0, 1.0))

3D grid: 51x51x51 points over [0, 2] x [0, 2] x [0, 2]
grid_3d = Grid(shape=(51, 51, 51), extent=(2.0, 2.0, 2.0))

Key properties:

• shape: Number of grid points in each dimension
• extent: Physical size of the domain
• dimensions: Symbolic dimension objects (x, y, z)
• spacing: Grid spacing in each dimension (computed automatically)

grid = Grid(shape=(101, 101), extent=(1.0, 1.0))
x, y = grid.dimensions # Symbolic dimensions
dx, dy = grid.spacing # Symbolic spacing (h_x, h_y)
print(f"Grid spacing: dx={float(dx)}, dy={float(dy)}")

1.3.2. Function: Static Fields

A Function represents a field that does not change during time-stepping. Use it for material
properties, source terms, or any spatially-varying coefficient:

from devito import Function

grid = Grid(shape=(101,), extent=(1.0,))

Wave velocity field
c = Function(name='c', grid=grid)
c.data[:] = 1500.0 # Constant velocity (m/s)

17

DRAFT

1. Introduction to Devito

Spatially varying velocity
import numpy as np
x_vals = np.linspace(0, 1, 101)
c.data[:] = 1500 + 500 * x_vals # Linear velocity gradient

The space_order parameter controls the stencil width for derivatives:

Higher-order derivatives need wider stencils
c = Function(name='c', grid=grid, space_order=4)

1.3.3. TimeFunction: Time-Varying Fields

A TimeFunction represents the solution field that evolves in time:

from devito import TimeFunction

grid = Grid(shape=(101,), extent=(1.0,))

For first-order time derivatives (diffusion equation)
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

For second-order time derivatives (wave equation)
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

Key parameters:

• time_order: Number of time levels needed (1 for first derivative, 2 for second)
• space_order: Accuracy order for spatial derivatives

Time indexing shortcuts:

Syntax Meaning Mathematical notation
u Current time level un

u.forward Next time level un+1

u.backward Previous time level un−1

u.dt First time derivative ∂u/∂t
u.dt2 Second time derivative ∂2u/∂t2

1.3.4. Derivative Notation

Devito provides intuitive notation for spatial derivatives:

18

DRAFT

1. Introduction to Devito

Syntax Meaning Stencil
u.dx ∂u/∂x Centered difference
u.dy ∂u/∂y Centered difference
u.dx2 ∂2u/∂x2 Second derivative
u.dy2 ∂2u/∂y2 Second derivative
u.laplace ∇2u Laplacian (dimension-agnostic)

The laplace operator is particularly useful because it works in any number of dimensions:

These are equivalent for 2D:
laplacian_explicit = u.dx2 + u.dy2
laplacian_auto = u.laplace

In 3D, u.laplace automatically becomes u.dx2 + u.dy2 + u.dz2

1.3.5. Eq: Defining Equations

The Eq class creates symbolic equations:

from devito import Eq

Explicit update: uˆ{n+1} = expression
update = Eq(u.forward, 2*u - u.backward + dt**2 * c**2 * u.laplace)

Using the solve() helper for implicit forms
from devito import solve

pde = u.dt2 - c**2 * u.laplace # The PDE residual
update = Eq(u.forward, solve(pde, u.forward))

The solve() function is useful when the update formula is complex. It symbolically solves for the
target variable.

1.3.6. Operator: Compilation and Execution

The Operator takes a list of equations and generates executable code:

from devito import Operator

Single equation
op = Operator([update])

Multiple equations (e.g., with boundary conditions)
op = Operator([update, bc_left, bc_right])

19

DRAFT

1. Introduction to Devito

Run for Nt time steps
op(time=Nt, dt=dt)

The operator compiles the equations into optimized C code on first execution. Subsequent calls
reuse the cached compiled code.

1.3.7. Complete Example: 2D Diffusion

Let’s put these abstractions together for a 2D diffusion problem:

from devito import Grid, TimeFunction, Eq, Operator
import numpy as np

Create a 2D grid
grid = Grid(shape=(101, 101), extent=(1.0, 1.0))

Time-varying field (first-order in time for diffusion)
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

Parameters
alpha = 0.1 # Diffusion coefficient
dx = 1.0 / 100
F = 0.25 # Fourier number (for stability)
dt = F * dx**2 / alpha

Initial condition: hot spot in the center
u.data[0, 45:55, 45:55] = 1.0

The diffusion equation: u_t = alpha * (u_xx + u_yy)
Using .laplace for dimension-agnostic code
eq = Eq(u.forward, u + alpha * dt * u.laplace)

Create and run
op = Operator([eq])
op(time=500, dt=dt)

Visualize
import matplotlib.pyplot as plt
plt.imshow(u.data[0, :, :], origin='lower', cmap='hot')
plt.colorbar(label='Temperature')
plt.title('2D Diffusion')
plt.show()

1.3.8. Summary of Core Abstractions

20

DRAFT

1. Introduction to Devito

Abstraction Purpose Key Parameters
Grid Define computational

domain
shape, extent

Function Static fields
(coefficients)

name, grid, space_order

TimeFunction Time-varying fields name, grid, time_order, space_order
Eq Define equations LHS, RHS
Operator Compile and execute List of equations

These five abstractions form the foundation of all Devito programs. In the following sections, we’ll
see how to handle boundary conditions and verify our numerical solutions.

1.4. Boundary Conditions in Devito

Properly implementing boundary conditions is crucial for accurate PDE solutions. Devito provides
several approaches, each suited to different situations.

1.4.1. Dirichlet Boundary Conditions

Dirichlet conditions specify the solution value at the boundary:

u(0, t) = g0(t), u(L, t) = gL(t)

Method 1: Explicit equations

The most direct approach adds equations that set boundary values:

from devito import Grid, TimeFunction, Eq, Operator

grid = Grid(shape=(101,), extent=(1.0,))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

Get the time dimension for indexing
t = grid.stepping_dim

Interior update (wave equation)
update = Eq(u.forward, 2*u - u.backward + dt**2 * c**2 * u.dx2)

Boundary conditions: u = 0 at both ends
bc_left = Eq(u[t+1, 0], 0)
bc_right = Eq(u[t+1, 100], 0)

Include all equations in the operator
op = Operator([update, bc_left, bc_right])

21

DRAFT

1. Introduction to Devito

Method 2: Using subdomain

For interior-only updates, use subdomain=grid.interior:

Update only interior points (automatically excludes boundaries)
update = Eq(u.forward, 2*u - u.backward + dt**2 * c**2 * u.dx2,

subdomain=grid.interior)

Set boundaries explicitly
bc_left = Eq(u[t+1, 0], 0)
bc_right = Eq(u[t+1, 100], 0)

op = Operator([update, bc_left, bc_right])

The subdomain=grid.interior approach is often cleaner because it explicitly separates the physics
(interior PDE) from the boundary treatment.

1.4.2. Neumann Boundary Conditions

Neumann conditions specify the derivative at the boundary:
∂u

∂x
(0, t) = h0(t), ∂u

∂x
(L, t) = hL(t)

For a zero-flux condition (∂u/∂x = 0), we use the ghost point method. The central difference at the
boundary requires a point outside the domain:

∂u

∂x

∣∣∣∣
i=0
≈ u1 − u−1

2∆x = 0

This gives u−1 = u1, which we substitute into the interior equation:

grid = Grid(shape=(101,), extent=(1.0,))
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)
x = grid.dimensions[0]
t = grid.stepping_dim

Interior update (diffusion equation)
update = Eq(u.forward, u + alpha * dt * u.dx2, subdomain=grid.interior)

Neumann BC at left (du/dx = 0): use one-sided update
u_new[0] = u[0] + alpha*dt * 2*(u[1] - u[0])/dxˆ2
dx = grid.spacing[0]
bc_left = Eq(u[t+1, 0], u[t, 0] + alpha * dt * 2 * (u[t, 1] - u[t, 0]) / dx**2)

Neumann BC at right (du/dx = 0)
bc_right = Eq(u[t+1, 100], u[t, 100] + alpha * dt * 2 * (u[t, 99] - u[t, 100]) / dx**2)

op = Operator([update, bc_left, bc_right])

22

DRAFT

1. Introduction to Devito

1.4.3. Mixed Boundary Conditions

Often we have different conditions on different boundaries:

Dirichlet on left, Neumann on right
bc_left = Eq(u[t+1, 0], 0) # u(0,t) = 0
bc_right = Eq(u[t+1, 100], u[t+1, 99]) # du/dx(L,t) = 0 (copy from interior)

op = Operator([update, bc_left, bc_right])

1.4.4. 2D Boundary Conditions

For 2D problems, boundary conditions apply to all four edges:

grid = Grid(shape=(101, 101), extent=(1.0, 1.0))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

x, y = grid.dimensions
t = grid.stepping_dim
Nx, Ny = 100, 100

Interior update
update = Eq(u.forward, 2*u - u.backward + dt**2 * c**2 * u.laplace,

subdomain=grid.interior)

Dirichlet BCs on all four edges
bc_left = Eq(u[t+1, 0, y], 0)
bc_right = Eq(u[t+1, Nx, y], 0)
bc_bottom = Eq(u[t+1, x, 0], 0)
bc_top = Eq(u[t+1, x, Ny], 0)

op = Operator([update, bc_left, bc_right, bc_bottom, bc_top])

1.4.5. Time-Dependent Boundary Conditions

For boundaries that vary in time, use the time index:

from devito import Constant

Time-varying amplitude
A = Constant(name='A')

Sinusoidal forcing at left boundary
u(0, t) = A * sin(omega * t)
import sympy as sp
omega = 2 * sp.pi # Angular frequency

23

DRAFT

1. Introduction to Devito

The time value at step n
t_val = t * dt # Symbolic time value

bc_left = Eq(u[t+1, 0], A * sp.sin(omega * t_val))

Set the amplitude before running
op = Operator([update, bc_left, bc_right])
op(time=Nt, dt=dt, A=1.0) # Pass A as keyword argument

1.4.6. Absorbing Boundary Conditions

For wave equations, we often want waves to exit the domain without reflection. A simple first-order
absorbing condition is:

∂u

∂t
+ c

∂u

∂x
= 0 at x = L

This can be discretized as:

Absorbing BC at right boundary (waves traveling right)
dx = grid.spacing[0]
bc_right_absorbing = Eq(

u[t+1, Nx],
u[t, Nx] - c * dt / dx * (u[t, Nx] - u[t, Nx-1])

)

More sophisticated absorbing conditions use damping layers (sponges) near the boundaries. This is
covered in detail in Section 2.13.10.

1.4.7. Periodic Boundary Conditions

For periodic domains, the solution wraps around:

u(0, t) = u(L, t)

Devito doesn’t directly support periodic BCs, but they can be implemented by copying values:

Periodic BCs: u[0] = u[Nx-1], u[Nx] = u[1]
bc_periodic_left = Eq(u[t+1, 0], u[t+1, Nx-1])
bc_periodic_right = Eq(u[t+1, Nx], u[t+1, 1])

Note: The order of equations matters. Update the interior first, then copy for periodicity.

24

DRAFT

1. Introduction to Devito

1.4.8. Best Practices

1. Use subdomain=grid.interior for interior updates to clearly separate physics from boundary
treatment

2. Check boundary equation order: Boundary equations should typically come after interior
updates in the operator

3. Verify boundary values: After running, check that boundaries have the expected values

4. Test with known solutions: Use problems with analytical solutions to verify boundary
condition implementation

1.4.9. Example: Complete Wave Equation Solver

Here’s a complete example combining interior updates with boundary conditions:

from devito import Grid, TimeFunction, Eq, Operator
import numpy as np

Setup
L, c, T = 1.0, 1.0, 2.0
Nx = 100
C = 0.9 # Courant number
dx = L / Nx
dt = C * dx / c
Nt = int(T / dt)

Grid and field
grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)
t = grid.stepping_dim

Initial condition: plucked string
x_vals = np.linspace(0, L, Nx + 1)
u.data[0, :] = np.sin(np.pi * x_vals)
u.data[1, :] = u.data[0, :] # Zero initial velocity

Equations
update = Eq(u.forward, 2*u - u.backward + (c*dt)**2 * u.dx2,

subdomain=grid.interior)
bc_left = Eq(u[t+1, 0], 0)
bc_right = Eq(u[t+1, Nx], 0)

Solve
op = Operator([update, bc_left, bc_right])
op(time=Nt, dt=dt)

25

DRAFT

1. Introduction to Devito

Verify: solution should return to initial shape at t = 2L/c
print(f"Initial max: {np.max(u.data[1, :]):.6f}")
print(f"Final max: {np.max(u.data[0, :]):.6f}")

For a string with fixed ends and initial shape sin(πx), the solution oscillates with period 2L/c. After
one period, it should return to the initial configuration.

1.5. Verification and Convergence Testing

How do we know our numerical solution is correct? Verification is the process of confirming that
our code correctly solves the mathematical equations we intended. This section introduces key
verification techniques.

1.5.1. The Importance of Verification

Numerical codes can produce plausible-looking but incorrect results due to:

• Programming errors (typos, off-by-one errors)
• Incorrect boundary condition implementation
• Stability violations
• Insufficient resolution

Systematic verification catches these problems before they corrupt scientific results.

1.5.2. Convergence Rate Testing

The most powerful verification technique is convergence rate testing. For a scheme with truncation
error O(∆xp), the error should decrease as:

E(∆x) ≈ C∆xp

By measuring errors at different resolutions, we can estimate p:

p ≈ log(E1/E2)
log(∆x1/∆x2)

If the measured rate matches the theoretical order, we have strong evidence the implementation is
correct.

1.5.3. Implementing a Convergence Test

26

DRAFT

1. Introduction to Devito

import numpy as np
from devito import Grid, TimeFunction, Eq, Operator

def solve_wave_equation(Nx, L=1.0, T=0.5, c=1.0, C=0.5):
"""Solve 1D wave equation and return error vs exact solution."""

dx = L / Nx
dt = C * dx / c
Nt = int(T / dt)

grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)
t_dim = grid.stepping_dim

Initial condition: sin(pi*x)
x_vals = np.linspace(0, L, Nx + 1)
u.data[0, :] = np.sin(np.pi * x_vals)
u.data[1, :] = np.sin(np.pi * x_vals) * np.cos(np.pi * c * dt)

Wave equation
update = Eq(u.forward, 2*u - u.backward + (c*dt)**2 * u.dx2,

subdomain=grid.interior)
bc_left = Eq(u[t_dim+1, 0], 0)
bc_right = Eq(u[t_dim+1, Nx], 0)

op = Operator([update, bc_left, bc_right])
op(time=Nt, dt=dt)

Exact solution: u(x,t) = sin(pi*x)*cos(pi*c*t)
t_final = Nt * dt
u_exact = np.sin(np.pi * x_vals) * np.cos(np.pi * c * t_final)

Return max error
error = np.max(np.abs(u.data[0, :] - u_exact))
return error, dx

def convergence_test(grid_sizes):
"""Run convergence test and compute rates."""

errors = []
dx_values = []

for Nx in grid_sizes:
error, dx = solve_wave_equation(Nx)
errors.append(error)
dx_values.append(dx)

27

DRAFT

1. Introduction to Devito

print(f"Nx = {Nx:4d}, dx = {dx:.6f}, error = {error:.6e}")

Compute convergence rates
rates = []
for i in range(len(errors) - 1):

rate = np.log(errors[i] / errors[i+1]) / np.log(dx_values[i] / dx_values[i+1])
rates.append(rate)

print("\nConvergence rates:")
for i, rate in enumerate(rates):

print(f" {grid_sizes[i]} -> {grid_sizes[i+1]}: rate = {rate:.2f}")

return errors, dx_values, rates

Run the test
grid_sizes = [20, 40, 80, 160, 320]
errors, dx_values, rates = convergence_test(grid_sizes)

Check: rates should be close to 2 for second-order scheme
expected_rate = 2.0
assert all(abs(r - expected_rate) < 0.2 for r in rates), \

f"Convergence rates {rates} differ from expected {expected_rate}"

1.5.4. Method of Manufactured Solutions (MMS)

For problems without analytical solutions, we use the Method of Manufactured Solutions:

1. Choose a solution umms(x, t) (any smooth function)
2. Compute the source term by substituting into the PDE
3. Solve the modified PDE with the computed source
4. Compare the numerical solution to umms

Example: Diffusion equation

Let’s verify a diffusion solver using MMS:

import sympy as sp

Symbolic variables
x_sym, t_sym = sp.symbols('x t')
alpha_sym = sp.Symbol('alpha')

Manufactured solution (arbitrary smooth function)
u_mms = sp.sin(sp.pi * x_sym) * sp.exp(-t_sym)

Compute required source term: f = u_t - alpha * u_xx

28

DRAFT

1. Introduction to Devito

u_t = sp.diff(u_mms, t_sym)
u_xx = sp.diff(u_mms, x_sym, 2)
f_mms = u_t - alpha_sym * u_xx

print("Manufactured solution:")
print(f" u_mms = {u_mms}")
print(f"Required source term:")
print(f" f = {sp.simplify(f_mms)}")

Now implement the solver with this source term:

from devito import Grid, TimeFunction, Function, Eq, Operator
import numpy as np

def solve_diffusion_mms(Nx, alpha=1.0, T=0.5, F=0.4):
"""Solve diffusion with MMS source term."""

L = 1.0
dx = L / Nx
dt = F * dx**2 / alpha
Nt = int(T / dt)

grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)
t_dim = grid.stepping_dim

Spatial coordinates for evaluation
x_vals = np.linspace(0, L, Nx + 1)

MMS: u = sin(pi*x) * exp(-t)
Source: f = sin(pi*x) * exp(-t) * (alpha*piˆ2 - 1)
def u_exact(x, t):

return np.sin(np.pi * x) * np.exp(-t)

def f_source(x, t):
return np.sin(np.pi * x) * np.exp(-t) * (alpha * np.pi**2 - 1)

Initial condition from MMS
u.data[0, :] = u_exact(x_vals, 0)

We need to add source term at each time step
For simplicity, use time-lagged source
f = Function(name='f', grid=grid)

Update equation with source
update = Eq(u.forward, u + alpha * dt * u.dx2 + dt * f,

subdomain=grid.interior)

29

DRAFT

1. Introduction to Devito

bc_left = Eq(u[t_dim+1, 0], 0) # u_mms(0,t) = 0
bc_right = Eq(u[t_dim+1, Nx], 0) # u_mms(1,t) = 0

op = Operator([update, bc_left, bc_right])

Time stepping with source update
for n in range(Nt):

t_current = n * dt
f.data[:] = f_source(x_vals, t_current)
op(time=1, dt=dt)

Compare to exact solution
t_final = Nt * dt
u_exact_final = u_exact(x_vals, t_final)
error = np.max(np.abs(u.data[0, :] - u_exact_final))

return error, dx

Convergence test with MMS
print("MMS Convergence Test for Diffusion Equation:")
grid_sizes = [20, 40, 80, 160]
errors = []
dx_vals = []

for Nx in grid_sizes:
error, dx = solve_diffusion_mms(Nx)
errors.append(error)
dx_vals.append(dx)
print(f"Nx = {Nx:4d}, error = {error:.6e}")

Compute rates
for i in range(len(errors) - 1):

rate = np.log(errors[i] / errors[i+1]) / np.log(2)
print(f"Rate {grid_sizes[i]}->{grid_sizes[i+1]}: {rate:.2f}")

1.5.5. Quick Verification Checks

Before running full convergence tests, use these quick checks:

1. Conservation properties

For problems that should conserve mass or energy:

Check mass conservation for diffusion with Neumann BCs
mass_initial = np.sum(u.data[1, :]) * dx

30

DRAFT

1. Introduction to Devito

mass_final = np.sum(u.data[0, :]) * dx
print(f"Mass change: {abs(mass_final - mass_initial):.2e}")

2. Symmetry

For symmetric initial conditions and domains:

Check symmetry is preserved
u_left = u.data[0, :Nx//2]
u_right = u.data[0, Nx//2+1:][::-1] # Reversed
symmetry_error = np.max(np.abs(u_left - u_right))
print(f"Symmetry error: {symmetry_error:.2e}")

3. Steady state

For problems with known steady states:

Run to steady state and check
u_steady_numerical = u.data[0, :]
u_steady_exact = ... # Known analytical steady state
error = np.max(np.abs(u_steady_numerical - u_steady_exact))

1.5.6. Debugging Tips

When convergence tests fail:

1. Check boundary conditions: Are they correctly implemented? Plot the solution near
boundaries.

2. Check stability: Is the CFL/Fourier number within limits? Try smaller time steps.

3. Check initial conditions: Are they set correctly? Verify u.data[0, :] and u.data[1,
:].

4. Inspect generated code: Use print(op.ccode) to see what Devito actually computes.

5. Test components separately: Verify spatial derivatives work on known functions before
testing full PDE.

1.5.7. Summary

Verification is essential for trustworthy numerical results:

Technique When to Use What It Checks
Convergence testing Always Correct order of accuracy
MMS No analytical solution Correct PDE implementation
Conservation Physics requires it No spurious sources/sinks

31

DRAFT

1. Introduction to Devito

Technique When to Use What It Checks
Symmetry Symmetric problems Consistent treatment

A well-verified code gives confidence that results represent the physics, not numerical artifacts.

32

DRAFT
2. Wave Equations

Computational algorithms: Can they be briefly stated in words and then shown directly in Python
code rather than in an Algorithm box? Think so, for wave1D we can say dx, dt, etc what they are
and then first show the core of the algorithm. Thereafter the complete function and sample call.

Examples:

• Debugging: constant solution when we have Neumann conditions.
• Verification: convergence test, example with h = ∆x = ∆t.
• Make file database for solutions, 1D, 2D, 3D.
• guitar string, triangular, C=1
• a different C, ok solution
• C > 1 instability
• moving left
• plug, C=1
• plug, C=0.95
• spherical waves
• Software: put spatial update in a separate function, could introduce a version with a class for

Mesh, Function (w/interpolation)
• Develop study guides for each file or module

2D: lots of implementations (Fortran, Instant C++, Cython, vectorized)

A very wide range of physical processes lead to wave motion, where signals are propagated through
a medium in space and time, normally with little or no permanent movement of the medium itself.
The shape of the signals may undergo changes as they travel through matter, but usually not so
much that the signals cannot be recognized at some later point in space and time. Many types
of wave motion can be described by the equation utt = ∇ · (c2∇u) + f , which we will solve in the
forthcoming text by finite difference methods.

2.1. Simulation of waves on a string

We begin our study of wave equations by simulating one-dimensional waves on a string, say on a
guitar or violin. Let the string in the undeformed state coincide with the interval [0, L] on the x
axis, and let u(x, t) be the displacement at time t in the y direction of a point initially at x. The
displacement function u is governed by the mathematical model

∂2u

∂t2
= c2∂

2u

∂x2 , x ∈ (0, L), t ∈ (0, T] (2.1)

u(x, 0) = I(x), x ∈ [0, L] (2.2)

33

DRAFT

2. Wave Equations

∂

∂t
u(x, 0) = 0, x ∈ [0, L] (2.3)

u(0, t) = 0, t ∈ (0, T] (2.4)

u(L, t) = 0, t ∈ (0, T] (2.5)

The constant c and the function I(x) must be prescribed.

Equation (2.1) is known as the one-dimensional wave equation. Since this PDE contains a second-
order derivative in time, we need two initial conditions. The condition (2.2) specifies the initial shape
of the string, I(x), and (2.3) expresses that the initial velocity of the string is zero. In addition,
PDEs need boundary conditions, given here as (2.4) and (2.5). These two conditions specify that
the string is fixed at the ends, i.e., that the displacement u is zero.

The solution u(x, t) varies in space and time and describes waves that move with velocity c to the
left and right.

Sometimes we will use a more compact notation for the partial derivatives to save space:

ut = ∂u

∂t
, utt = ∂2u

∂t2
,

and similar expressions for derivatives with respect to other variables. Then the wave equation can
be written compactly as utt = c2uxx.

The PDE problem (2.1)-(2.5) will now be discretized in space and time by a finite difference
method.

2.2. Discretizing the domain

The temporal domain [0, T] is represented by a finite number of mesh points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T .

Similarly, the spatial domain [0, L] is replaced by a set of mesh points

0 = x0 < x1 < x2 < · · · < xNx−1 < xNx = L .

One may view the mesh as two-dimensional in the x, t plane, consisting of points (xi, tn), with
i = 0, . . . , Nx and n = 0, . . . , Nt.

2.2.1. Uniform meshes

For uniformly distributed mesh points we can introduce the constant mesh spacings ∆t and ∆x.
We have that

xi = i∆x, i = 0, . . . , Nx, tn = n∆t, n = 0, . . . , Nt .

We also have that ∆x = xi − xi−1, i = 1, . . . , Nx, and ∆t = tn − tn−1, n = 1, . . . , Nt. Figure
Figure 2.1 displays a mesh in the x, t plane with Nt = 5, Nx = 5, and constant mesh spacings.

34

DRAFT

2. Wave Equations

2.3. The discrete solution

The solution u(x, t) is sought at the mesh points. We introduce the mesh function un
i , which

approximates the exact solution at the mesh point (xi, tn) for i = 0, . . . , Nx and n = 0, . . . , Nt.
Using the finite difference method, we shall develop algebraic equations for computing the mesh
function.

2.4. Fulfilling the equation at the mesh points

In the finite difference method, we relax the condition that (2.1) holds at all points in the space-time
domain (0, L) × (0, T] to the requirement that the PDE is fulfilled at the interior mesh points
only:

∂2

∂t2
u(xi, tn) = c2 ∂

2

∂x2u(xi, tn), (2.6)

for i = 1, . . . , Nx − 1 and n = 1, . . . , Nt − 1. For n = 0 we have the initial conditions u = I(x) and
ut = 0, and at the boundaries i = 0, Nx we have the boundary condition u = 0.

2.5. Replacing derivatives by finite differences

The second-order derivatives can be replaced by central differences. The most widely used difference
approximation of the second-order derivative is

∂2

∂t2
u(xi, tn) ≈ un+1

i − 2un
i + un−1

i

∆t2 .

It is convenient to introduce the finite difference operator notation

[DtDtu]ni = un+1
i − 2un

i + un−1
i

∆t2 .

A similar approximation of the second-order derivative in the x direction reads

∂2

∂x2u(xi, tn) ≈
un

i+1 − 2un
i + un

i−1
∆x2 = [DxDxu]ni .

Algebraic version of the PDE We can now replace the derivatives in (2.6) and get

un+1
i − 2un

i + un−1
i

∆t2 = c2u
n
i+1 − 2un

i + un
i−1

∆x2 , (2.7)

or written more compactly using the operator notation:

[DtDtu = c2DxDx]ni . (2.8)

35

DRAFT

2. Wave Equations

2.5.1. Interpretation of the equation as a stencil

A characteristic feature of (2.7) is that it involves u values from neighboring points only: un+1
i ,

un
i±1, un

i , and un−1
i . The circles in Figure Figure 2.1 illustrate such neighboring mesh points that

contribute to an algebraic equation. In this particular case, we have sampled the PDE at the point
(2, 2) and constructed (2.7), which then involves a coupling of u2

1, u3
2, u2

2, u1
2, and u2

3. The term
stencil is often used about the algebraic equation at a mesh point, and the geometry of a typical
stencil is illustrated in Figure Figure 2.1. One also often refers to the algebraic equations as discrete
equations, (finite) difference equations or a finite difference scheme.

Figure 2.1.: Mesh in space and time. The circles show points connected in a finite difference equation.

2.5.2. Algebraic version of the initial conditions

We also need to replace the derivative in the initial condition (2.3) by a finite difference approximation.
A centered difference of the type

∂

∂t
u(xi, t0) ≈ u1

i − u−1 ∗ ∗i
2∆t = [D ∗ ∗2tu]0i ,

seems appropriate. Writing out this equation and ordering the terms give

u−1
i = u1

i , i = 0, . . . , Nx . (2.9)

The other initial condition can be computed by

u0
i = I(xi), i = 0, . . . , Nx .

36

DRAFT

2. Wave Equations

2.6. Formulating a recursive algorithm

We assume that un
i and un−1

i are available for i = 0, . . . , Nx. The only unknown quantity in (2.7) is
therefore un+1

i , which we now can solve for:

un+1
i = −un−1

i + 2un
i + C2 (un ∗ ∗i+ 1− 2un ∗ ∗i+ un

i−1
)
. (2.10)

We have here introduced the parameter

C = c
∆t
∆x,

known as the Courant number.

ñ C is the key parameter in the discrete wave equation

We see that the discrete version of the PDE features only one parameter, C, which is therefore
the key parameter, together with Nx, that governs the quality of the numerical solution (see
Section Section 2.61 for details). Both the primary physical parameter c and the numerical
parameters ∆x and ∆t are lumped together in C. Note that C is a dimensionless parameter.

Given that un−1
i and un

i are known for i = 0, . . . , Nx, we find new values at the next time level by
applying the formula (2.10) for i = 1, . . . , Nx − 1. Figure Figure 2.1 illustrates the points that are
used to compute u3

2. For the boundary points, i = 0 and i = Nx, we apply the boundary conditions
un+1

i = 0.

Even though sound reasoning leads up to (2.10), there is still a minor challenge with it that needs to
be resolved. Think of the very first computational step to be made. The scheme (2.10) is supposed
to start at n = 1, which means that we compute u2 from u1 and u0. Unfortunately, we do not know
the value of u1, so how to proceed? A standard procedure in such cases is to apply (2.10) also
for n = 0. This immediately seems strange, since it involves u−1

i , which is an undefined quantity
outside the time mesh (and the time domain). However, we can use the initial condition (2.9) in
combination with (2.10) when n = 0 to eliminate u−1

i and arrive at a special formula for u1
i :

u1
i = u0

i −
1
2C

2
(
u0 ∗ ∗i+ 1− 2u0 ∗ ∗i+ u0

i−1

)
. (2.11)

Figure Figure 2.2 illustrates how (2.11) connects four instead of five points: u1
2, u0

1, u0
2, and u0

3.

We can now summarize the computational algorithm:

1. Compute u0
i = I(xi) for i = 0, . . . , Nx

2. Compute u1
i by (2.11) for i = 1, 2, . . . , Nx − 1 and set u1

i = 0 for the boundary points given by
i = 0 and i = Nx,

3. For each time level n = 1, 2, . . . , Nt − 1
4. apply (2.10) to find un+1

i for i = 1, . . . , Nx − 1
5. set un+1

i = 0 for the boundary points having i = 0, i = Nx.

The algorithm essentially consists of moving a finite difference stencil through all the mesh points.

37

DRAFT

2. Wave Equations

Figure 2.2.: Modified stencil for the first time step.

2.7. Sketch of an implementation

The algorithm only involves the three most recent time levels, so we need only three arrays for
un+1

i , un
i , and un−1

i , i = 0, . . . , Nx. Storing all the solutions in a two-dimensional array of size
(Nx + 1)× (Nt + 1) would be possible in this simple one-dimensional PDE problem, but is normally
out of the question in three-dimensional (3D) and large two-dimensional (2D) problems. We shall
therefore, in all our PDE solving programs, have the unknown in memory at as few time levels as
possible.

In a Python implementation of this algorithm, we use the array elements u[i] to store un+1
i , u_n[i]

to store un
i , and u_nm1[i] to store un−1

i .

The following Python snippet realizes the steps in the computational algorithm.

dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx # Courant number
Nt = len(t)-1
C2 = C**2 # Help variable in the scheme

for i in range(0, Nx+1):
u_n[i] = I(x[i])

for i in range(1, Nx):

38

DRAFT

2. Wave Equations

u[i] = u_n[i] - \
0.5*C**2(u_n[i+1] - 2*u_n[i] + u_n[i-1])

u[0] = 0; u[Nx] = 0 # Enforce boundary conditions

u_nm1[:], u_n[:] = u_n, u

for n in range(1, Nt):
for i in range(1, Nx):

u[i] = 2u_n[i] - u_nm1[i] - \
C**2(u_n[i+1] - 2*u_n[i] + u_n[i-1])

u[0] = 0; u[Nx] = 0

u_nm1[:], u_n[:] = u_n, u

Before implementing the algorithm, it is convenient to add a source term to the PDE (2.1), since
that gives us more freedom in finding test problems for verification. Physically, a source term acts
as a generator for waves in the interior of the domain.

2.8. A slightly generalized model problem

We now address the following extended initial-boundary value problem for one-dimensional wave
phenomena:

utt = c2uxx + f(x, t), x ∈ (0, L), t ∈ (0, T] (2.12)
u(x, 0) = I(x), x ∈ [0, L] (2.13)
ut(x, 0) = V (x), x ∈ [0, L] (2.14)

u(0, t) = 0, t > 0 (2.15)
u(L, t) = 0, t > 0 (2.16)

Sampling the PDE at (xi, tn) and using the same finite difference approximations as above, yields

[DtDtu = c2DxDxu+ f]ni . (2.17)

Writing this out and solving for the unknown un+1
i results in

un+1
i = −un−1

i + 2un
i + C2(un ∗ ∗i+ 1− 2un ∗ ∗i+ un

i−1) + ∆t2fn
i . (2.18)

The equation for the first time step must be rederived. The discretization of the initial condition
ut = V (x) at t = 0 becomes

[D2tu = V]0i ⇒ u−1
i = u1

i − 2∆tVi,

which, when inserted in (2.18) for n = 0, gives the special formula

u1
i = u0

i −∆tVi + 1
2C

2
(
u0 ∗ ∗i+ 1− 2u0 ∗ ∗i+ u0

i−1

)
+ 1

2∆t2f0
i . (2.19)

39

DRAFT

2. Wave Equations

2.9. Using an analytical solution of physical significance

Many wave problems feature sinusoidal oscillations in time and space. For example, the original
PDE problem (2.1)-(2.5) allows an exact solution

ue(x, t) = A sin
(
π

L
x

)
cos

(
π

L
ct

)
. (2.20)

This ue fulfills the PDE with f = 0, boundary conditions ue(0, t) = ue(L, t) = 0, as well as initial
conditions I(x) = A sin

(
π
Lx
)

and V = 0.

ñ How to use exact solutions for verification

It is common to use such exact solutions of physical interest to verify implementations.
However, the numerical solution un

i will only be an approximation to ue(xi, tn). We have no
knowledge of the precise size of the error in this approximation, and therefore we can never
know if discrepancies between un

i and ue(xi, tn) are caused by mathematical approximations
or programming errors. In particular, if plots of the computed solution un

i and the exact
one (2.20) look similar, many are tempted to claim that the implementation works. However,
even if color plots look nice and the accuracy is “deemed good”, there can still be serious
programming errors present!
The only way to use exact physical solutions like (2.20) for serious and thorough verification is
to run a series of simulations on finer and finer meshes, measure the integrated error in each
mesh, and from this information estimate the empirical convergence rate of the method.

An introduction to the computing of convergence rates is given in Section 3.1.6 in (Langtangen
2016b). There is also a detailed example on computing convergence rates in Section 1.5.

In the present problem, one expects the method to have a convergence rate of 2 (see Section
Section 2.61), so if the computed rates are close to 2 on a sufficiently fine mesh, we have good
evidence that the implementation is free of programming mistakes.

2.10. Manufactured solution and estimation of convergence rates

2.10.1. Specifying the solution and computing corresponding data

One problem with the exact solution (2.20) is that it requires a simplification (V = 0, f = 0) of the
implemented problem (2.12)-(2.16). An advantage of using a manufactured solution is that we can
test all terms in the PDE problem. The idea of this approach is to set up some chosen solution and
fit the source term, boundary conditions, and initial conditions to be compatible with the chosen
solution. Given that our boundary conditions in the implementation are u(0, t) = u(L, t) = 0, we
must choose a solution that fulfills these conditions. One example is

ue(x, t) = x(L− x) sin t .

Inserted in the PDE utt = c2uxx + f we get

−x(L− x) sin t = −c22 sin t+ f ⇒ f = (2c2 − x(L− x)) sin t .

40

DRAFT

2. Wave Equations

The initial conditions become

u(x, 0) =I(x) = 0,
ut(x, 0) = V (x) = x(L− x) .

2.10.2. Defining a single discretization parameter

To verify the code, we compute the convergence rates in a series of simulations, letting each
simulation use a finer mesh than the previous one. Such empirical estimation of convergence rates
relies on an assumption that some measure E of the numerical error is related to the discretization
parameters through

E = Ct∆tr + Cx∆xp,

where Ct, Cx, r, and p are constants. The constants r and p are known as the convergence rates in
time and space, respectively. From the accuracy in the finite difference approximations, we expect
r = p = 2, since the error terms are of order ∆t2 and ∆x2. This is confirmed by truncation error
analysis and other types of analysis.

By using an exact solution of the PDE problem, we will next compute the error measure E on a
sequence of refined meshes and see if the rates r = p = 2 are obtained. We will not be concerned
with estimating the constants Ct and Cx, simply because we are not interested in their values.

It is advantageous to introduce a single discretization parameter h = ∆t = ĉ∆x for some constant ĉ.
Since ∆t and ∆x are related through the Courant number, ∆t = C∆x/c, we set h = ∆t, and then
∆x = hc/C. Now the expression for the error measure is greatly simplified:

E = Ct∆tr + Cx∆xr = Cth
r + Cx

(
c

C

)r

hr = Dhr, D = Ct + Cx

(
c

C

)r

.

Computing errors We choose an initial discretization parameter h0 and run experiments with
decreasing h: hi = 2−ih0, i = 1, 2, . . . ,m. Halving h in each experiment is not necessary, but it is a
common choice. For each experiment we must record E and h. Standard choices of error measure
are the ℓ2 and ℓ∞ norms of the error mesh function en

i :

E = ||en
i ||ℓ2 =

(
∆t∆x

Nt∑
n=0

Nx∑
i=0

(en
i)2
) 1

2

, en
i = ue(xi, tn)− un

i , (2.21)

E = ||en
i ||ℓ∞ = max

i,n
|en

i | . (2.22)

In Python, one can compute ∑i(en
i)2 at each time step and accumulate the value in some sum

variable, say e2_sum. At the final time step one can do sqrt(dt*dx*e2_sum). For the ℓ∞ norm
one must compare the maximum error at a time level (e.max()) with the global maximum over the
time domain: e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step only, e.g., the end time T
(n = Nt):

41

DRAFT

2. Wave Equations

E = ||en
i || ∗ ∗ℓ2 =

(
∆x

∑
∗ ∗ i = 0Nx(en

i)2
) 1

2 , en
i = ue(xi, tn)− un

i , (2.23)

E = ||en
i || ∗ ∗ℓ∞ = max ∗ ∗ 0 ≤ i ≤ Nx|en

i | . (2.24)

The important point is that the error measure (E) for the simulation is represented by a single
number.

2.10.3. Computing rates

Let Ei be the error measure in experiment (mesh) number i (not to be confused with the spatial index
i) and let hi be the corresponding discretization parameter (h). With the error model Ei = Dhr

i ,
we can estimate r by comparing two consecutive experiments:

Ei+1 = Dhr
i+1,

Ei = Dhr
i .

Dividing the two equations eliminates the (uninteresting) constant D. Thereafter, solving for r
yields

r = lnEi+1/Ei

ln hi+1/hi
.

Since r depends on i, i.e., which simulations we compare, we add an index to r: ri, where
i = 0, . . . ,m− 2, if we have m experiments: (h0, E0), . . . , (hm−1, Em−1).

In our present discretization of the wave equation we expect r = 2, and hence the ri values should
converge to 2 as i increases.

2.11. Constructing an exact solution of the discrete equations

With a manufactured or known analytical solution, as outlined above, we can estimate convergence
rates and see if they have the correct asymptotic behavior. Experience shows that this is a quite
good verification technique in that many common bugs will destroy the convergence rates. A
significantly better test though, would be to check that the numerical solution is exactly what
it should be. This will in general require exact knowledge of the numerical error, which we do
not normally have (although we in Section Section 2.61 establish such knowledge in simple cases).
However, it is possible to look for solutions where we can show that the numerical error vanishes,
i.e., the solution of the original continuous PDE problem is also a solution of the discrete equations.
This property often arises if the exact solution of the PDE is a lower-order polynomial. (Truncation
error analysis leads to error measures that involve derivatives of the exact solution. In the present
problem, the truncation error involves 4th-order derivatives of u in space and time. Choosing u as a
polynomial of degree three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution to both the PDE itself and the discrete
equations. Our chosen manufactured solution is quadratic in space and linear in time. More
specifically, we set

ue(x, t) = x(L− x)(1 + 1
2 t), (2.25)

42

DRAFT

2. Wave Equations

which by insertion in the PDE leads to f(x, t) = 2(1 + t)c2. This ue fulfills the boundary conditions
u = 0 and demands I(x) = x(L− x) and V (x) = 1

2x(L− x).

To realize that the chosen ue is also an exact solution of the discrete equations, we first remind
ourselves that tn = n∆t so that

[DtDtt
2]n = t2n+1 − 2t2n + t2n−1

∆t2 = (n+ 1)2 − 2n2 + (n− 1)2 = 2, (2.26)

[DtDtt]n = tn+1 − 2tn + tn−1
∆t2 = ((n+ 1)− 2n+ (n− 1))∆t

∆t2 = 0 (2.27)

.Hence,
[DtDtue]ni = xi(L− xi)[DtDt(1 + 1

2 t)]
n = xi(L− xi)

1
2[DtDtt]n = 0 .

Similarly, we get that

[DxDxue]ni = (1 + 1
2 tn)[DxDx(xL− x2)]i

= (1 + 1
2 tn)[LDxDxx−DxDxx

2]i

= −2(1 + 1
2 tn)

.Now, fn
i = 2(1 + 1

2 tn)c2, which results in

[DtDtue − c2DxDxue − f]ni = 0 + c22(1 + 1
2 tn) + 2(1 + 1

2 tn)c2 = 0 .

Moreover, ue(xi, 0) = I(xi), ∂ue/∂t = V (xi) at t = 0, and ue(x0, t) = ue(xNx , 0) = 0. Also the
modified scheme for the first time step is fulfilled by ue(xi, tn).

Therefore, the exact solution ue(x, t) = x(L − x)(1 + t/2) of the PDE problem is also an exact
solution of the discrete problem. This means that we know beforehand what numbers the numerical
algorithm should produce. We can use this fact to check that the computed un

i values from an
implementation equals ue(xi, tn), within machine precision. This result is valid regardless of the
mesh spacings ∆x and ∆t! Nevertheless, there might be stability restrictions on ∆x and ∆t, so the
test can only be run for a mesh that is compatible with the stability criterion (which in the present
case is C ≤ 1, to be derived later).

ñ A product of quadratic or linear expressions in the various

independent variables, as shown above, will often fulfill both the PDE problem and the discrete
equations, and can therefore be very useful solutions for verifying implementations.
However, for 1D wave equations of the type utt = c2uxx we shall see that there is always
another much more powerful way of generating exact solutions (which consists in just setting
C = 1 (!), as shown in Section Section 2.61).

43

DRAFT

2. Wave Equations

2.12. Solving the Wave Equation with Devito

In this section we demonstrate how to solve the wave equation using the Devito domain-specific
language (DSL). Devito allows us to write the PDE symbolically and generates optimized C code
automatically.

2.12.1. From Mathematics to Devito Code

Recall the 1D wave equation from Section 2.1:
∂2u

∂t2
= c2∂

2u

∂x2 , x ∈ (0, L), t ∈ (0, T] (2.28)

with initial conditions u(x, 0) = I(x) and ∂u/∂t|t=0 = V (x), and boundary conditions u(0, t) =
u(L, t) = 0.

In Devito, we express this PDE directly using symbolic derivatives. The key abstractions are:

• Grid: Defines the discrete domain
• TimeFunction: A field that varies in both space and time
• Eq: An equation relating symbolic expressions
• Operator: Compiles equations to optimized C code

2.12.2. The Devito Grid

A Devito Grid defines the discrete spatial domain:

from devito import Grid

L = 1.0 # Domain length
Nx = 100 # Number of grid intervals

grid = Grid(shape=(Nx + 1,), extent=(L,))

The shape is the number of grid points (including boundaries), and extent is the physical size of
the domain.

2.12.3. TimeFunction for the Wave Field

The solution u(x, t) is represented by a TimeFunction:

from devito import TimeFunction

u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

The key parameters are:

• time_order=2: We need un+1, un, un−1 for the wave equation
• space_order=2: Central difference with second-order accuracy

44

DRAFT

2. Wave Equations

2.12.4. Symbolic Derivatives

Devito provides symbolic access to derivatives through attribute notation:

Derivative Devito syntax Mathematical meaning
First time u.dt ∂u/∂t
Second time u.dt2 ∂2u/∂t2

First space u.dx ∂u/∂x
Second space u.dx2 ∂2u/∂x2

2.12.5. Formulating the PDE

We express the wave equation as a residual that should be zero:

from devito import Eq, solve, Constant

c_sq = Constant(name='c_sq') # Wave speed squared

PDE: u_tt - cˆ2 * u_xx = 0
pde = u.dt2 - c_sq * u.dx2

The solve function isolates the unknown un+1:

stencil = Eq(u.forward, solve(pde, u.forward))

Here u.forward represents un+1, the solution at the next time level.

2.12.6. Boundary Conditions

For Dirichlet conditions u(0, t) = u(L, t) = 0, we add explicit equations:

t_dim = grid.stepping_dim # Time index dimension

bc_left = Eq(u[t_dim + 1, 0], 0)
bc_right = Eq(u[t_dim + 1, Nx], 0)

2.12.7. Creating and Running the Operator

The Operator compiles all equations into optimized code:

from devito import Operator

op = Operator([stencil, bc_left, bc_right])

45

DRAFT

2. Wave Equations

To execute a time step, we call:

op.apply(time_m=1, time_M=1, dt=dt, c_sq=c**2)

2.12.8. Complete Solver Implementation

The module src.wave provides a complete solver that handles:

• Initial conditions with velocity (ut(x, 0) = V (x))
• CFL stability checking
• Optional history storage

from src.wave import solve_wave_1d
import numpy as np

Define initial condition: plucked string
def I(x):

return np.sin(np.pi * x)

Solve
result = solve_wave_1d(

L=1.0, # Domain length
c=1.0, # Wave speed
Nx=100, # Grid points
T=1.0, # Final time
C=0.9, # Courant number
I=I, # Initial displacement

)

Access results
u_final = result.u # Solution at final time
x = result.x # Spatial grid

2.12.9. The Courant Number and Stability

The Courant number C = c∆t/∆x determines stability. For the explicit wave equation solver, we
require C ≤ 1.

When C = 1 (the magic value), the numerical solution is exact for waves traveling in either direction.
This is because the domain of dependence of the numerical scheme exactly matches the physical
domain of dependence.

46

DRAFT

2. Wave Equations

2.12.10. Handling Initial Velocity

The first time step requires special treatment when V (x) ̸= 0. Using the Taylor expansion:

u1 = u0 + ∆t · V (x) + 1
2∆t2c2u0

xx

The solver implements this as:

u0 = I(x_coords)
v0 = V(x_coords)
u_xx_0 = np.zeros_like(u0)
u_xx_0[1:-1] = (u0[2:] - 2*u0[1:-1] + u0[:-2]) / dx**2

u1 = u0 + dt * v0 + 0.5 * dt**2 * c**2 * u_xx_0

2.12.11. Verification: Standing Wave Solution

The standing wave with I(x) = A sin(πx/L) and V = 0 has the exact solution:

u(x, t) = A sin
(
πx

L

)
cos

(
πct

L

)

We can verify our implementation converges at the expected rate:

from src.wave import convergence_test_wave_1d

grid_sizes, errors, rate = convergence_test_wave_1d(
grid_sizes=[20, 40, 80, 160],
T=0.5,
C=0.9,

)

print(f"Observed convergence rate: {rate:.2f}") # Should be ~2.0

2.12.12. Visualization

For time-dependent problems, animation is essential. With the history saved, we can create
animations:

import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

result = solve_wave_1d(
L=1.0, c=1.0, Nx=100, T=2.0, C=0.9,
save_history=True,

47

DRAFT

2. Wave Equations

)

fig, ax = plt.subplots()
line, = ax.plot(result.x, result.u_history[0])
ax.set_ylim(-1.2, 1.2)
ax.set_xlabel('x')
ax.set_ylabel('u')

def update(frame):
line.set_ydata(result.u_history[frame])
ax.set_title(f't = {result.t_history[frame]:.3f}')
return line,

anim = FuncAnimation(fig, update, frames=len(result.t_history),
interval=50, blit=True)

2.12.13. Summary: Devito vs. NumPy

The key advantages of using Devito for wave equations:

1. Symbolic PDEs: Write the math, not the stencils
2. Automatic optimization: Cache-efficient loops generated automatically
3. Parallelization: OpenMP/MPI/GPU support without code changes
4. Dimension-agnostic: Same code pattern works for 1D, 2D, 3D

The explicit time-stepping loop remains visible to the user for educational purposes, but Devito
handles the spatial discretization and can generate highly optimized code for the inner loop.

2.13. Source Terms and Variable Coefficients

Real-world wave propagation often involves source terms and spatially varying wave speeds. This
section extends the Devito wave solver to handle these features.

2.13.1. Adding a Source Term

The wave equation with a source term is:

∂2u

∂t2
= c2∂

2u

∂x2 + f(x, t) (2.29)

In seismic applications, f(x, t) often represents an impulsive source at a specific location.

48

DRAFT

2. Wave Equations

2.13.2. Source Wavelets

The src.wave module provides common source wavelets used in seismic modeling:

from src.wave import ricker_wavelet, gaussian_pulse
import numpy as np

t = np.linspace(0, 0.5, 501) # Time array

Ricker wavelet with 25 Hz peak frequency
src_ricker = ricker_wavelet(t, f0=25.0)

Gaussian pulse
src_gauss = gaussian_pulse(t, t0=0.1, sigma=0.02)

2.13.3. The Ricker Wavelet

The Ricker wavelet (Mexican hat wavelet) is the negative normalized second derivative of a
Gaussian:

r(t) = A
(
1− 2π2f2

0 (t− t0)2
)
e−π2f2

0 (t−t0)2

where f0 is the peak frequency and t0 is the time shift.

import matplotlib.pyplot as plt
from src.wave import ricker_wavelet, get_source_spectrum

t = np.linspace(0, 0.3, 301)
dt = t[1] - t[0]

Create wavelet
wavelet = ricker_wavelet(t, f0=25.0)

Compute spectrum
freq, amp = get_source_spectrum(wavelet, dt)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
ax1.plot(t, wavelet)
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Amplitude')
ax1.set_title('Ricker Wavelet (f0 = 25 Hz)')

ax2.plot(freq[:100], amp[:100])
ax2.set_xlabel('Frequency (Hz)')
ax2.set_ylabel('Amplitude')
ax2.set_title('Frequency Spectrum')
ax2.axvline(25, color='r', linestyle='--', label='Peak freq')
ax2.legend()

49

DRAFT

2. Wave Equations

2.13.4. Point Sources in Devito

For seismic modeling, sources are often located at specific points in space. Devito provides
SparseTimeFunction for this:

from devito import SparseTimeFunction

Point source at x = 0.5
src = SparseTimeFunction(

name='src', grid=grid,
npoint=1, nt=Nt,
coordinates=np.array([[0.5]])

)

Set source wavelet
src.data[:] = ricker_wavelet(t, f0=25.0).reshape(-1, 1)

Inject into the wave equation
src_term = src.inject(field=u.forward, expr=src * dt**2)

2.13.5. Variable Wave Speed

In heterogeneous media, the wave speed varies in space:

∂2u

∂t2
= ∇ · (c2(x)∇u)

In 1D, this simplifies to:
utt = (c2ux)x = c2uxx + 2ccxux

For smoothly varying c(x), we can approximate this as:

utt ≈ c2(x)uxx

2.13.6. Implementing Variable Velocity in Devito

We use a Function (not TimeFunction) for the velocity field:

from devito import Function

Velocity field
c = Function(name='c', grid=grid)

Set velocity values (e.g., layer model)
x_coords = np.linspace(0, L, Nx + 1)
c.data[:] = np.where(x_coords < 0.5, 1.0, 2.0) # Two layers

50

DRAFT

2. Wave Equations

The PDE uses this spatially varying velocity:

pde = u.dt2 - c**2 * u.dx2
stencil = Eq(u.forward, solve(pde, u.forward))

2.13.7. CFL Condition with Variable Velocity

When velocity varies, the CFL condition must use the maximum velocity:

∆t ≤ ∆x
cmax

c_max = np.max(c.data)
dt_stable = dx / c_max

2.13.8. Example: Wave Propagation in Layered Medium

Consider a domain with two layers of different wave speeds:

from devito import Grid, TimeFunction, Function, Eq, solve, Operator

Setup
L = 2.0
Nx = 200
grid = Grid(shape=(Nx + 1,), extent=(L,))

Velocity: slow layer (c=1) then fast layer (c=2)
c = Function(name='c', grid=grid)
x_coords = np.linspace(0, L, Nx + 1)
c.data[:] = np.where(x_coords < 1.0, 1.0, 2.0)

Wave field
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

Initial condition: Gaussian pulse in slow region
sigma = 0.1
x0 = 0.3
u.data[0, :] = np.exp(-((x_coords - x0) / sigma)**2)
u.data[1, :] = u.data[0, :]

Wave equation with variable velocity
pde = u.dt2 - c**2 * u.dx2
stencil = Eq(u.forward, solve(pde, u.forward))

Boundary conditions
bc_left = Eq(u[grid.stepping_dim + 1, 0], 0)

51

DRAFT

2. Wave Equations

bc_right = Eq(u[grid.stepping_dim + 1, Nx], 0)

Operator
op = Operator([stencil, bc_left, bc_right])

When the pulse reaches the interface at x = 1:

1. Part of the wave is reflected back into the slow medium
2. Part of the wave is transmitted into the fast medium
3. The transmitted wave travels faster and has a different wavelength

2.13.9. Reflection and Transmission Coefficients

At an interface between media with velocities c1 and c2, the reflection coefficient is:

R = c2 − c1
c2 + c1

And the transmission coefficient is:
T = 2c2

c2 + c1

For our example with c1 = 1 and c2 = 2:

• R = (2− 1)/(2 + 1) = 1/3
• T = 2 · 2/(2 + 1) = 4/3

The transmitted wave has larger amplitude but carries the same energy (accounting for the velocity
change).

2.13.10. Absorbing Boundary Conditions

For open-domain problems, we want waves to leave without reflecting from artificial boundaries. A
simple approach is a sponge layer that gradually damps the solution near boundaries:

from devito import Function

Damping coefficient (zero in interior, increasing at boundaries)
damp = Function(name='damp', grid=grid)

pad = 20 # Width of sponge layer
damp_profile = np.zeros(Nx + 1)
damp_profile[:pad] = 0.1 * (1 - np.linspace(0, 1, pad))
damp_profile[-pad:] = 0.1 * np.linspace(0, 1, pad)
damp.data[:] = damp_profile

Modified PDE with damping term
pde_damped = u.dt2 + damp * u.dt - c**2 * u.dx2

52

DRAFT

2. Wave Equations

The damping term γut removes energy from the wave as it enters the sponge layer.

2.13.11. Summary

Devito makes it straightforward to extend the basic wave solver to handle:

• Source terms: Point sources and wavelets for seismic modeling
• Variable velocity: Layered or smooth velocity variations
• Absorbing boundaries: Sponge layers to reduce reflections

The key is that Devito handles the discretization automatically once we express the PDE symbolically.
This allows us to focus on the physics rather than implementation details.

2.14. Implementation

This section presents the complete computational algorithm, its implementation in Python code,
animation of the solution, and verification of the implementation.

A real implementation of the basic computational algorithm from Sections Section 2.6 and Section 2.7
can be encapsulated in a function, taking all the input data for the problem as arguments. The
physical input data consists of c, I(x), V (x), f(x, t), L, and T . The numerical input is the mesh
parameters ∆t and ∆x.

Instead of specifying ∆t and ∆x, we can specify one of them and the Courant number C instead,
since having explicit control of the Courant number is convenient when investigating the numerical
method. Many find it natural to prescribe the resolution of the spatial grid and set Nx. The solver
function can then compute ∆t = CL/(cNx). However, for comparing u(x, t) curves (as functions
of x) for various Courant numbers it is more convenient to keep ∆t fixed for all C and let ∆x
vary according to ∆x = c∆t/C. With ∆t fixed, all frames correspond to the same time t, and this
simplifies animations that compare simulations with different mesh resolutions. Plotting functions
of x with different spatial resolution is trivial, so it is easier to let ∆x vary in the simulations than
∆t.

2.15. Callback function for user-specific actions

The solution at all spatial points at a new time level is stored in an array u of length Nx + 1. We
need to decide what to do with this solution, e.g., visualize the curve, analyze the values, or write
the array to file for later use. The decision about what to do is left to the user in the form of a
user-supplied function

user_action(u, x, t, n)

where u is the solution at the spatial points x at time t[n]. The user_action function is called
from the solver at each time level n.

53

DRAFT

2. Wave Equations

If the user wants to plot the solution or store the solution at a time point, she needs to write such a
function and take appropriate actions inside it. We will show examples on many such user_action
functions.

Since the solver function makes calls back to the user’s code via such a function, this type of function
is called a callback function. When writing general software, like our solver function, which also
needs to carry out special problem- or solution-dependent actions (like visualization), it is a common
technique to leave those actions to user-supplied callback functions.

The callback function can be used to terminate the solution process if the user returns True. For
example,

def my_user_action_function(u, x, t, n):
return np.abs(u).max() > 10

is a callback function that will terminate the solver function (given below) of the amplitude of the
waves exceed 10, which is here considered as a numerical instability.

2.16. The solver function

A first attempt at a solver function is listed below.

import numpy as np

def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=cˆ2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T / dt))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = dt * c / float(C)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
C2 = C**2 # Help variable in the scheme
dx = x[1] - x[0]
dt = t[1] - t[0]

if f is None or f == 0:
f = lambda x, t: 0

if V is None or V == 0:
V = lambda x: 0

u = np.zeros(Nx + 1) # Solution array at new time level
u_n = np.zeros(Nx + 1) # Solution at 1 time level back
u_nm1 = np.zeros(Nx + 1) # Solution at 2 time levels back

import time

54

DRAFT

2. Wave Equations

t0 = time.perf_counter() # Measure CPU time

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

n = 0
for i in range(1, Nx):

u[i] = (
u_n[i]
+ dt * V(x[i])
+ 0.5 * C2 * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 1])
+ 0.5 * dt**2 * f(x[i], t[n])

)
u[0] = 0
u[Nx] = 0

if user_action is not None:
user_action(u, x, t, 1)

u_nm1[:] = u_n
u_n[:] = u

for n in range(1, Nt):
for i in range(1, Nx):

u[i] = (
-u_nm1[i]
+ 2 * u_n[i]
+ C2 * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 1])
+ dt**2 * f(x[i], t[n])

)

u[0] = 0
u[Nx] = 0
if user_action is not None:

if user_action(u, x, t, n + 1):
break

u_nm1[:] = u_n
u_n[:] = u

cpu_time = time.perf_counter() - t0
return u, x, t, cpu_time

A couple of remarks about the above code is perhaps necessary:

55

DRAFT

2. Wave Equations

• Although we give dt and compute dx via C and c, the resulting t and x meshes do not
necessarily correspond exactly to these values because of rounding errors. To explicitly ensure
that dx and dt correspond to the cell sizes in x and t, we recompute the values.

• According to the particular choice made in Section Section 2.15, a true value returned from
user_action should terminate the simulation. This is here implemented by a break statement
inside the for loop in the solver.

2.17. Verification: exact quadratic solution

We use the test problem derived in Section Section 2.8 for verification. Below is a unit test based on
this test problem and realized as a proper test function compatible with the unit test frameworks
nose or pytest.

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""

def u_exact(x, t):
return x * (L - x) * (1 + 0.5 * t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5 * u_exact(x, 0)

def f(x, t):
return 2 * (1 + 0.5 * t) * c**2

L = 2.5
c = 1.5
C = 0.75
Nx = 6 # Very coarse mesh for this exact test
dt = C * (L / Nx) / c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
tol = 1e-13
assert diff < tol

solver(I, V, f, c, L, dt, C, T, user_action=assert_no_error)

When this function resides in the file wave1D_u0.py, one can run pytest to check that all test
functions with names test_*() in this file work:

56

DRAFT

2. Wave Equations

Terminal> py.test -s -v wave1D_u0.py

2.18. Verification: convergence rates

A more general method, but not so reliable as a verification method, is to compute the convergence
rates and see if they coincide with theoretical estimates. Here we expect a rate of 2 according to
the various results in Section Section 2.61. A general function for computing convergence rates can
be written like this:

"""
1D wave equation with u=0 at the boundary.
Simplest possible implementation.

The key function is::

u, x, t, cpu = (I, V, f, c, L, dt, C, T, user_action)

which solves the wave equation u_tt = c**2*u_xx on (0,L) with u=0
on x=0,L, for t in (0,T]. Initial conditions: u=I(x), u_t=V(x).

T is the stop time for the simulation.
dt is the desired time step.
C is the Courant number (=c*dt/dx), which specifies dx.
f(x,t) is a function for the source term (can be 0 or None).
I and V are functions of x.

user_action is a function of (u, x, t, n) where the calling
code can add visualization, error computations, etc.
"""

import numpy as np

def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=cˆ2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T / dt))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = dt * c / float(C)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
C2 = C**2 # Help variable in the scheme
dx = x[1] - x[0]
dt = t[1] - t[0]

if f is None or f == 0:
f = lambda x, t: 0

57

DRAFT

2. Wave Equations

if V is None or V == 0:
V = lambda x: 0

u = np.zeros(Nx + 1) # Solution array at new time level
u_n = np.zeros(Nx + 1) # Solution at 1 time level back
u_nm1 = np.zeros(Nx + 1) # Solution at 2 time levels back

import time

t0 = time.perf_counter() # Measure CPU time

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

n = 0
for i in range(1, Nx):

u[i] = (
u_n[i]
+ dt * V(x[i])
+ 0.5 * C2 * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 1])
+ 0.5 * dt**2 * f(x[i], t[n])

)
u[0] = 0
u[Nx] = 0

if user_action is not None:
user_action(u, x, t, 1)

u_nm1[:] = u_n
u_n[:] = u

for n in range(1, Nt):
for i in range(1, Nx):

u[i] = (
-u_nm1[i]
+ 2 * u_n[i]
+ C2 * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 1])
+ dt**2 * f(x[i], t[n])

)

u[0] = 0
u[Nx] = 0
if user_action is not None:

if user_action(u, x, t, n + 1):

58

DRAFT

2. Wave Equations

break

u_nm1[:] = u_n
u_n[:] = u

cpu_time = time.perf_counter() - t0
return u, x, t, cpu_time

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""

def u_exact(x, t):
return x * (L - x) * (1 + 0.5 * t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5 * u_exact(x, 0)

def f(x, t):
return 2 * (1 + 0.5 * t) * c**2

L = 2.5
c = 1.5
C = 0.75
Nx = 6 # Very coarse mesh for this exact test
dt = C * (L / Nx) / c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
tol = 1e-13
assert diff < tol

solver(I, V, f, c, L, dt, C, T, user_action=assert_no_error)

def test_constant():
"""Check that u(x,t)=Q=0 is exactly reproduced."""
u_const = 0 # Require 0 because of the boundary conditions
C = 0.75
dt = C # Very coarse mesh
u, x, t, cpu = solver(I=lambda x: 0, V=0, f=0, c=1.5, L=2.5, dt=dt, C=C, T=18)
tol = 1e-14

59

DRAFT

2. Wave Equations

assert np.abs(u - u_const).max() < tol

def viz(
I,
V,
f,
c,
L,
dt,
C,
T, # PDE parameters
umin,
umax, # Interval for u in plots
animate=True, # Simulation with animation?
solver_function=solver, # Function with numerical algorithm

):
"""Run solver and visualize u at each time level."""
import glob
import os
import time

import matplotlib.pyplot as plt

class PlotMatplotlib:
def __call__(self, u, x, t, n):

"""user_action function for solver."""
if n == 0:

plt.ion()
self.lines = plt.plot(x, u, "r-")
plt.xlabel("x")
plt.ylabel("u")
plt.axis([0, L, umin, umax])
plt.legend(["t=%f" % t[n]], loc="lower left")

else:
self.lines[0].set_ydata(u)
plt.legend(["t=%f" % t[n]], loc="lower left")
plt.draw()

time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n) # for movie making

plot_u = PlotMatplotlib()

for filename in glob.glob("tmp_*.png"):
os.remove(filename)

user_action = plot_u if animate else None

60

DRAFT

2. Wave Equations

u, x, t, cpu = solver_function(I, V, f, c, L, dt, C, T, user_action)

fps = 4 # frames per second
codec2ext = dict(

flv="flv", libx264="mp4", libvpx="webm", libtheora="ogg"
) # video formats
filespec = "tmp_%04d.png"
movie_program = "ffmpeg"
for codec in codec2ext:

ext = codec2ext[codec]
cmd = (

"%(movie_program)s -r %(fps)d -i %(filespec)s "
"-vcodec %(codec)s movie.%(ext)s" % vars()

)
os.system(cmd)

return cpu

def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8 * L
a = 0.005
freq = 440
wavelength = 2 * L
c = freq * wavelength
omega = 2 * np.pi * freq
num_periods = 1
T = 2 * np.pi / omega * num_periods
dt = L / 50.0 / c

def I(x):
return a * x / x0 if x < x0 else a / (L - x0) * (L - x)

umin = -1.2 * a
umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True)

def convergence_rates(
u_exact, # Python function for exact solution
I,
V,
f,
c,
L, # physical parameters

61

DRAFT

2. Wave Equations

dt0,
num_meshes,
C,
T,

): # numerical parameters
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
global error
error = 0 # error computed in the user action function

def compute_error(u, x, t, n):
global error # must be global to be altered here
if n == 0:

error = 0
else:

error = max(error, np.abs(u - u_exact(x, t[n])).max())

E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

solver(I, V, f, c, L, dt, C, T, user_action=compute_error)
E.append(error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print("E:", E)
print("h:", h)
r = [np.log(E[i] / E[i - 1]) / np.log(h[i] / h[i - 1]) for i in range(1, num_meshes)]
return r

Using the analytical solution from Section Section 2.9, we can call convergence_rates to see if
we get a convergence rate that approaches 2 and use the final estimate of the rate in an assert
statement such that this function becomes a proper test function:

def test_convrate_sincos():
n = m = 2
L = 1.0
u_exact = lambda x, t: np.cos(m * np.pi / L * t) * np.sin(m * np.pi / L * x)

r = convergence_rates(
u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: 0,
f=0,
c=1,

62

DRAFT

2. Wave Equations

L=L,
dt0=0.1,
num_meshes=6,
C=0.9,
T=1,

)
print("rates sin(x)*cos(t) solution:", [round(r_, 2) for r_ in r])
assert abs(r[-1] - 2) < 0.002

Doing py.test -s -v wave1D_u0.py will run also this test function and show the rates 2.05, 1.98,
2.00, 2.00, and 2.00 (to two decimals).

2.19. Visualization: animating the solution

Now that we have verified the implementation it is time to do a real computation where we also
display evolution of the waves on the screen. Since the solver function knows nothing about what
type of visualizations we may want, it calls the callback function user_action(u, x, t, n). We
must therefore write this function and find the proper statements for plotting the solution.

2.19.1. Function for administering the simulation

The following viz function

1. defines a user_action callback function for plotting the solution at each time level,
2. calls the solver function, and
3. combines all the plots (in files) to video in different formats.

def viz(
I,
V,
f,
c,
L,
dt,
C,
T, # PDE parameters
umin,
umax, # Interval for u in plots
animate=True, # Simulation with animation?
solver_function=solver, # Function with numerical algorithm

):
"""Run solver and visualize u at each time level."""
import glob
import os
import time

63

DRAFT

2. Wave Equations

import matplotlib.pyplot as plt

class PlotMatplotlib:
def __call__(self, u, x, t, n):

"""user_action function for solver."""
if n == 0:

plt.ion()
self.lines = plt.plot(x, u, "r-")
plt.xlabel("x")
plt.ylabel("u")
plt.axis([0, L, umin, umax])
plt.legend(["t=%f" % t[n]], loc="lower left")

else:
self.lines[0].set_ydata(u)
plt.legend(["t=%f" % t[n]], loc="lower left")
plt.draw()

time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n) # for movie making

plot_u = PlotMatplotlib()

for filename in glob.glob("tmp_*.png"):
os.remove(filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver_function(I, V, f, c, L, dt, C, T, user_action)

fps = 4 # frames per second
codec2ext = dict(

flv="flv", libx264="mp4", libvpx="webm", libtheora="ogg"
) # video formats
filespec = "tmp_%04d.png"
movie_program = "ffmpeg"
for codec in codec2ext:

ext = codec2ext[codec]
cmd = (

"%(movie_program)s -r %(fps)d -i %(filespec)s "
"-vcodec %(codec)s movie.%(ext)s" % vars()

)
os.system(cmd)

return cpu

64

DRAFT

2. Wave Equations

2.19.2. Dissection of the code

The viz function uses Matplotlib for visualizing the solution. The user_action function is realized
as a class and needs statements that differ from those for making static plots.

With Matplotlib, one has to make the first plot the standard way, and then update the y data in
the plot at every time level. The update requires active use of the returned value from plt.plot in
the first plot. This value would need to be stored in a local variable if we were to use a closure for
the user_action function when doing the animation with Matplotlib. It is much easier to store the
variable as a class attribute self.lines. Since the class is essentially a function, we implement
the function as the special method __call__ such that the instance plot_u(u, x, t, n) can be
called as a standard callback function from solver.

To achieve a smooth animation, we want to save each frame in the animation to file. We then need
a filename where the frame number is padded with zeros, here tmp_0000.png, tmp_0001.png, and
so on. The proper printf construction is then tmp_%04d.png.

2.19.3. Making movie files

From the frame_*.png files containing the frames in the animation we can make video files using
the ffmpeg (or avconv) program to produce videos in modern formats: Flash, MP4, Webm, and
Ogg.

The viz function creates an ffmpeg or avconv command with the proper arguments for each of
the formats Flash, MP4, WebM, and Ogg. The task is greatly simplified by having a codec2ext
dictionary for mapping video codec names to filename extensions. In practice, only two formats are
needed to ensure that all browsers can successfully play the video: MP4 and WebM.

Some animations having a large number of plot files may not be properly combined into a video
using ffmpeg or avconv. One alternative is to play the PNG files directly in an image viewer or
create an animated GIF using ImageMagick’s convert command:

Terminal> convert -delay 25 tmp_*.png animation.gif

The -delay option specifies the delay between frames in hundredths of a second.

2.19.4. Skipping frames for animation speed

Sometimes the time step is small and T is large, leading to an inconveniently large number of plot
files and a slow animation on the screen. The solution to such a problem is to decide on a total
number of frames in the animation, num_frames, and plot the solution only for every skip_frame
frames. For example, setting skip_frame=5 leads to plots of every 5 frames. The default value
skip_frame=1 plots every frame. The total number of time levels (i.e., maximum possible number of
frames) is the length of t, t.size (or len(t)), so if we want num_frames frames in the animation,
we need to plot every t.size/num_frames frames:

65

DRAFT

2. Wave Equations

skip_frame = int(t.size/float(num_frames))
if n % skip_frame == 0 or n == t.size-1:

st.plot(x, u, 'r-', ...)

The initial condition (n=0) is included by n % skip_frame == 0, as well as every skip_frame-th
frame. As n % skip_frame == 0 will very seldom be true for the very final frame, we must also
check if n == t.size-1 to get the final frame included.

A simple choice of numbers may illustrate the formulas: say we have 801 frames in total (t.size)
and we allow only 60 frames to be plotted. As n then runs from 801 to 0, we need to plot every
801/60 frame, which with integer division yields 13 as skip_frame. Using the mod function, n %
skip_frame, this operation is zero every time n can be divided by 13 without a remainder. That is,
the if test is true when n equals 0, 13, 26, 39, ..., 780, 801. The associated code is included in the
plot_u function, inside the viz function, in the file wave1D_u0.py.

2.20. Running a case

The first demo of our 1D wave equation solver concerns vibrations of a string that is initially
deformed to a triangular shape, like when picking a guitar string:

I(x) =
{
ax/x0, x < x0,
a(L− x)/(L− x0), otherwise (2.30)

We choose L = 75 cm, x0 = 0.8L, a = 5 mm, and a time frequency ν = 440 Hz. The relation
between the wave speed c and ν is c = νλ, where λ is the wavelength, taken as 2L because the
longest wave on the string forms half a wavelength. There is no external force, so f = 0 (meaning
we can neglect gravity), and the string is at rest initially, implying V = 0.

Regarding numerical parameters, we need to specify a ∆t. Sometimes it is more natural to think of
a spatial resolution instead of a time step. A natural semi-coarse spatial resolution in the present
problem is Nx = 50. We can then choose the associated ∆t (as required by the viz and solver
functions) as the stability limit: ∆t = L/(Nxc). This is the ∆t to be specified, but notice that if
C < 1, the actual ∆x computed in solver gets larger than L/Nx: ∆x = c∆t/C = L/(NxC). (The
reason is that we fix ∆t and adjust ∆x, so if C gets smaller, the code implements this effect in
terms of a larger ∆x.)

A function for setting the physical and numerical parameters and calling viz in this application
goes as follows:

def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8 * L
a = 0.005
freq = 440
wavelength = 2 * L
c = freq * wavelength

66

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_u0.py

DRAFT

2. Wave Equations

omega = 2 * np.pi * freq
num_periods = 1
T = 2 * np.pi / omega * num_periods
dt = L / 50.0 / c

def I(x):
return a * x / x0 if x < x0 else a / (L - x0) * (L - x)

umin = -1.2 * a
umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True)

The associated program has the name wave1D_u0.py. Run the program and watch the movie of
the vibrating string. The string should ideally consist of straight segments, but these are somewhat
wavy due to numerical approximation. Run the case with the wave1D_u0.py code and C = 1 to see
the exact solution.

2.21. Working with a scaled PDE model

Depending on the model, it may be a substantial job to establish consistent and relevant physical
parameter values for a case. The guitar string example illustrates the point. However, by scaling the
mathematical problem we can often reduce the need to estimate physical parameters dramatically.
The scaling technique consists of introducing new independent and dependent variables, with the
aim that the absolute values of these lie in [0, 1]. We introduce the dimensionless variables (details
are found in Section 3.1.1 in (Langtangen and Pedersen 2016))

x̄ = x

L
, t̄ = c

L
t, ū = u

a
.

Here, L is a typical length scale, e.g., the length of the domain, and a is a typical size of u, e.g.,
determined from the initial condition: a = maxx |I(x)|.

We get by the chain rule that
∂u

∂t
= ∂

∂t̄
(aū) dt̄

dt
= ac

L

∂ū

∂t̄
.

Similarly,
∂u

∂x
= a

L

∂ū

∂x̄
.

Inserting the dimensionless variables in the PDE gives, in case f = 0,

a2c2

L2
∂2ū

∂t̄2
= a2c2

L2
∂2ū

∂x̄2 .

Dropping the bars, we arrive at the scaled PDE

∂2u

∂t2
= ∂2u

∂x2 , x ∈ (0, 1), t ∈ (0, cT/L),

67

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_u0.py
http://hplgit.github.io/fdm-book/doc/pub/wave/html/mov-wave/guitar_C0.8/movie.html
http://hplgit.github.io/fdm-book/doc/pub/wave/html/mov-wave/guitar_C0.8/movie.html

DRAFT

2. Wave Equations

which has no parameter c2 anymore. The initial conditions are scaled as

aū(x̄, 0) = I(Lx̄)

and
a

L/c

∂ū

∂t̄
(x̄, 0) = V (Lx̄),

resulting in
ū(x̄, 0) = I(Lx̄)

maxx |I(x)| ,
∂ū

∂t̄
(x̄, 0) = L

ac
V (Lx̄) .

In the common case V = 0 we see that there are no physical parameters to be estimated in the
PDE model!

If we have a program implemented for the physical wave equation with dimensions, we can obtain
the dimensionless, scaled version by setting c = 1. The initial condition of a guitar string, given in
(2.30), gets its scaled form by choosing a = 1, L = 1, and x0 ∈ [0, 1]. This means that we only need
to decide on the x0 value as a fraction of unity, because the scaled problem corresponds to setting
all other parameters to unity. In the code we can just set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c!

The only non-trivial parameter to estimate in the scaled problem is the final end time of the
simulation, or more precisely, how it relates to periods in periodic solutions in time, since we often
want to express the end time as a certain number of periods. The period in the dimensionless
problem is 2, so the end time can be set to the desired number of periods times 2.

Why the dimensionless period is 2 can be explained by the following reasoning. Suppose that u
behaves as cos(ωt) in time in the original problem with dimensions. The corresponding period
is then P = 2π/ω, but we need to estimate ω. A typical solution of the wave equation is
u(x, t) = A cos(kx) cos(ωt), where A is an amplitude and k is related to the wave length λ in space:
λ = 2π/k. Both λ and A will be given by the initial condition I(x). Inserting this u(x, t) in the PDE
yields −ω2 = −c2k2, i.e., ω = kc. The period is therefore P = 2π/(kc). If the boundary conditions
are u(0, t) = u(L, t), we need to have kL = nπ for integer n. The period becomes P = 2L/nc. The
longest period is P = 2L/c. The dimensionless period P̃ is obtained by dividing P by the time scale
L/c, which results in P̃ = 2. Shorter waves in the initial condition will have a dimensionless shorter
period P̃ = 2/n (n > 1).

2.22. Vectorized computations

The computational algorithm for solving the wave equation visits one mesh point at a time and
evaluates a formula for the new value un+1

i at that point. Technically, this is implemented by a loop
over array elements in a program. Such loops may run slowly in Python (and similar interpreted
languages such as R and MATLAB). One technique for speeding up loops is to perform operations
on entire arrays instead of working with one element at a time. This is referred to as vectorization,
vector computing, or array computing. Operations on whole arrays are possible if the computations
involving each element is independent of each other and therefore can, at least in principle, be
performed simultaneously. That is, vectorization not only speeds up the code on serial computers,
but also makes it easy to exploit parallel computing. Actually, there are Python tools like Numba
that can automatically turn vectorized code into parallel code.

68

http://numba.pydata.org

DRAFT

2. Wave Equations

2.23. Operations on slices of arrays

Efficient computing with numpy arrays demands that we avoid loops and compute with entire arrays
at once (or at least large portions of them). Consider this calculation of differences di = ui+1− ui:

n = u.size
for i in range(0, n-1):

d[i] = u[i+1] - u[i]

All the differences here are independent of each other. The computation of d can therefore
alternatively be done by subtracting the array (u0, u1, . . . , un−1) from the array where the elements
are shifted one index upwards: (u1, u2, . . . , un), see Figure Figure 2.3. The former subset of the
array can be expressed by u[0:n-1], u[0:-1], or just u[:-1], meaning from index 0 up to, but
not including, the last element (-1). The latter subset is obtained by u[1:n] or u[1:], meaning
from index 1 and the rest of the array. The computation of d can now be done without an explicit
Python loop:

d = u[1:] - u[:-1]

or with explicit limits if desired:

d = u[1:n] - u[0:n-1]

Indices with a colon, going from an index to (but not including) another index are called slices. With
numpy arrays, the computations are still done by loops, but in efficient, compiled, highly optimized
C or Fortran code. Such loops are sometimes referred to as vectorized loops. Such loops can also
easily be distributed among many processors on parallel computers. We say that the scalar code
above, working on an element (a scalar) at a time, has been replaced by an equivalent vectorized
code. The process of vectorizing code is called vectorization.

Figure 2.3.: Illustration of subtracting two slices of two arrays.

69

DRAFT

2. Wave Equations

� Test your understanding

Newcomers to vectorization are encouraged to choose a small array u, say with five elements,
and simulate with pen and paper both the loop version and the vectorized version above.

Finite difference schemes basically contain differences between array elements with shifted indices.
As an example, consider the updating formula

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]

The vectorization consists of replacing the loop by arithmetics on slices of arrays of length n-2:

u2 = u[:-2] - 2*u[1:-1] + u[2:]
u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Note that the length of u2 becomes n-2. If u2 is already an array of length n and we want to use
the formula to update all the “inner” elements of u2, as we will when solving a 1D wave equation,
we can write

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]
u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

The first expression’s right-hand side is realized by the following steps, involving temporary arrays
with intermediate results, since each array operation can only involve one or two arrays. The numpy
package performs (behind the scenes) the first line above in four steps:

temp1 = 2*u[1:-1]
temp2 = u[:-2] - temp1
temp3 = temp2 + u[2:]
u2[1:-1] = temp3

We need three temporary arrays, but a user does not need to worry about such temporary arrays.

ñ Common mistakes with array slices

Array expressions with slices demand that the slices have the same shape. It easy to make a
mistake in, e.g.,

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n]

and write

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[1:n]

Now u[1:n] has wrong length (n-1) compared to the other array slices, causing a ValueError
and the message could not broadcast input array from shape 103 into shape 104 (if

70

DRAFT

2. Wave Equations

n is 105). When such errors occur one must closely examine all the slices. Usually, it is easier
to get upper limits of slices right when they use -1 or -2 or empty limit rather than expressions
involving the length.
Another common mistake, when u2 has length n, is to forget the slice in the array on the
left-hand side,

u2 = u[0:n-2] - 2*u[1:n-1] + u[1:n]

This is really crucial: now u2 becomes a new array of length n-2, which is the wrong length as
we have no entries for the boundary values. We meant to insert the right-hand side array into
the original u2 array for the entries that correspond to the internal points in the mesh (1:n-1
or 1:-1).

Vectorization may also work nicely with functions. To illustrate, we may extend the previous
example as follows:

def f(x):
return x**2 + 1

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

Assuming u2, u, and x all have length n, the vectorized version becomes

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])

Obviously, f must be able to take an array as argument for f(x[1:-1]) to make sense.

2.24. Finite difference schemes expressed as slices

We now have the necessary tools to vectorize the wave equation algorithm as described mathematically
in Section Section 2.6 and through code in Section Section 2.16. There are three loops: one for the
initial condition, one for the first time step, and finally the loop that is repeated for all subsequent
time levels. Since only the latter is repeated a potentially large number of times, we limit our
vectorization efforts to this loop. Within the time loop, the space loop reads:

for i in range(1, Nx):
u[i] = 2*u_n[i] - u_nm1[i] + \

C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

The vectorized version becomes

u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(u_n[:-2] - 2*u_n[1:-1] + u_n[2:])

71

DRAFT

2. Wave Equations

or

u[1:Nx] = 2*u_n[1:Nx]- u_nm1[1:Nx] + \
C2*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1])

The program wave1D_u0v.py contains a new version of the function solver where both the scalar
and the vectorized loops are included (the argument version is set to scalar or vectorized,
respectively).

2.25. Verification

We may reuse the quadratic solution ue(x, t) = x(L− x)(1 + 1
2 t) for verifying also the vectorized

code. A test function can now verify both the scalar and the vectorized version. Moreover, we may
use a user_action function that compares the computed and exact solution at each time level and
performs a test:

def test_quadratic():
"""
Check the scalar and vectorized versions for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
u_exact = lambda x, t: x * (L - x) * (1 + 0.5 * t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5 * u_exact(x, 0)
f = lambda x, t: np.zeros_like(x) + 2 * c**2 * (1 + 0.5 * t)

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C * (L / Nx) / c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1e-13
diff = np.abs(u - u_e).max()
assert diff < tol

solver(I, V, f, c, L, dt, C, T, user_action=assert_no_error, version="scalar")
solver(I, V, f, c, L, dt, C, T, user_action=assert_no_error, version="vectorized")

72

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_u0v.py

DRAFT

2. Wave Equations

ñ Lambda functions

The code segment above demonstrates how to achieve very compact code, without degraded
readability, by use of lambda functions for the various input parameters that require a Python
function. In essence,

f = lambda x, t: L*(x-t)**2

is equivalent to

def f(x, t):
return L(x-t)**2

Note that lambda functions can just contain a single expression and no statements.
One advantage with lambda functions is that they can be used directly in calls:

solver(I=lambda x: sin(pi*x/L), V=0, f=0, ...)

2.26. Efficiency measurements

The wave1D_u0v.py contains our new solver function with both scalar and vectorized code. For
comparing the efficiency of scalar versus vectorized code, we need a viz function as discussed in
Section Section 2.19. All of this viz function can be reused, except the call to solver_function.
This call lacks the parameter version, which we want to set to vectorized and scalar for our
efficiency measurements.

One solution is to copy the viz code from wave1D_u0 into wave1D_u0v.py and add a version
argument to the solver_function call. Taking into account how much animation code we then du-
plicate, this is not a good idea. Alternatively, introducing the version argument in wave1D_u0.viz,
so that this function can be imported into wave1D_u0v.py, is not a good solution either, since
version has no meaning in that file. We need better ideas!

2.26.1. Solution 1

Calling viz in wave1D_u0 with solver_function as our new solver in wave1D_u0v works fine,
since this solver has version='vectorized' as default value. The problem arises when we want
to test version='scalar'. The simplest solution is then to use wave1D_u0.solver instead. We
make a new viz function in wave1D_u0v.py that has a version argument and that just calls
wave1D_u0.viz:

def viz(
I,
V,
f,
c,

73

DRAFT

2. Wave Equations

L,
dt,
C,
T, # PDE parameters
umin,
umax, # Interval for u in plots
animate=True, # Simulation with animation?
solver_function=solver, # Function with numerical algorithm
version="vectorized", # 'scalar' or 'vectorized'

):
import wave1D_u0

if version == "vectorized":
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax, animate, solver_function=solver
)

elif version == "scalar":
cpu = wave1D_u0.viz(

I,
V,
f,
c,
L,
dt,
C,
T,
umin,
umax,
animate,
solver_function=wave1D_u0.solver,

)
return cpu

def test_quadratic():
"""
Check the scalar and vectorized versions for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
u_exact = lambda x, t: x * (L - x) * (1 + 0.5 * t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5 * u_exact(x, 0)
f = lambda x, t: np.zeros_like(x) + 2 * c**2 * (1 + 0.5 * t)

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test

74

DRAFT

2. Wave Equations

dt = C * (L / Nx) / c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1e-13
diff = np.abs(u - u_e).max()
assert diff < tol

solver(I, V, f, c, L, dt, C, T, user_action=assert_no_error, version="scalar")
solver(I, V, f, c, L, dt, C, T, user_action=assert_no_error, version="vectorized")

def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8 * L
a = 0.005
freq = 440
wavelength = 2 * L
c = freq * wavelength
omega = 2 * pi * freq
num_periods = 1
T = 2 * pi / omega * num_periods
dt = L / 50.0 / c

def I(x):
return a * x / x0 if x < x0 else a / (L - x0) * (L - x)

umin = -1.2 * a
umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True)

def run_efficiency_experiments():
L = 1
x0 = 0.8 * L
a = 1
c = 2
T = 8
C = 0.9
umin = -1.2 * a
umax = -umin

def I(x):
return a * x / x0 if x < x0 else a / (L - x0) * (L - x)

intervals = []
speedup = []

75

DRAFT

2. Wave Equations

for Nx in [50, 100, 200, 400, 800]:
dx = float(L) / Nx
dt = C / c * dx
print("solving scalar Nx=%d" % Nx, end=" ")
cpu_s = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=False, version="scalar")
print(cpu_s)
print("solving vectorized Nx=%d" % Nx, end=" ")
cpu_v = viz(

I, 0, 0, c, L, dt, C, T, umin, umax, animate=False, version="vectorized"
)
print(cpu_v)
intervals.append(Nx)
speedup.append(cpu_s / float(cpu_v))
print("Nx=%3d: cpu_v/cpu_s: %.3f" % (Nx, 1.0 / speedup[-1]))

print("Nx:", intervals)
print("Speed-up:", speedup)

if __name__ == "__main__":
test_quadratic() # verify
import sys

try:
C = float(sys.argv[1])
print("C=%g" % C)

except IndexError:
C = 0.85

guitar(C)

2.26.2. Solution 2

There is a more advanced and fancier solution featuring a very useful trick: we can make a new func-
tion that will always call wave1D_u0v.solver with version='scalar'. The functools.partial
function from standard Python takes a function func as argument and a series of positional and
keyword arguments and returns a new function that will call func with the supplied arguments,
while the user can control all the other arguments in func. Consider a trivial example,

def f(a, b, c=2):
return a + b + c

We want to ensure that f is always called with c=3, i.e., f has only two “free” arguments a and b.
This functionality is obtained by

import functools
f2 = functools.partial(f, c=3)

print f2(1, 2) # results in 1+2+3=6

76

DRAFT

2. Wave Equations

Now f2 calls f with whatever the user supplies as a and b, but c is always 3.

Back to our viz code, we can do

import functools
scalar_solver = functools.partial(wave1D_u0.solver, version='scalar')
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool, solver_function=scalar_solver)

The new scalar_solver takes the same arguments as wave1D_u0.scalar and calls
wave1D_u0v.scalar, but always supplies the extra argument version='scalar'. When
sending this solver_function to wave1D_u0.viz, the latter will call wave1D_u0v.solver with all
the I, V, f, etc., arguments we supply, plus version='scalar'.

2.26.3. Efficiency experiments

We now have a viz function that can call our solver function both in scalar and vectorized mode.
The function run_efficiency_experiments in wave1D_u0v.py performs a set of experiments and
reports the CPU time spent in the scalar and vectorized solver for the previous string vibration
example with spatial mesh resolutions Nx = 50, 100, 200, 400, 800. Running this function reveals
that the vectorized code runs substantially faster: the vectorized code runs approximately Nx/10
times as fast as the scalar code!

2.27. Remark on the updating of arrays

At the end of each time step we need to update the u_nm1 and u_n arrays such that they have the
right content for the next time step:

u_nm1[:] = u_n
u_n[:] = u

The order here is important: updating u_n first, makes u_nm1 equal to u, which is wrong!

The assignment u_n[:] = u copies the content of the u array into the elements of the u_n array.
Such copying takes time, but that time is negligible compared to the time needed for computing u
from the finite difference formula, even when the formula has a vectorized implementation. However,
efficiency of program code is a key topic when solving PDEs numerically (particularly when there are
two or three space dimensions), so it must be mentioned that there exists a much more efficient way
of making the arrays u_nm1 and u_n ready for the next time step. The idea is based on switching
references and explained as follows.

A Python variable is actually a reference to some object (C programmers may think of pointers).
Instead of copying data, we can let u_nm1 refer to the u_n object and u_n refer to the u object. This
is a very efficient operation (like switching pointers in C). A naive implementation like

77

DRAFT

2. Wave Equations

u_nm1 = u_n
u_n = u

will fail, however, because now u_nm1 refers to the u_n object, but then the name u_n refers to u,
so that this u object has two references, u_n and u, while our third array, originally referred to by
u_nm1, has no more references and is lost. This means that the variables u, u_n, and u_nm1 refer to
two arrays and not three. Consequently, the computations at the next time level will be messed up,
since updating the elements in u will imply updating the elements in u_n too, thereby destroying
the solution at the previous time step.

While u_nm1 = u_n is fine, u_n = u is problematic, so the solution to this problem is to ensure that
u points to the u_nm1 array. This is mathematically wrong, but new correct values will be filled
into u at the next time step and make it right.

The correct switch of references is

tmp = u_nm1
u_nm1 = u_n
u_n = u
u = tmp

We can get rid of the temporary reference tmp by writing

u_nm1, u_n, u = u_n, u, u_nm1

This switching of references for updating our arrays will be used in later implementations.

. Caution:

The update u_nm1, u_n, u = u_n, u, u_nm1 leaves wrong content in u at the final time
step. This means that if we return u, as we do in the example codes here, we actually return
u_nm1, which is obviously wrong. It is therefore important to adjust the content of u to u =
u_n before returning u. (Note that the user_action function reduces the need to return the
solution from the solver.)

2.28. Making Movies

We could also add making a hardcopy of the plot for later production of a movie file. The hardcopies
must be numbered consecutively, say tmp_0000.png, tmp_0001.png, tmp_0002.png, and so forth.
The filename construction can be based on the n counter supplied to the user action function:

filename = 'tmp_%04d.png' % n

The 04d format implies formatting of an integer in a field of width 4 characters and padded with
zeros from the left. An animated GIF file movie.gif can be made from these individual frames by
using the convert program from the ImageMagick suite:

78

DRAFT

2. Wave Equations

Unix> convert -delay 50 tmp_*.png movie.gif
Unix> animate movie.gif

The delay is measured in units of 1/100 s. The animate program, also in the ImageMagick suite,
can play the movie file. Alternatively, the display program can be used to walk through each
frame, i.e., solution curve, by pressing the space bar.

2.29. Exercise: Simulate a standing wave

The purpose of this exercise is to simulate standing waves on [0, L] and illustrate the error in the
simulation. Standing waves arise from an initial condition

u(x, 0) = A sin
(
π

L
mx

)
,

where m is an integer and A is a freely chosen amplitude. The corresponding exact solution can be
computed and reads

ue(x, t) = A sin
(
π

L
mx

)
cos

(
π

L
mct

)
.

a)

Explain that for a function sin kx cosωt the wave length in space is λ = 2π/k and the period in
time is P = 2π/ω. Use these expressions to find the wave length in space and period in time of ue
above.

� Solution

Since the sin and cos functions depend on x and t, respectively, the sin function will run
through one period as x increases by 2π

k , while the cos function starts repeating as t increases
by 2π

ω .
The wave length in space becomes

λ = 2π
π
Lm

= 2L
m

.

The period in time becomes
P = 2π

π
Lmc

= 2L
mc

.

b)

Import the solver function from wave1D_u0.py into a new file where the viz function is reimple-
mented such that it plots either the numerical and the exact solution, or the error.

� Solution

See code below.

c)

79

DRAFT

2. Wave Equations

Make animations where you illustrate how the error en
i = ue(xi, tn)− un

i develops and increases in
time. Also make animations of u and ue simultaneously.

� Quite long time simulations are needed in order to display significant

discrepancies between the numerical and exact solution.

� A possible set of parameters is L = 12, m = 9, c = 2, A = 1, Nx = 80,

C = 0.8. The error mesh function en can be simulated for 10 periods, while 20-30 periods are
needed to show significant differences between the curves for the numerical and exact solution.

� Solution

The code:

80

DRAFT

2. Wave Equations

import os
import sys

sys.path.insert(0, os.path.join(os.pardir, os.pardir, "src-wave", "wave1D"))

import numpy as np
from wave1D_u0 import solver

def viz(
I, V, f, c, L, dt, C, T,
ymax, # y axis: [-ymax, ymax]
u_exact, # u_exact(x, t)
animate="u and u_exact", # or 'error'
movie_filename="movie",

):
"""Run solver and visualize u at each time level."""
import glob
import os

import matplotlib.pyplot as plt

class Plot:
def __init__(self, ymax, frame_name="frame"):

self.max_error = [] # hold max amplitude errors
self.max_error_t = [] # time points corresp. to max_error
self.frame_name = frame_name
self.ymax = ymax

def __call__(self, u, x, t, n):
"""user_action function for solver."""
if animate == "u and u_exact":

plt.clf()
plt.plot(x, u, "r-", x, u_exact(x, t[n]), "b--")
plt.xlabel("x")
plt.ylabel("u")
plt.axis([0, L, -self.ymax, self.ymax])
plt.title(f"t={t[n]:f}")
plt.draw()
plt.pause(0.001)

else:
error = u_exact(x, t[n]) - u
local_max_error = np.abs(error).max()
if self.max_error == [] or local_max_error > max(self.max_error):

self.max_error.append(local_max_error)
self.max_error_t.append(t[n])

self.ymax = max(self.ymax, max(self.max_error))
plt.clf()
plt.plot(x, error, "r-")
plt.xlabel("x")
plt.ylabel("error")
plt.axis([0, L, -self.ymax, self.ymax])
plt.title(f"t={t[n]:f}")
plt.draw()
plt.pause(0.001)

plt.savefig("%s_%04d.png" % (self.frame_name, n))

Clean up old movie frames
for filename in glob.glob("frame_*.png"):

os.remove(filename)

plot = Plot(ymax)
u, x, t, cpu = solver(I, V, f, c, L, dt, C, T, plot)

Make plot of max error versus time
plt.figure()
plt.plot(plot.max_error_t, plot.max_error)
plt.xlabel("time")
plt.ylabel("max abs(error)")
plt.savefig("error.png")
plt.savefig("error.pdf")

81

DRAFT

2. Wave Equations

ñ Remarks

The important parameters for numerical quality are C and k∆x, where C = c∆t/∆x is the
Courant number and k is defined above (k∆x is proportional to how many mesh points we
have per wave length in space, see Section Section 2.64 for explanation).

2.30. Exercise: Add storage of solution in a user action function

Extend the plot_u function in the file wave1D_u0.py to also store the solutions u in a list. To this
end, declare all_u as an empty list in the viz function, outside plot_u, and perform an append
operation inside the plot_u function. Note that a function, like plot_u, inside another function, like
viz, remembers all local variables in viz function, including all_u, even when plot_u is called (as
user_action) in the solver function. Test both all_u.append(u) and all_u.append(u.copy()).
Why does one of these constructions fail to store the solution correctly? Let the viz function return
the all_u list converted to a two-dimensional numpy array.

� Solution

We have to explicitly use a copy of u, i.e. as all_u.append(u.copy()), otherwise we just get
a reference to u, which goes on changing with the computations.

82

DRAFT

2. Wave Equations

def viz(
I, V, f, c, L, dt, C, T,
umin, umax,
animate=True,
solver_function=solver,

):
"""Run solver, store and visualize u at each time level."""
import glob
import os
import time

import matplotlib.pyplot as plt

all_u = [] # store solutions

def plot_u(u, x, t, n):
"""user_action function for solver."""
if n == 0:

plt.ion()
lines = plt.plot(x, u, "r-")
plt.xlabel("x")
plt.ylabel("u")
plt.axis([0, L, umin, umax])
plt.legend([f"t={t[n]:f}"], loc="lower left")

else:
lines[0].set_ydata(u)
plt.legend([f"t={t[n]:f}"], loc="lower left")
plt.draw()

time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n)
all_u.append(u.copy()) # must use copy!

Clean up old movie frames
for filename in glob.glob("tmp_*.png"):

os.remove(filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver_function(I, V, f, c, L, dt, C, T, user_action)
return cpu, np.array(all_u)

2.31. Exercise: Use a class for the user action function

Redo Exercise Section 2.30 using a class for the user action function. Let the all_u list be an
attribute in this class and implement the user action function as a method (the special method
__call__ is a natural choice). The class versions avoid that the user action function depends on

83

DRAFT

2. Wave Equations

parameters defined outside the function (such as all_u in Exercise Section 2.30).

� Solution

Using a class, we get

class PlotMatplotlib:
def __init__(self):

self.all_u = []

def __call__(self, u, x, t, n):
"""user_action function for solver."""
if n == 0:

plt.ion()
self.lines = plt.plot(x, u, "r-")
plt.xlabel("x")
plt.ylabel("u")
plt.axis([0, L, umin, umax])
plt.legend([f"t={t[n]:f}"], loc="lower left")

else:
self.lines[0].set_ydata(u)
plt.legend([f"t={t[n]:f}"], loc="lower left")
plt.draw()

time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n) # for movie making
self.all_u.append(u.copy())

def viz(I, V, f, c, L, dt, C, T, umin, umax,
animate=True, solver_function=solver):

"""Run solver, store and visualize u at each time level."""
import glob
import os

plot_u = PlotMatplotlib()

Clean up old movie frames
for filename in glob.glob("tmp_*.png"):

os.remove(filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver_function(I, V, f, c, L, dt, C, T, user_action)
return cpu, np.array(plot_u.all_u)

84

DRAFT

2. Wave Equations

2.32. Exercise: Compare several Courant numbers in one movie

The goal of this exercise is to make movies where several curves, corresponding to different Courant
numbers, are visualized. Write a program that resembles wave1D_u0_s2c.py in Exercise Section 2.31,
but with a viz function that can take a list of C values as argument and create a movie with
solutions corresponding to the given C values. The plot_u function must be changed to store the
solution in an array (see Exercise Section 2.30 or Section 2.31 for details), solver must be computed
for each value of the Courant number, and finally one must run through each time step and plot all
the spatial solution curves in one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in one plot correspond to the
same time point. The easiest remedy is to keep the time resolution constant and change the space
resolution to change the Courant number. Note that each spatial grid is needed for the final plotting,
so it is an option to store those grids too.

� Solution

Modifying the code to store all solutions for each C value and also each corresponding spatial
grid (needed for final plotting), we get

85

DRAFT

2. Wave Equations

class PlotMatplotlib:
def __init__(self):

self.all_u = []
self.all_u_for_all_C = []
self.x_mesh = [] # need each mesh for final plots

def __call__(self, u, x, t, n):
"""user_action function for solver."""
self.all_u.append(u.copy())
if t[n] == T: # i.e., whole time interv. done for this C

self.x_mesh.append(x.copy())
self.all_u_for_all_C.append(self.all_u)
self.all_u = [] # reset to empty list

if len(self.all_u_for_all_C) == len(C): # all C done
print("Finished all C. Proceed with plots...")
plt.ion()
for n_ in range(0, n + 1): # for each tn

plt.clf()
for j in range(len(C)):

plt.plot(self.x_mesh[j], self.all_u_for_all_C[j][n_])
plt.axis([0, L, umin, umax])
plt.xlabel("x")
plt.ylabel("u")
plt.title(f"Solutions for all C at t={t[n_]:f}")
plt.draw()
time.sleep(2) if t[n_] == 0 else time.sleep(0.2)
plt.savefig("tmp_%04d.png" % n_) # for movie

def viz(I, V, f, c, L, dt, C, T, umin, umax,
animate=True, solver_function=solver):

"""Run solver, store and viz. u at each time level with all C values."""
import glob
import os

plot_u = PlotMatplotlib()

Clean up old movie frames
for filename in glob.glob("tmp_*.png"):

os.remove(filename)

user_action = plot_u if animate else None
for C_value in C:

print("C_value:", C_value)
u, x, t, cpu = solver_function(I, V, f, c, L, dt, C_value, T, user_action)

return cpu

86

DRAFT

2. Wave Equations

2.33. Exercise: Implementing the solver function as a generator

The callback function user_action(u, x, t, n) is called from the solver function (in, e.g.,
wave1D_u0.py) at every time level and lets the user work perform desired actions with the solution,
like plotting it on the screen. We have implemented the callback function in the typical way it
would have been done in C and Fortran. Specifically, the code looks like

if user_action is not None:
if user_action(u, x, t, n):

break

Many Python programmers, however, may claim that solver is an iterative process, and that
iterative processes with callbacks to the user code is more elegantly implemented as generators. The
rest of the text has little meaning unless you are familiar with Python generators and the yield
statement.

Instead of calling user_action, the solver function issues a yield statement, which is a kind of
return statement:

yield u, x, t, n

The program control is directed back to the calling code:

for u, x, t, n in solver(...):

When the block is done, solver continues with the statement after yield. Note that the functionality
of terminating the solution process if user_action returns a True value is not possible to implement
in the generator case.

Implement the solver function as a generator, and plot the solution at each time step.

� Solution

2.34. Project: Calculus with 1D mesh functions

This project explores integration and differentiation of mesh functions, both with scalar and
vectorized implementations. We are given a mesh function fi on a spatial one-dimensional mesh
xi = i∆x, i = 0, . . . , Nx, over the interval [a, b].

a)

Define the discrete derivative of fi by using centered differences at internal mesh points and one-sided
differences at the end points. Implement a scalar version of the computation in a Python function
and write an associated unit test for the linear case f(x) = 4x− 2.5 where the discrete derivative
should be exact.

87

DRAFT

2. Wave Equations

� Solution

See code below.

b)

Vectorize the implementation of the discrete derivative. Extend the unit test to check the validity
of the implementation.

� Solution

See code below.

c)

To compute the discrete integral Fi of fi, we assume that the mesh function fi varies linearly
between the mesh points. Let f(x) be such a linear interpolant of fi. We then have

Fi =
∫ xi

x0
f(x)dx .

The exact integral of a piecewise linear function f(x) is given by the Trapezoidal rule. Show that if
Fi is already computed, we can find Fi+1 from

Fi+1 = Fi + 1
2(fi + fi+1)∆x .

Make a function for the scalar implementation of the discrete integral as a mesh function. That is,
the function should return Fi for i = 0, . . . , Nx. For a unit test one can use the fact that the above
defined discrete integral of a linear function (say f(x) = 4x− 2.5) is exact.

� Solution

We know that the difference Fi+1−Fi must amount to the area of a trapezoid, which is exactly
what 1

2(fi + fi+1)∆x is. To show the relation above, we may start with the Trapezoidal rule:

Fi+1 = ∆x

1
2f(x0) +

n−1∑
j=1

f(xj) + 1
2f(xn)

 .
Since n = i+ 1, and since the final term in the sum may be separated out from the sum and
split in two, this may be written as

Fi+1 = ∆x

1
2f(x0) +

i−1∑
j=1

f(xj) + 1
2f(xi) + 1

2f(xi) + 1
2f(xi+1)

 .
This may further be written as

Fi+1 = ∆x

1
2f(x0) +

i−1∑
j=1

f(xj) + 1
2f(xi)

+ ∆x
[1

2f(xi) + 1
2f(xi+1)

]
.

Finally, this gives
Fi+1 = Fi + 1

2(fi + fi+1)∆x .

See code below for implementation.

88

DRAFT

2. Wave Equations

d)

Vectorize the implementation of the discrete integral. Extend the unit test to check the validity of
the implementation.

� Interpret the recursive formula for Fi+1 as a sum.

Make an array with each element of the sum and use the “cumsum” (numpy.cumsum) operation
to compute the accumulative sum: numpy.cumsum([1,3,5]) is [1,4,9].

� Solution

See code below.

e)

Create a class MeshCalculus that can integrate and differentiate mesh functions. The class can just
define some methods that call the previously implemented Python functions. Here is an example on
the usage:

import numpy as np
calc = MeshCalculus(vectorized=True)
x = np.linspace(0, 1, 11) # mesh
f = np.exp(x) # mesh function
df = calc.differentiate(f, x) # discrete derivative
F = calc.integrate(f, x) # discrete anti-derivative

� Solution

See code below.

� Solution

The final version of the code reads

89

DRAFT

2. Wave Equations

"""
Calculus with a 1D mesh function.
"""

import numpy as np

class MeshCalculus:
def __init__(self, vectorized=True):

self.vectorized = vectorized

def differentiate(self, f, x):
"""
Computes the derivative of f by centered differences, but
forw and back difference at the start and end, respectively.
"""
dx = x[1] - x[0]
Nx = len(x) - 1 # number of spatial steps
num_dfdx = np.zeros(Nx + 1)
Compute approximate derivatives at end-points first
num_dfdx[0] = (f(x[1]) - f(x[0])) / dx # FD approx.
num_dfdx[Nx] = (f(x[Nx]) - f(x[Nx - 1])) / dx # BD approx.
proceed with approximate derivatives for inner mesh points
if self.vectorized:

num_dfdx[1:-1] = (f(x[2:]) - f(x[:-2])) / (2 * dx)
else: # scalar version

for i in range(1, Nx):
num_dfdx[i] = (f(x[i + 1]) - f(x[i - 1])) / (2 * dx)

return num_dfdx

def integrate(self, f, x):
"""
Computes the integral of f(x) over the interval
covered by x.
"""
dx = x[1] - x[0]
F = np.zeros(len(x))
F[0] = 0 # starting value for iterative scheme
if self.vectorized:

all_trapezoids = np.zeros(len(x) - 1)
all_trapezoids[:] = 0.5 * (f(x[:-1]) + f(x[1:])) * dx
F[1:] = np.cumsum(all_trapezoids)

else: # scalar version
for i in range(0, len(x) - 1):

F[i + 1] = F[i] + 0.5 * (f(x[i]) + f(x[i + 1])) * dx
return F

def test_differentiate():
def f(x):

return 4 * x - 2.5

def dfdx(x):
derivatives = np.zeros(len(x))
derivatives[:] = 4
return derivatives

a = 0
b = 1
Nx = 10
x = np.linspace(a, b, Nx + 1)
exact_dfdx = dfdx(x)
test vectorized version
calc_v = MeshCalculus(vectorized=True)
num_dfdx = calc_v.differentiate(f, x)
diff = np.abs(num_dfdx - exact_dfdx).max()
tol = 1e-14
assert diff < tol
test scalar version
calc = MeshCalculus(vectorized=False)
num_dfdx = calc.differentiate(f, x)
diff = np.abs(num_dfdx - exact_dfdx).max()
assert diff < tol

def test_integrate():
def f(x):

return 4 * x - 2.5

a = 0
b = 1
Nx = 10
x = np.linspace(a, b, Nx + 1)
The exact integral amounts to the total area of two triangles
I_exact = 0.5 * abs(2.5 / 4 - a) * f(a) + 0.5 * abs(b - 2.5 / 4) * f(b)
test vectorized version
calc_v = MeshCalculus(vectorized=True)
F = calc_v.integrate(f, x)
diff = np.abs(F[-1] - I_exact)
tol = 1e-14
assert diff < tol
test scalar version
calc = MeshCalculus(vectorized=False)
F = calc.integrate(f, x)
diff = np.abs(F[-1] - I_exact)
assert diff < tol

90

DRAFT

2. Wave Equations

2.35. Neumann boundary conditions

The boundary condition u = 0 in a wave equation reflects the wave, but u changes sign at the
boundary, while the condition ux = 0 reflects the wave as a mirror and preserves the sign.

Why is it so? Consider the boundary x = 0 and the condition u = 0. How will two values u(0, t)
and u(∆x, t change from time t to t+ ∆t? Since u(0, t) = 0, u(∆x, t) and u(∆x, t+ ∆t) will be close
to zero too. Their average in time must also be close to zero, especially in the limit ∆x,∆t→ 0:

1
2(u(∆x, t) + u(∆x, t+ ∆t)) ≈ 0 ⇒ u(∆x, t+ ∆t) = −u(∆x, t) .

This tells that u changes sign in time close to the boundary (otherwise the average would be larger
than the u values and this is not compatible with keeping neighboring value u(0, t) fixed at zero).

For a Neumann condition ux = 0 at x = 0 we consider the values u(0, t), u(∆x, t), u(0, t + ∆t)
and u(∆x, t + ∆t). Now the boundary condition demands u(0, t) ≈ u(∆x, t) and u(0, t + ∆t) ≈
u(∆x, t+ ∆t) to always get a flat spatial derivative.

Our next task is to explain how to implement the boundary condition ux = 0, which is more
complicated to express numerically and also to implement than a given value of u. We shall present
two methods for implementing ux = 0 in a finite difference scheme, one based on deriving a modified
stencil at the boundary, and another one based on extending the mesh with ghost cells and ghost
points.

2.36. Neumann boundary condition

When a wave hits a boundary and is to be reflected back, one applies the condition

∂u

∂n
≡ n · ∇u = 0 . (2.31)

The derivative ∂/∂n is in the outward normal direction from a general boundary. For a 1D domain
[0, L], we have that

∂

∂n

∣∣∣∣
x=L

= ∂

∂x

∣∣∣∣
x=L

,
∂

∂n

∣∣∣∣
x=0

= − ∂

∂x

∣∣∣∣
x=0

.

ñ Boundary condition terminology

Boundary conditions that specify the value of ∂u/∂n (or shorter un) are known as Neumann
conditions, while Dirichlet conditions refer to specifications of u. When the values are zero
(∂u/∂n = 0 or u = 0) we speak about homogeneous Neumann or Dirichlet conditions.

91

http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions

DRAFT

2. Wave Equations

2.37. Discretization of derivatives at the boundary

How can we incorporate the condition (2.31) in the finite difference scheme? Since we have used
central differences in all the other approximations to derivatives in the scheme, it is tempting to
implement (2.31) at x = 0 and t = tn by the difference

[D2xu]n0 = un
−1 − un

1
2∆x = 0 . (2.32)

The problem is that un
−1 is not a u value that is being computed since the point is outside the mesh.

However, if we combine (2.32) with the scheme

un+1
i = −un−1

i + 2un
i + C2 (un ∗ ∗i+ 1− 2un ∗ ∗i+ un

i−1
)
, (2.33)

for i = 0, we can eliminate the fictitious value un
−1. We see that un

−1 = un
1 from (2.32), which can be

used in (2.33) to arrive at a modified scheme for the boundary point un+1
0 :

un+1
i = −un−1

i + 2un
i + 2C2 (un ∗ ∗i+ 1− un ∗ ∗i) , i = 0 .

Figure Figure 2.4 visualizes this equation for computing u3
0 in terms of u2

0, u1
0, and u2

1.

Figure 2.4.: Modified stencil at a boundary with a Neumann condition.

Similarly, (2.31) applied at x = L is discretized by a central difference
un

Nx+1 − un
Nx−1

2∆x = 0 . (2.34)

Combined with the scheme for i = Nx we get a modified scheme for the boundary value un+1
Nx

:

un+1
i = −un−1

i + 2un
i + 2C2 (un ∗ ∗i− 1− un ∗ ∗i) , i = Nx .

92

DRAFT

2. Wave Equations

The modification of the scheme at the boundary is also required for the special formula for the first
time step.

2.38. Implementation of Neumann conditions

We have seen in the preceding section that the special formulas for the boundary points arise from
replacing un

i−1 by un
i+1 when computing un+1

i from the stencil formula for i = 0. Similarly, we
replace un

i+1 by un
i−1 in the stencil formula for i = Nx. This observation can conveniently be used

in the coding: we just work with the general stencil formula, but write the code such that it is
easy to replace u[i-1] by u[i+1] and vice versa. This is achieved by having the indices i+1 and
i-1 as variables ip1 (i plus 1) and im1 (i minus 1), respectively. At the boundary we can easily
define im1=i+1 while we use im1=i-1 in the internal parts of the mesh. Here are the details of the
implementation (note that the updating formula for u[i] is the general stencil formula):

i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

We can in fact create one loop over both the internal and boundary points and use only one updating
formula:

for i in range(0, Nx+1):
ip1 = i+1 if i < Nx else i-1
im1 = i-1 if i > 0 else i+1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

The program wave1D_n0.py contains a complete implementation of the 1D wave equation with
boundary conditions ux = 0 at x = 0 and x = L.

It would be nice to modify the test_quadratic test case from the wave1D_u0.py with Dirichlet
conditions, described in Section Section 2.25. However, the Neumann conditions require the
polynomial variation in the x direction to be of third degree, which causes challenging problems
when designing a test where the numerical solution is known exactly. Exercise Section 2.60 outlines
ideas and code for this purpose. The only test in wave1D_n0.py is to start with a plug wave at rest
and see that the initial condition is reached again perfectly after one period of motion, but such a
test requires C = 1 (so the numerical solution coincides with the exact solution of the PDE, see
Section Section 2.64).

93

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_n0.py

DRAFT

2. Wave Equations

2.39. Index set notation

To improve our mathematical writing and our implementations, it is wise to introduce a special
notation for index sets. This means that we write xi, followed by i ∈ Ix, instead of i = 0, . . . , Nx.
Obviously, Ix must be the index set Ix = {0, . . . , Nx}, but it is often advantageous to have a symbol
for this set rather than specifying all its elements (all the time, as we have done up to now). This
new notation saves writing and makes specifications of algorithms and their implementation as
computer code simpler.

The first index in the set will be denoted I0
x and the last I−1

x . When we need to skip the first
element of the set, we use I+

x for the remaining subset I+
x = {1, . . . , Nx}. Similarly, if the last

element is to be dropped, we write I−
x = {0, . . . , Nx − 1} for the remaining indices. All the indices

corresponding to inner grid points are specified by Ii
x = {1, . . . , Nx − 1}. For the time domain we

find it natural to explicitly use 0 as the first index, so we will usually write n = 0 and t0 rather
than n = I0

t . We also avoid notation like xI−1
x

and will instead use xi, i = I−1
x .

The Python code associated with index sets applies the following conventions:

Notation Python
Ix Ix
I0

x Ix[0]
I−1

x Ix[-1]
I−

x Ix[:-1]
I+

x Ix[1:]
Ii

x Ix[1:-1]

ñ Why index sets are useful

An important feature of the index set notation is that it keeps our formulas and code independent
of how we count mesh points. For example, the notation i ∈ Ix or i = I0

x remains the same
whether Ix is defined as above or as starting at 1, i.e., Ix = {1, . . . , Q}. Similarly, we can in
the code define Ix=range(Nx+1) or Ix=range(1,Q), and expressions like Ix[0] and Ix[1:-1]
remain correct. One application where the index set notation is convenient is conversion
of code from a language where arrays has base index 0 (e.g., Python and C) to languages
where the base index is 1 (e.g., MATLAB and Fortran). Another important application is
implementation of Neumann conditions via ghost points (see next section).

For the current problem setting in the x, t plane, we work with the index sets

Ix = {0, . . . , Nx}, It = {0, . . . , Nt},

defined in Python as

Ix = range(0, Nx+1)
It = range(0, Nt+1)

A finite difference scheme can with the index set notation be specified as

94

DRAFT

2. Wave Equations

un+1
i = un

i −
1
2C

2 (un ∗ ∗i+ 1− 2un ∗ ∗i+ un
i−1
)
, , i ∈ Ii

x, n = 0,

un+1
i = −un−1

i + 2un
i + C2 (un ∗ ∗i+ 1− 2un ∗ ∗i+ un

i−1
)
, i ∈ Ii

x, n ∈ Ii
t ,

un+1
i = 0, i = I0

x, n ∈ I−
t ,

un+1
i = 0, i = I−1

x , n ∈ I−
t .

The corresponding implementation becomes

for i in Ix[1:-1]:
u[i] = u_n[i] - 0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

for n in It[1:-1]:
for i in Ix[1:-1]:

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

i = Ix[0]; u[i] = 0
i = Ix[-1]; u[i] = 0

ñ The program wave1D_dn.py

applies the index set notation and solves the 1D wave equation utt = c2uxx + f(x, t) with quite
general boundary and initial conditions:

• x = 0: u = U0(t) or ux = 0
• x = L: u = UL(t) or ux = 0
• t = 0: u = I(x)
• t = 0: ut = V (x)

The program combines Dirichlet and Neumann conditions, scalar and vectorized implementation
of schemes, and the index set notation into one piece of code. A lot of test examples are also
included in the program:

• A rectangular plug-shaped initial condition. (For C = 1 the solution will be a rectangle
that jumps one cell per time step, making the case well suited for verification.)

• A Gaussian function as initial condition.
• A triangular profile as initial condition, which resembles the typical initial shape of a

guitar string.
• A sinusoidal variation of u at x = 0 and either u = 0 or ux = 0 at x = L.
• An analytical solution u(x, t) = cos(mπt/L) sin(1

2mπx/L), which can be used for conver-
gence rate tests.

2.40. Verifying the implementation of Neumann conditions

How can we test that the Neumann conditions are correctly implemented? The solver function in
the wave1D_dn.py program described in the box above accepts Dirichlet or Neumann conditions at

95

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_dn.py

DRAFT

2. Wave Equations

x = 0 and x = L. It is tempting to apply a quadratic solution as described in Sections Section 2.8
and Section 2.17, but it turns out that this solution is no longer an exact solution of the discrete
equations if a Neumann condition is implemented on the boundary. A linear solution does not help
since we only have homogeneous Neumann conditions in wave1D_dn.py, and we are consequently
left with testing just a constant solution: u = const.

def test_constant():
"""
Check the scalar and vectorized versions for
a constant u(x,t). We simulate in [0, L] and apply
Neumann and Dirichlet conditions at both ends.
"""
u_const = 0.45
u_exact = lambda x, t: u_const
I = lambda x: u_exact(x, 0)
V = lambda x: 0
f = lambda x, t: 0

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
msg = "diff=%E, t_%d=%g" % (diff, n, t[n])
tol = 1e-13
assert diff < tol, msg

for U_0 in (None, lambda t: u_const):
for U_L in (None, lambda t: u_const):

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C * (L / Nx) / c
T = 18 # long time integration

solver(
I,
V,
f,
c,
U_0,
U_L,
L,
dt,
C,
T,
user_action=assert_no_error,
version="scalar",

)

96

DRAFT

2. Wave Equations

solver(
I,
V,
f,
c,
U_0,
U_L,
L,
dt,
C,
T,
user_action=assert_no_error,
version="vectorized",

)
print(U_0, U_L)

The quadratic solution is very useful for testing, but it requires Dirichlet conditions at both ends.

Another test may utilize the fact that the approximation error vanishes when the Courant number is
unity. We can, for example, start with a plug profile as initial condition, let this wave split into two
plug waves, one in each direction, and check that the two plug waves come back and form the initial
condition again after “one period” of the solution process. Neumann conditions can be applied at
both ends. A proper test function reads

def test_plug():
"""Check that an initial plug is correct back after one period."""
L = 1.0
c = 0.5
dt = (L / 10) / c # Nx=10
I = lambda x: 0 if abs(x - L / 2.0) > 0.1 else 1

u_s, x, t, cpu = solver(
I=I,
V=None,
f=None,
c=0.5,
U_0=None,
U_L=None,
L=L,
dt=dt,
C=1,
T=4,
user_action=None,
version="scalar",

)
u_v, x, t, cpu = solver(

I=I,

97

DRAFT

2. Wave Equations

V=None,
f=None,
c=0.5,
U_0=None,
U_L=None,
L=L,
dt=dt,
C=1,
T=4,
user_action=None,
version="vectorized",

)
tol = 1e-13
diff = abs(u_s - u_v).max()
assert diff < tol
u_0 = np.array([I(x_) for x_ in x])
diff = np.abs(u_s - u_0).max()
assert diff < tol

Other tests must rely on an unknown approximation error, so effectively we are left with tests on
the convergence rate.

2.41. Alternative implementation via ghost cells

2.41.1. Idea

Instead of modifying the scheme at the boundary, we can introduce extra points outside the domain
such that the fictitious values un

−1 and un
Nx+1 are defined in the mesh. Adding the intervals [−∆x, 0]

and [L,L+∆x], known as ghost cells, to the mesh gives us all the needed mesh points, corresponding
to i = −1, 0, . . . , Nx, Nx + 1. The extra points with i = −1 and i = Nx + 1 are known as ghost
points, and values at these points, un

−1 and un
Nx+1, are called ghost values.

The important idea is to ensure that we always have

un
−1 = un

1 and un
Nx+1 = un

Nx−1,

because then the application of the standard scheme at a boundary point i = 0 or i = Nx will be
correct and guarantee that the solution is compatible with the boundary condition ux = 0.

Some readers may find it strange to just extend the domain with ghost cells as a general technique,
because in some problems there is a completely different medium with different physics and equations
right outside of a boundary. Nevertheless, one should view the ghost cell technique as a purely
mathematical technique, which is valid in the limit ∆x→ 0 and helps us to implement derivatives.

98

DRAFT

2. Wave Equations

2.41.2. Implementation

The u array now needs extra elements corresponding to the ghost points. Two new point values are
needed:

u = zeros(Nx+3)

The arrays u_n and u_nm1 must be defined accordingly.

Unfortunately, a major indexing problem arises with ghost cells. The reason is that Python indices
must start at 0 and u[-1] will always mean the last element in u. This fact gives, apparently, a
mismatch between the mathematical indices i = −1, 0, . . . , Nx + 1 and the Python indices running
over u: 0,..,Nx+2. One remedy is to change the mathematical indexing of i in the scheme and
write

un+1
i = · · · , i = 1, . . . , Nx + 1,

instead of i = 0, . . . , Nx as we have previously used. The ghost points now correspond to i = 0 and
i = Nx + 1. A better solution is to use the ideas of Section Section 2.39: we hide the specific index
value in an index set and operate with inner and boundary points using the index set notation.

To this end, we define u with proper length and Ix to be the corresponding indices for the real
physical mesh points (1, 2, . . . , Nx + 1):

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

That is, the boundary points have indices Ix[0] and Ix[-1] (as before). We first update the
solution at all physical mesh points (i.e., interior points in the mesh):

for i in Ix:
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

The indexing becomes a bit more complicated when we call functions like V(x) and f(x, t), as we
must remember that the appropriate x coordinate is given as x[i-Ix[0]]:

for i in Ix:
u[i] = u_n[i] + dt*V(x[i-Ix[0]]) + \

0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
0.5*dt2*f(x[i-Ix[0]], t[0])

It remains to update the solution at ghost points, i.e., u[0] and u[-1] (or u[Nx+2]). For a boundary
condition ux = 0, the ghost value must equal the value at the associated inner mesh point. Computer
code makes this statement precise:

i = Ix[0] # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1] # x=L boundary
u[i+1] = u[i-1]

99

DRAFT

2. Wave Equations

The physical solution to be plotted is now in u[1:-1], or equivalently u[Ix[0]:Ix[-1]+1], so this
slice is the quantity to be returned from a solver function. A complete implementation appears in
the program wave1D_n0_ghost.py.

. We have to be careful with how the spatial and temporal mesh

points are stored. Say we let x be the physical mesh points,

x = linspace(0, L, Nx+1)

“Standard coding” of the initial condition,

for i in Ix:
u_n[i] = I(x[i])

becomes wrong, since u_n and x have different lengths and the index i corresponds to two
different mesh points. In fact, x[i] corresponds to u[1+i]. A correct implementation is

for i in Ix:
u_n[i] = I(x[i-Ix[0]])

Similarly, a source term usually coded as f(x[i], t[n]) is incorrect if x is defined to be the
physical points, so x[i] must be replaced by x[i-Ix[0]].
An alternative remedy is to let x also cover the ghost points such that u[i] is the value at
x[i].

The ghost cell is only added to the boundary where we have a Neumann condition. Suppose we
have a Dirichlet condition at x = L and a homogeneous Neumann condition at x = 0. One ghost
cell [−∆x, 0] is added to the mesh, so the index set for the physical points becomes {1, . . . , Nx + 1}.
A relevant implementation is

u = zeros(Nx+2)
Ix = range(1, u.shape[0])
...
for i in Ix[:-1]:

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt2*f(x[i-Ix[0]], t[n])

i = Ix[-1]
u[i] = U_0 # set Dirichlet value
i = Ix[0]
u[i-1] = u[i+1] # update ghost value

The physical solution to be plotted is now in u[1:] or (as always) u[Ix[0]:Ix[-1]+1].

100

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_n0_ghost.py

DRAFT

2. Wave Equations

2.42. Variable wave velocity

Our next generalization of the 1D wave equation (2.1) or (2.12) is to allow for a variable wave
velocity c: c = c(x), usually motivated by wave motion in a domain composed of different physical
media. When the media differ in physical properties like density or porosity, the wave velocity c is
affected and will depend on the position in space. Figure Figure 2.5 shows a wave propagating in
one medium [0, 0.7] ∪ [0.9, 1] with wave velocity c1 (left) before it enters a second medium (0.7, 0.9)
with wave velocity c2 (right). When the wave meets the boundary where c jumps from c1 to c2,
a part of the wave is reflected back into the first medium (the reflected wave), while one part is
transmitted through the second medium (the transmitted wave).

Figure 2.5.: Left: wave entering another medium; right: transmitted and reflected wave.

2.43. The model PDE with a variable coefficient

Instead of working with the squared quantity c2(x), we shall for notational convenience introduce
q(x) = c2(x). A 1D wave equation with variable wave velocity often takes the form

∂2u

∂t2
= ∂

∂x

(
q(x)∂u

∂x

)
+ f(x, t) . (2.35)

This is the most frequent form of a wave equation with variable wave velocity, but other forms also
appear, see Section Section 2.81 and equation (2.118).

As usual, we sample (2.35) at a mesh point,

∂2

∂t2
u(xi, tn) = ∂

∂x

(
q(xi)

∂

∂x
u(xi, tn)

)
+ f(xi, tn),

where the only new term to discretize is

∂

∂x

(
q(xi)

∂

∂x
u(xi, tn)

)
=
[
∂

∂x

(
q(x)∂u

∂x

)]n

i
.

Discretizing the variable coefficient {#sec-wave-pde2-var-c-ideas}

101

DRAFT

2. Wave Equations

The principal idea is to first discretize the outer derivative. Define

ϕ = q(x)∂u
∂x
,

and use a centered derivative around x = xi for the derivative of ϕ:[
∂ϕ

∂x

]n

i
≈
ϕi+ 1

2
− ϕi− 1

2

∆x = [Dxϕ]ni .

Then discretize
ϕi+ 1

2
= qi+ 1

2

[
∂u

∂x

]n

i+ 1
2

≈ qi+ 1
2

un
i+1 − un

i

∆x = [qDxu]n
i+ 1

2
.

Similarly,
ϕi− 1

2
= qi− 1

2

[
∂u

∂x

]n

i− 1
2

≈ qi− 1
2

un
i − un

i−1
∆x = [qDxu]n

i− 1
2
.

These intermediate results are now combined to[
∂

∂x

(
q(x)∂u

∂x

)]n

i
≈ 1

∆x2

(
qi+ 1

2

(
un

i+1 − un
i

)
− qi− 1

2

(
un

i − un
i−1
))
. (2.36)

With operator notation we can write the discretization as[
∂

∂x

(
q(x)∂u

∂x

)]n

i
≈ [Dx(qxDxu)]ni . (2.37)

. Do not use the chain rule on the spatial derivative term!

Many are tempted to use the chain rule on the term ∂
∂x

(
q(x)∂u

∂x

)
, but this is not a good idea

when discretizing such a term.
The term with a variable coefficient expresses the net flux qux into a small volume (i.e., interval
in 1D):

∂

∂x

(
q(x)∂u

∂x

)
≈ 1

∆x(q(x+ ∆x)ux(x+ ∆x)− q(x)ux(x)) .

Our discretization reflects this principle directly: qux at the right end of the cell minus qux at
the left end, because this follows from the formula (2.36) or [Dx(qDxu)]ni .
When using the chain rule, we get two terms quxx + qxux. The typical discretization is

[DxqDxu+D2xqD2xu]ni , (2.38)

Writing this out shows that it is different from [Dx(qDxu)]ni and lacks the physical interpretation
of net flux into a cell. With a smooth and slowly varying q(x) the differences between the
two discretizations are not substantial. However, when q exhibits (potentially large) jumps,
[Dx(qDxu)]ni with harmonic averaging of q yields a better solution than arithmetic averaging
or (2.38). In the literature, the discretization [Dx(qDxu)]ni totally dominates and very few
mention the alternative in (2.38).

102

DRAFT

2. Wave Equations

2.44. Computing the coefficient between mesh points

If q is a known function of x, we can easily evaluate qi+ 1
2

simply as q(xi+ 1
2
) with xi+ 1

2
= xi + 1

2∆x.
However, in many cases c, and hence q, is only known as a discrete function, often at the mesh
points xi. Evaluating q between two mesh points xi and xi+1 must then be done by interpolation
techniques, of which three are of particular interest in this context:

qi+ 1
2
≈ 1

2 (qi + qi+1) = [qx]i (arithmetic mean) (2.39)

qi+ 1
2
≈ 2

(1
qi

+ 1
qi+1

)−1
(harmonic mean) (2.40)

qi+ 1
2
≈ (qiqi+1)1/2 (geometric mean) (2.41)

The arithmetic mean is by far the most commonly used averaging technique and is well suited for
smooth q(x) functions. The harmonic mean is often preferred when q(x) exhibits large jumps (which
is typical for geological media). The geometric mean is less used, but popular in discretizations to
linearize quadratic nonlinearities.

With the operator notation for the arithmetic mean we can specify the discretization of the complete
variable-coefficient wave equation in a compact way:

[DtDtu = Dxq
xDxu+ f]ni . (2.42)

Strictly speaking, [Dxq
xDxu]ni = [Dx(qxDxu)]ni .

From the compact difference notation we immediately see what kind of differences that each term is
approximated with. The notation qx also specifies that the variable coefficient is approximated by
an arithmetic mean, the definition being [qx]i+ 1

2
= (qi + qi+1)/2.

Before implementing, it remains to solve (2.42) with respect to un+1
i :

un+1
i =− un−1

i + 2un
i +(∆t

∆x

)2 (1
2(qi + qi+1)(un

i+1 − un
i)− 1

2(qi + qi−1)(un
i − un

i−1)
)

+

∆t2fn
i .

(2.43)

2.45. How a variable coefficient affects the stability

The stability criterion derived later (Section Section 2.63) reads ∆t ≤ ∆x/c. If c = c(x), the
criterion will depend on the spatial location. We must therefore choose a ∆t that is small enough
such that no mesh cell has ∆t > ∆x/c(x). That is, we must use the largest c value in the criterion:

∆t ≤ β ∆x
maxx∈[0,L] c(x) .

103

DRAFT

2. Wave Equations

The parameter β is included as a safety factor: in some problems with a significantly varying c it
turns out that one must choose β < 1 to have stable solutions (β = 0.9 may act as an all-round
value).

A different strategy to handle the stability criterion with variable wave velocity is to use a spatially
varying ∆t. While the idea is mathematically attractive at first sight, the implementation quickly
becomes very complicated, so we stick to a constant ∆t and a worst case value of c(x) (with a safety
factor β).

2.46. Neumann condition and a variable coefficient

Consider a Neumann condition ∂u/∂x = 0 at x = L = Nx∆x, discretized as

[D2xu]ni =
un

i+1 − un
i−1

2∆x = 0 ⇒ un
i+1 = un

i−1,

for i = Nx. Using the scheme (2.43) at the end point i = Nx with un
i+1 = un

i−1 results in

un+1
i = −un−1

i + 2un
i +(∆t

∆x

)2 (
qi+ 1

2
(un

i−1 − un
i)− qi− 1

2
(un

i − un
i−1)

)
+ ∆t2fn

i

= −un−1
i + 2un

i +
(∆t

∆x

)2
(qi+ 1

2
+ qi− 1

2
)(un

i−1 − un
i) + ∆t2fn

i

≈ −un−1
i + 2un

i +
(∆t

∆x

)2
2qi(un

i−1 − un
i) + ∆t2fn

i .

(2.44)

Here we used the approximation

qi+ 1
2

+ qi− 1
2

= qi +
(
dq

dx

)
i
∆x+

(
d2q

dx2

)
i

∆x2 + · · ·+

qi −
(
dq

dx

)
i
∆x+

(
d2q

dx2

)
i

∆x2 + · · ·

= 2qi + 2
(
d2q

dx2

)
i

∆x2 +O(∆x4)

≈ 2qi (2.45)

.

An alternative derivation may apply the arithmetic mean of qn− 1
2

and qn+ 1
2

in (2.44), leading to the
term

(qi + 1
2(qi+1 + qi−1))(un

i−1 − un
i) .

Since 1
2(qi+1 + qi−1) = qi +O(∆x2), we can approximate with 2qi(un

i−1− un
i) for i = Nx and get the

same term as we did above.

104

DRAFT

2. Wave Equations

A common technique when implementing ∂u/∂x = 0 boundary conditions, is to assume dq/dx = 0
as well. This implies qi+1 = qi−1 and qi+1/2 = qi−1/2 for i = Nx. The implications for the scheme
are

un+1
i = −un−1

i + 2un
i +(∆t

∆x

)2 (
qi+ 1

2
(un

i−1 − un
i)− qi− 1

2
(un

i − un
i−1)

)
+

∆t2fn
i

= −un−1
i + 2un

i +
(∆t

∆x

)2
2qi− 1

2
(un

i−1 − un
i) + ∆t2fn

i .

(2.46)

2.47. Implementation of variable coefficients

The implementation of the scheme with a variable wave velocity q(x) = c2(x) may assume that q
is available as an array q[i] at the spatial mesh points. The following loop is a straightforward
implementation of the scheme (2.43):

for i in range(1, Nx):
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \
0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \

dt2*f(x[i], t[n])

The coefficient C2 is now defined as (dt/dx)**2, i.e., not as the squared Courant number, since the
wave velocity is variable and appears inside the parenthesis.

With Neumann conditions ux = 0 at the boundary, we need to combine this scheme with the
discrete version of the boundary condition, as shown in Section Section 2.46. Nevertheless, it would
be convenient to reuse the formula for the interior points and just modify the indices ip1=i+1
and im1=i-1 as we did in Section Section 2.38. Assuming dq/dx = 0 at the boundaries, we can
implement the scheme at the boundary with the following code.

i = 0
ip1 = i+1
im1 = ip1
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

dt2*f(x[i], t[n])

With ghost cells we can just reuse the formula for the interior points also at the boundary, provided
that the ghost values of both u and q are correctly updated to ensure ux = 0 and qx = 0.

A vectorized version of the scheme with a variable coefficient at internal mesh points becomes

105

DRAFT

2. Wave Equations

u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_n[2:] - u_n[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_n[1:-1] - u_n[:-2])) + \
dt2*f(x[1:-1], t[n])

2.48. A more general PDE model with variable coefficients

Sometimes a wave PDE has a variable coefficient in front of the time-derivative term:

ϱ(x)∂
2u

∂t2
= ∂

∂x

(
q(x)∂u

∂x

)
+ f(x, t) . (2.47)

One example appears when modeling elastic waves in a rod with varying density, cf.~(Section 2.81)
with ϱ(x).

A natural scheme for (2.47) is
[ϱDtDtu = Dxq

xDxu+ f]ni .
We realize that the ϱ coefficient poses no particular difficulty, since ϱ enters the formula just as a
simple factor in front of a derivative. There is hence no need for any averaging of ϱ. Often, ϱ will
be moved to the right-hand side, also without any difficulty:

[DtDtu = ϱ−1Dxq
xDxu+ f]ni .

Generalization: damping

Waves die out by two mechanisms. In 2D and 3D the energy of the wave spreads out in space,
and energy conservation then requires the amplitude to decrease. This effect is not present in 1D.
Damping is another cause of amplitude reduction. For example, the vibrations of a string die out
because of damping due to air resistance and non-elastic effects in the string.

The simplest way of including damping is to add a first-order derivative to the equation (in the
same way as friction forces enter a vibrating mechanical system):

∂2u

∂t2
+ b

∂u

∂t
= c2∂

2u

∂x2 − f(x, t), (2.48)

where b ≥ 0 is a prescribed damping coefficient.

A typical discretization of (2.48) in terms of centered differences reads

[DtDtu+ bD2tu = c2DxDxu+ f]ni . (2.49)

Writing out the equation and solving for the unknown un+1
i gives the scheme

un+1
i = (1 + 1

2b∆t)
−1((1

2b∆t− 1)un−1
i + 2un

i + C2 (un ∗ ∗i+ 1− 2un ∗ ∗i+ un
i−1
)

+ ∆t2fn
i),
(2.50)

for i ∈ Ii
x and n ≥ 1. New equations must be derived for u1

i , and for boundary points in case of
Neumann conditions.

The damping is very small in many wave phenomena and thus only evident for very long time
simulations. This makes the standard wave equation without damping relevant for a lot of applica-
tions.

106

DRAFT

2. Wave Equations

2.49. Building a general 1D wave equation solver

The program wave1D_dn_vc.py is a fairly general code for 1D wave propagation problems that
targets the following initial-boundary value problem

utt = (c2(x)ux)x + f(x, t), x ∈ (0, L), t ∈ (0, T] (2.51)

u(x, 0) = I(x), x ∈ [0, L]

ut(x, 0) = V (t), x ∈ [0, L]

u(0, t) = U0(t) or ux(0, t) = 0, t ∈ (0, T]

u(L, t) = UL(t) or ux(L, t) = 0, t ∈ (0, T]

The only new feature here is the time-dependent Dirichlet conditions, but they are trivial to
implement:

i = Ix[0] # x=0
u[i] = U_0(t[n+1])

i = Ix[-1] # x=L
u[i] = U_L(t[n+1])

The solver function is a natural extension of the simplest solver function in the initial
wave1D_u0.py program, extended with Neumann boundary conditions (ux = 0), time-varying
Dirichlet conditions, as well as a variable wave velocity. The different code segments needed to
make these extensions have been shown and commented upon in the preceding text. We refer to
the solver function in the wave1D_dn_vc.py file for all the details. Note in that solver function,
however, that the technique of “hashing” is used to check whether a certain simulation has been
run before, or not. This technique is further explained in Section Section 8.7.

The vectorization is only applied inside the time loop, not for the initial condition or the first time
steps, since this initial work is negligible for long time simulations in 1D problems.

The following sections explain various more advanced programming techniques applied in the general
1D wave equation solver.

2.50. User action function as a class

A useful feature in the wave1D_dn_vc.py program is the specification of the user_action function
as a class. This part of the program may need some motivation and explanation. Although the
plot_u_st function (and the PlotMatplotlib class) in the wave1D_u0.viz function remembers
the local variables in the viz function, it is a cleaner solution to store the needed variables together
with the function, which is exactly what a class offers.

107

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_dn_vc.py

DRAFT

2. Wave Equations

2.50.1. The code

A class for flexible plotting, cleaning up files, making movie files, like the function wave1D_u0.viz
did, can be coded as follows:

class PlotAndStoreSolution:
"""
Class for the user_action function in solver.
Visualizes the solution only.
"""
def __init__(

self,
casename='tmp', # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
screen_movie=True, # Show movie on screen?
title='', # Extra message in title
skip_frame=1, # Skip every skip_frame frame
filename=None): # Name of file with solutions
self.casename = casename
self.yaxis = [umin, umax]
self.pause = pause_between_frames
import matplotlib.pyplot as plt
self.plt = plt
self.screen_movie = screen_movie
self.title = title
self.skip_frame = skip_frame
self.filename = filename
if filename is not None:

self.t = []
filenames = glob.glob('.' + self.filename + '*.dat.npz')
for filename in filenames:

os.remove(filename)

for filename in glob.glob('frame_*.png'):
os.remove(filename)

def __call__(self, u, x, t, n):
"""
Callback function user_action, call by solver:
Store solution, plot on screen and save to file.
"""
if self.filename is not None:

name = 'u%04d' % n # array name
kwargs = {name: u}
fname = '.' + self.filename + '_' + name + '.dat'
np.savez(fname, **kwargs)
self.t.append(t[n]) # store corresponding time value

108

DRAFT

2. Wave Equations

if n == 0: # save x once
np.savez('.' + self.filename + '_x.dat', x=x)

if n % self.skip_frame != 0:
return

title = 't=%.3f' % t[n]
if self.title:

title = self.title + ' ' + title

if n == 0:
self.plt.ion()
self.lines = self.plt.plot(x, u, 'r-')
self.plt.axis([x[0], x[-1],

self.yaxis[0], self.yaxis[1]])
self.plt.xlabel('x')
self.plt.ylabel('u')
self.plt.title(title)
self.plt.legend(['t=%.3f' % t[n]])

else:
self.lines[0].set_ydata(u)
self.plt.legend(['t=%.3f' % t[n]])
self.plt.draw()

if t[n] == 0:
time.sleep(2) # let initial condition stay 2 s

else:
if self.pause is None:

pause = 0.2 if u.size < 100 else 0
time.sleep(pause)

self.plt.savefig('frame_%04d.png' % (n))

2.50.2. Dissection

Understanding this class requires quite some familiarity with Python in general and class program-
ming in particular. The class supports plotting with Matplotlib for visualization.

With the screen_movie parameter we can suppress displaying each movie frame on the screen.
Alternatively, for slow movies associated with fine meshes, one can set skip_frame=10, causing
every 10 frames to be shown.

The __call__ method makes PlotAndStoreSolution instances behave like functions, so we can
just pass an instance, say p, as the user_action argument in the solver function, and any call to
user_action will be a call to p.__call__. The __call__ method plots the solution on the screen,
saves the plot to file, and stores the solution in a file for later retrieval.

More details on storing the solution in files appear in Section 8.4.

109

DRAFT

2. Wave Equations

2.51. Pulse propagation in two media

The function pulse in wave1D_dn_vc.py demonstrates wave motion in heterogeneous media where c
varies. One can specify an interval where the wave velocity is decreased by a factor slowness_factor
(or increased by making this factor less than one). Figure Figure 2.5 shows a typical simulation
scenario.

Four types of initial conditions are available:

1. a rectangular pulse (plug),
2. a Gaussian function (gaussian),
3. a “cosine hat” consisting of one period of the cosine function (cosinehat),
4. half a period of a “cosine hat” (half-cosinehat)

These peak-shaped initial conditions can be placed in the middle (loc='center') or at the left end
(loc='left') of the domain. With the pulse in the middle, it splits in two parts, each with half the
initial amplitude, traveling in opposite directions. With the pulse at the left end, centered at x = 0,
and using the symmetry condition ∂u/∂x = 0, only a right-going pulse is generated. There is also a
left-going pulse, but it travels from x = 0 in negative x direction and is not visible in the domain
[0, L].

The pulse function is a flexible tool for playing around with various wave shapes and jumps in the
wave velocity (i.e., discontinuous media). The code is shown to demonstrate how easy it is to reach
this flexibility with the building blocks we have already developed:

def pulse(
C=1, # Maximum Courant number
Nx=200, # spatial resolution
animate=True,
version='vectorized',
T=2, # end time
loc='left', # location of initial condition
pulse_tp='gaussian', # pulse/init.cond. type
slowness_factor=2, # inverse of wave vel. in right medium
medium=[0.7, 0.9], # interval for right medium
skip_frame=1, # skip frames in animations
sigma=0.05 # width measure of the pulse
):
"""
Various peaked-shaped initial conditions on [0,1].
Wave velocity is decreased by the slowness_factor inside
medium. The loc parameter can be 'center' or 'left',
depending on where the initial pulse is to be located.
The sigma parameter governs the width of the pulse.
"""
L = 1.0
c_0 = 1.0
if loc == 'center':

xc = L/2

110

DRAFT

2. Wave Equations

elif loc == 'left':
xc = 0

if pulse_tp in ('gaussian','Gaussian'):
def I(x):

return np.exp(-0.5*((x-xc)/sigma)**2)
elif pulse_tp == 'plug':

def I(x):
return 0 if abs(x-xc) > sigma else 1

elif pulse_tp == 'cosinehat':
def I(x):

w = 2
a = w*sigma
return 0.5*(1 + np.cos(np.pi*(x-xc)/a)) \

if xc - a <= x <= xc + a else 0

elif pulse_tp == 'half-cosinehat':
def I(x):

w = 4
a = w*sigma
return np.cos(np.pi*(x-xc)/a) \

if xc - 0.5*a <= x <= xc + 0.5*a else 0
else:

raise ValueError('Wrong pulse_tp="%s"' % pulse_tp)

def c(x):
return c_0/slowness_factor \

if medium[0] <= x <= medium[1] else c_0

umin=-0.5; umax=1.5*I(xc)
casename = '%s_Nx%s_sf%s' % \

(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(

medium, casename=casename, umin=umin, umax=umax,
skip_frame=skip_frame, screen_movie=animate,
backend=None, filename='tmpdata')

dt = (L/Nx)/c_0
cpu, hashed_input = solver(

I=I, V=None, f=None, c=c,
U_0=None, U_L=None,
L=L, dt=dt, C=C, T=T,
user_action=action,
version=version,
stability_safety_factor=1)

if cpu > 0: # did we generate new data?

111

DRAFT

2. Wave Equations

action.close_file(hashed_input)
action.make_movie_file()

print('cpu (-1 means no new data generated):', cpu)

def convergence_rates(
u_exact,
I, V, f, c, U_0, U_L, L,
dt0, num_meshes,
C, T, version='scalar',
stability_safety_factor=1.0):
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
class ComputeError:

def __init__(self, norm_type):
self.error = 0

def __call__(self, u, x, t, n):
"""Store norm of the error in self.E."""
error = np.abs(u - u_exact(x, t[n])).max()
self.error = max(self.error, error)

E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

error_calculator = ComputeError('Linf')
solver(I, V, f, c, U_0, U_L, L, dt, C, T,

user_action=error_calculator,
version='scalar',
stability_safety_factor=1.0)

E.append(error_calculator.error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print('E:', E)
print('h:', h)
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

def test_convrate_sincos():
n = m = 2
L = 1.0
u_exact = lambda x, t: np.cos(m*np.pi/L*t)*np.sin(m*np.pi/L*x)

r = convergence_rates(

112

DRAFT

2. Wave Equations

u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: 0,
f=0,
c=1,
U_0=0,
U_L=0,
L=L,
dt0=0.1,
num_meshes=6,
C=0.9,
T=1,
version='scalar',
stability_safety_factor=1.0)

print('rates sin(x)*cos(t) solution:',
[round(r_,2) for r_ in r])

assert abs(r[-1] - 2) < 0.002

The PlotMediumAndSolution class used here is a subclass of PlotAndStoreSolution where the
medium with reduced c value, as specified by the medium interval, is visualized in the plots.

ñ Comment on the choices of discretization parameters

The argument Nx in the pulse function does not correspond to the actual spatial resolution of
C < 1, since the solver function takes a fixed ∆t and C, and adjusts ∆x accordingly. As seen
in the pulse function, the specified ∆t is chosen according to the limit C = 1, so if C < 1, ∆t
remains the same, but the solver function operates with a larger ∆x and smaller Nx than
was specified in the call to pulse. The practical reason is that we always want to keep ∆t
fixed such that plot frames and movies are synchronized in time regardless of the value of C
(i.e., ∆x is varied when the Courant number varies).

The reader is encouraged to play around with the pulse function:

>>> import wave1D_dn_vc as w
>>> w.pulse(Nx=50, loc='left', pulse_tp='cosinehat', slowness_factor=2)

To easily kill the graphics by Ctrl-C and restart a new simulation it might be easier to run the
above two statements from the command line with

Terminal> python -c 'import wave1D_dn_vc as w; w.pulse(...)'

2.52. Exercise: Find the analytical solution to a damped wave equation

Consider the wave equation with damping (2.48). The goal is to find an exact solution to a wave
problem with damping and zero source term. A starting point is the standing wave solution from

113

DRAFT

2. Wave Equations

Exercise Section 2.29. It becomes necessary to include a damping term e−βt and also have both a
sine and cosine component in time:

ue(x, t) = e−βt sin kx (A cosωt−B sinωt) .
Find k from the boundary conditions u(0, t) = u(L, t) = 0. Then use the PDE to find constraints
on β, ω, A, and B. Set up a complete initial-boundary value problem and its solution.

� Solution

Mathematical model:
∂2u

∂t2
+ b

∂u

∂t
= c2∂

2u

∂x2 ,

b ≥ 0 is a prescribed damping coefficient.
Ansatz:

u(x, t) = e−βt sin kx (A cosωt−B sinωt)

Boundary condition: u = 0 for x = 0, L. Fulfilled for x = 0. Requirement at x = L gives

kL = mπ,

for an arbitrary integer m. Hence, k = mπ/L.
Inserting the ansatz in the PDE and dividing by e−βt results in

(β2sinkx− ω2sinkx− bβsinkx)(A cosωt+B sinωt)+
(bωsinkx− 2βωsinkx)(−A sinωt+B cosωt) = −(A cosωt+B sinωt)k2c2

This gives us two requirements:

β2 − ω2 + bβ + k2c2 = 0

and
−2βω + bω = 0

Since b, c and k are to be given in advance, we may solve these two equations to get

β = b

2

ω =

√
c2k2 − b2

4

From the initial condition on the derivative, i.e. ∂ue
∂t = 0, we find that

Bω = βA

Inserting the expression for ω, we find that

B = b

2
√
c2k2 − b2

4

A

for A prescribed.

114

DRAFT

2. Wave Equations

Using t = 0 in the expression for ue gives us the initial condition as

I(x) = Asinkx

Summarizing, the PDE problem can then be states as

∂2u

∂t2
+ b

∂u

∂t
= c2∂

2u

∂x2 , x ∈ (0, L), t ∈ (0, T]

u(x, 0) = I(x), x ∈ [0, L]
∂

∂t
u(x, 0) = 0, x ∈ [0, L]

u(0, t) = 0, t ∈ (0, T]
u(L, t) = 0, t ∈ (0, T]

where constants c, A, b and k, as well as I(x), are prescribed.
The solution to the problem is then given as

ue(x, t) = e−βt sin kx (A cosωt−B sinωt) .

with k = mπ/L for arbitrary integer m, β = b
2 , ω =

√
c2k2 − b2

4 , B = b

2
√

c2k2− b2
4

A and

I(x) = Asinkx.

2.53. Problem: Explore symmetry boundary conditions

Consider the simple “plug” wave where Ω = [−L,L] and

I(x) =
{

1, x ∈ [−δ, δ],
0, otherwise

for some number 0 < δ < L. The other initial condition is ut(x, 0) = 0 and there is no source term
f . The boundary conditions can be set to u = 0. The solution to this problem is symmetric around
x = 0. This means that we can simulate the wave process in only half of the domain [0, L].

a)

Argue why the symmetry boundary condition is ux = 0 at x = 0.

� Symmetry of a function about x = x0 means that

f(x0 + h) = f(x0 − h).

� Solution

A symmetric u around x = 0 means that u(−x, t) = u(x, t). Let x0 = 0 and x = x0 + h. Then

115

DRAFT

2. Wave Equations

we can use a centered finite difference definition of the derivative:

∂

∂x
u(x0, t) = lim

h→0

u(x0 + h, t)− u(x0 − h)
2h = lim

h→0

u(h, t)− u(−h, t)
2h = 0,

since u(h, t) = u(−h, t) for any h. Symmetry around a point x = x0 therefore always implies
ux(x0, t) = 0.

b)

Perform simulations of the complete wave problem on [−L,L]. Thereafter, utilize the symmetry of
the solution and run a simulation in half of the domain [0, L], using a boundary condition at x = 0.
Compare plots from the two solutions and confirm that they are the same.

� Solution

We can utilize the wave1D_dn.py code which allows Dirichlet and Neumann conditions. The
solver and viz functions must take x0 and xL as parameters instead of just L such that we
can solve the wave equation in [x0, xL]. The we can call up solver for the two problems on
[−L,L] and [0, L] with boundary conditions u(−L, t) = u(L, t) = 0 and ux(0, t) = u(L, t) = 0,
respectively.
The original wave1D_dn.py code makes a movie by playing all the .png files in a browser. It
can then be wise to let the viz function create a movie directory and place all the frames and
HTML player file in that directory. Alternatively, one can just make some ordinary movie file
(Ogg, WebM, MP4, Flash) with avconv or ffmpeg and give it a name. It is a point that the
name is transferred to viz so it is easy to call viz twice and get two separate movie files or
movie directories.
The plots produced by the code (below) shows that the solutions indeed are the same.

c)

Prove the symmetry property of the solution by setting up the complete initial-boundary value
problem and showing that if u(x, t) is a solution, then also u(−x, t) is a solution.

� Solution

The plan in this proof is to introduce v(x, t) = u(−x, t) and show that v fulfills the same
initial-boundary value problem as u. If the problem has a unique solution, then v = u. Or, in
other words, the solution is symmetric: u(−x, t) = u(x, t).
We can work with a general initial-boundary value problem on the form

utt(x, t) = c2uxx(x, t) + f(x, t) (2.52)
u(x, 0) = I(x) (2.53)
ut(x, 0) = V (x) (2.54)
u(−L, 0) = 0 (2.55)
u(L, 0) = 0 (2.56)

116

DRAFT

2. Wave Equations

Introduce a new coordinate x̄ = −x. We have that

∂2u

∂x2 = ∂

∂x

(
∂u

∂x̄

∂x̄

∂x

)
= ∂

∂x

(
∂u

∂x̄
(−1)

)
= (−1)2∂

2u

∂x̄2

The derivatives in time are unchanged.
Substituting x by −x̄ leads to

utt(−x̄, t) = c2ux̄x̄(−x̄, t) + f(−x̄, t) (2.57)
u(−x̄, 0) = I(−x̄) (2.58)
ut(−x̄, 0) = V (−x̄) (2.59)
u(L, 0) = 0 (2.60)

u(−L, 0) = 0 (2.61)

Now, dropping the bars and introducing v(x, t) = u(−x, t), we find that

vtt(x, t) = c2vxx(x, t) + f(−x, t) (2.62)
v(x, 0) = I(−x) (2.63)
vt(x, 0) = V (−x) (2.64)
v(−L, 0) = 0 (2.65)
v(L, 0) = 0 (2.66)

Provided that I, f , and V are all symmetric around x = 0 such that I(x) = I(−x), V (x) =
V (−x), and f(x, t) = f(−x, t), we can express the initial-boundary value problem as

vtt(x, t) = c2vxx(x, t) + f(x, t) (2.67)
v(x, 0) = I(x) (2.68)
vt(x, 0) = V (x) (2.69)
v(−L, 0) = 0 (2.70)
v(L, 0) = 0 (2.71)

This is the same problem as the one that u fulfills. If the solution is unique, which can be
proven, then v = u, and u(−x, t) = u(x, t).
To summarize, the necessary conditions for symmetry are that

• all involved functions I, V , and f must be symmetric, and
• the boundary conditions are symmetric in the sense that they can be flipped (the

condition at x = −L can be applied at x = L and vice versa).

d)

If the code works correctly, the solution u(x, t) = x(L − x)(1 + t
2) should be reproduced exactly.

Write a test function test_quadratic that checks whether this is the case. Simulate for x in [0, L
2]

with a symmetry condition at the end x = L
2 .

117

DRAFT

2. Wave Equations

� Solution

Running the code below, shows that the test case indeed is reproduced exactly.

def test_quadratic():
"""
Check the scalar and vectorized versions work for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
We simulate in [0, L/2] and apply a symmetry condition
at the end x=L/2.
"""
exact_solution = lambda x, t: x * (L - x) * (1 + 0.5 * t)
I = lambda x: exact_solution(x, 0)
V = lambda x: 0.5 * exact_solution(x, 0)
f = lambda x, t: 2 * (1 + 0.5 * t) * c**2
U_0 = lambda t: exact_solution(0, t)
U_L = None
L = 2.5
c = 1.5
Nx = 3 # very coarse mesh
C = 1
T = 18 # long time integration

def assert_no_error(u, x, t, n):
u_e = exact_solution(x, t[n])
diff = abs(u - u_e).max()
assert diff < 1e-13, f"Max error: {diff}"

solver(
I, V, f, c, U_0, U_L, 0, L / 2, Nx, C, T,
user_action=assert_no_error, version="scalar",

)
solver(

I, V, f, c, U_0, U_L, 0, L / 2, Nx, C, T,
user_action=assert_no_error, version="vectorized",

)

2.54. Exercise: Send pulse waves through a layered medium

Use the pulse function in wave1D_dn_vc.py to investigate sending a pulse, located with its peak
at x = 0, through two media with different wave velocities. The (scaled) velocity in the left medium
is 1 while it is 1

sf
in the right medium. Report what happens with a Gaussian pulse, a “cosine hat”

pulse, half a “cosine hat” pulse, and a plug pulse for resolutions Nx = 40, 80, 160, and sf = 2, 4.
Simulate until T = 2.

118

DRAFT

2. Wave Equations

� Solution

In all cases, the change in velocity causes some of the wave to be reflected back (while the rest
is let through). When the waves go from higher to lower velocity, the amplitude builds, and
vice versa.

import os
import sys

path = os.path.join(
os.pardir, os.pardir, os.pardir, os.pardir, "wave", "src-wave", "wave1D"

)
sys.path.insert(0, path)
from wave1D_dn_vc import pulse

pulse_tp = sys.argv[1]
C = float(sys.argv[2])
pulse(pulse_tp=pulse_tp, C=C, Nx=100, animate=False, slowness_factor=4)

2.55. Exercise: Explain why numerical noise occurs

The experiments performed in Exercise Section 2.54 shows considerable numerical noise in the form
of non-physical waves, especially for sf = 4 and the plug pulse or the half a “cosinehat” pulse. The
noise is much less visible for a Gaussian pulse. Run the case with the plug and half a “cosinehat”
pulse for sf = 1, C = 0.9, 0.25, and Nx = 40, 80, 160. Use the numerical dispersion relation to
explain the observations.

2.56. Exercise: Investigate harmonic averaging in a 1D model

Harmonic means are often used if the wave velocity is non-smooth or discontinuous. Will harmonic
averaging of the wave velocity give less numerical noise for the case sf = 4 in Exercise Section 2.54?

2.57. Problem: Implement open boundary conditions

To enable a wave to leave the computational domain and travel undisturbed through the boundary
x = L, one can in a one-dimensional problem impose the following condition, called a radiation
condition or open boundary condition:

∂u

∂t
+ c

∂u

∂x
= 0 . (2.72)

The parameter c is the wave velocity.

119

DRAFT

2. Wave Equations

Show that (2.72) accepts a solution u = gR(x − ct) (right-going wave), but not u = gL(x + ct)
(left-going wave). This means that (2.72) will allow any right-going wave gR(x− ct) to pass through
the boundary undisturbed.

A corresponding open boundary condition for a left-going wave through x = 0 is

∂u

∂t
− c∂u

∂x
= 0 . (2.73)

a)

A natural idea for discretizing the condition (2.72) at the spatial end point i = Nx is to apply
centered differences in time and space:

[D2tu+ cD2xu = 0]ni , i = Nx . (2.74)

Eliminate the fictitious value un
Nx+1 by using the discrete equation at the same point.

The equation for the first step, u1
i , is in principle also affected, but we can then use the condition

uNx = 0 since the wave has not yet reached the right boundary.

b)

A much more convenient implementation of the open boundary condition at x = L can be based on
an explicit discretization

[D+
t u+ cD−

x u = 0]ni , i = Nx . (2.75)

From this equation, one can solve for un+1
Nx

and apply the formula as a Dirichlet condition at the
boundary point. However, the finite difference approximations involved are of first order.

Implement this scheme for a wave equation utt = c2uxx in a domain [0, L], where you have ux = 0
at x = 0, the condition (2.72) at x = L, and an initial disturbance in the middle of the domain, e.g.,
a plug profile like

u(x, 0) =
{

1, L/2− ℓ ≤ x ≤ L/2 + ℓ,
0, otherwise

Observe that the initial wave is split in two, the left-going wave is reflected at x = 0, and both
waves travel out of x = L, leaving the solution as u = 0 in [0, L]. Use a unit Courant number such
that the numerical solution is exact. Make a movie to illustrate what happens.

Because this simplified implementation of the open boundary condition works, there is no need to
pursue the more complicated discretization in a).

� Modify the solver function in

wave1D_dn.py.

c)

Add the possibility to have either ux = 0 or an open boundary condition at the left boundary. The
latter condition is discretized as

[D+
t u− cD+

x u = 0]ni , i = 0, (2.76)

leading to an explicit update of the boundary value un+1
0 .

120

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_dn.py

DRAFT

2. Wave Equations

The implementation can be tested with a Gaussian function as initial condition:

g(x;m, s) = 1√
2πs

e− (x−m)2

2s2 .

Run two tests:

1. Disturbance in the middle of the domain, I(x) = g(x;L/2, s), and open boundary condition
at the left end.

2. Disturbance at the left end, I(x) = g(x; 0, s), and ux = 0 as symmetry boundary condition at
this end.

Make test functions for both cases, testing that the solution is zero after the waves have left the
domain.

d)

In 2D and 3D it is difficult to compute the correct wave velocity normal to the boundary, which is
needed in generalizations of the open boundary conditions in higher dimensions. Test the effect of
having a slightly wrong wave velocity in (2.75). Make movies to illustrate what happens.

ñ Remarks

The condition (2.72) works perfectly in 1D when c is known. In 2D and 3D, however, the
condition reads ut + cxux + cyuy = 0, where cx and cy are the wave speeds in the x and y
directions. Estimating these components (i.e., the direction of the wave) is often challenging.
Other methods are normally used in 2D and 3D to let waves move out of a computational
domain.

2.58. Exercise: Implement periodic boundary conditions

It is frequently of interest to follow wave motion over large distances and long times. A straightforward
approach is to work with a very large domain, but that might lead to a lot of computations in areas
of the domain where the waves cannot be noticed. A more efficient approach is to let a right-going
wave out of the domain and at the same time let it enter the domain on the left. This is called a
periodic boundary condition.

The boundary condition at the right end x = L is an open boundary condition (see Exercise
Section 2.57) to let a right-going wave out of the domain. At the left end, x = 0, we apply, in
the beginning of the simulation, either a symmetry boundary condition (see Exercise Section 2.53)
ux = 0, or an open boundary condition.

This initial wave will split in two and either be reflected or transported out of the domain at x = 0.
The purpose of the exercise is to follow the right-going wave. We can do that with a periodic
boundary condition. This means that when the right-going wave hits the boundary x = L, the
open boundary condition lets the wave out of the domain, but at the same time we use a boundary
condition on the left end x = 0 that feeds the outgoing wave into the domain again. This periodic
condition is simply u(0) = u(L). The switch from ux = 0 or an open boundary condition at the left
end to a periodic condition can happen when u(L, t) > ϵ, where ϵ = 10−4 might be an appropriate
value for determining when the right-going wave hits the boundary x = L.

121

DRAFT

2. Wave Equations

The open boundary conditions can conveniently be discretized as explained in Exercise Section 2.57.
Implement the described type of boundary conditions and test them on two different initial shapes:
a plug u(x, 0) = 1 for x ≤ 0.1, u(x, 0) = 0 for x > 0.1, and a Gaussian function in the middle of the
domain: u(x, 0) = exp (−1

2(x− 0.5)2/0.05). The domain is the unit interval [0, 1]. Run these two
shapes for Courant numbers 1 and 0.5. Assume constant wave velocity. Make movies of the four
cases. Reason why the solutions are correct.

2.59. Exercise: Compare discretizations of a Neumann condition

We have a 1D wave equation with variable wave velocity: utt = (qux)x. A Neumann condition ux at
x = 0, L can be discretized as shown in (2.44) and (2.46).

The aim of this exercise is to examine the rate of the numerical error when using different ways of
discretizing the Neumann condition.

a)

As a test problem, q = 1 + (x− L/2)4 can be used, with f(x, t) adapted such that the solution has
a simple form, say u(x, t) = cos(πx/L) cos(ωt) for, e.g., ω = 1. Perform numerical experiments and
find the convergence rate of the error using the approximation (2.44).

b)

Switch to q(x) = 1 + cos(πx/L), which is symmetric at x = 0, L, and check the convergence rate of
the scheme (2.46). Now, qi−1/2 is a 2nd-order approximation to qi, qi−1/2 = qi + 0.25q′′

i ∆x2 + · · ·,
because q′

i = 0 for i = Nx (a similar argument can be applied to the case i = 0).

c)

A third discretization can be based on a simple and convenient, but less accurate, one-sided difference:
ui − ui−1 = 0 at i = Nx and ui+1 − ui = 0 at i = 0. Derive the resulting scheme in detail and
implement it. Run experiments with q from a) or b) to establish the rate of convergence of the
scheme.

d)

A fourth technique is to view the scheme as

[DtDtu]ni = 1
∆x

(
[qDxu]n

i+ 1
2
− [qDxu]n

i− 1
2

)
− [f]ni ,

and place the boundary at xi+ 1
2
, i = Nx, instead of exactly at the physical boundary. With this

idea of approximating (moving) the boundary, we can just set [qDxu]n
i+ 1

2
= 0. Derive the complete

scheme using this technique. The implementation of the boundary condition at L−∆x/2 is O(∆x2)
accurate, but the interesting question is what impact the movement of the boundary has on the
convergence rate. Compute the errors as usual over the entire mesh and use q from a) or b).

122

DRAFT

2. Wave Equations

2.60. Exercise: Verification by a cubic polynomial in space

The purpose of this exercise is to verify the implementation of the solver function in the program
wave1D_n0.py by using an exact numerical solution for the wave equation utt = c2uxx + f with
Neumann boundary conditions ux(0, t) = ux(L, t) = 0.

A similar verification is used in the file wave1D_u0.py, which solves the same PDE, but with
Dirichlet boundary conditions u(0, t) = u(L, t) = 0. The idea of the verification test in function
test_quadratic in wave1D_u0.py is to produce a solution that is a lower-order polynomial such
that both the PDE problem, the boundary conditions, and all the discrete equations are exactly
fulfilled. Then the solver function should reproduce this exact solution to machine precision. More
precisely, we seek u = X(x)T (t), with T (t) as a linear function and X(x) as a parabola that fulfills
the boundary conditions. Inserting this u in the PDE determines f . It turns out that u also fulfills
the discrete equations, because the truncation error of the discretized PDE has derivatives in x and
t of order four and higher. These derivatives all vanish for a quadratic X(x) and linear T (t).

It would be attractive to use a similar approach in the case of Neumann conditions. We set
u = X(x)T (t) and seek lower-order polynomials X and T . To force ux to vanish at the boundary,
we let Xx be a parabola. Then X is a cubic polynomial. The fourth-order derivative of a cubic
polynomial vanishes, so u = X(x)T (t) will fulfill the discretized PDE also in this case, if f is
adjusted such that u fulfills the PDE.

However, the discrete boundary condition is not exactly fulfilled by this choice of u. The reason is
that

[D2xu]ni = ux(xi, tn) + 1
6uxxx(xi, tn)∆x2 −O(∆x4) . (2.77)

At the two boundary points, we must demand that the derivative Xx(x) = 0 such that ux = 0.
However, uxxx is a constant and not zero when X(x) is a cubic polynomial. Therefore, our
u = X(x)T (t) fulfills

[D2xu]ni = 1
6uxxx(xi, tn)∆x2,

and not
[D2xu]ni = 0, i = 0, Nx,

as it should. (Note that all the higher-order terms O(∆x4) also have higher-order derivatives that
vanish for a cubic polynomial.) So to summarize, the fundamental problem is that u as a product
of a cubic polynomial and a linear or quadratic polynomial in time is not an exact solution of the
discrete boundary conditions.

To make progress, we assume that u = X(x)T (t), where T for simplicity is taken as a prescribed
linear function 1 + 1

2 t, and X(x) is taken as an unknown cubic polynomial ∑3
j=0 ajx

j . There are
two different ways of determining the coefficients a0, . . . , a3 such that both the discretized PDE
and the discretized boundary conditions are fulfilled, under the constraint that we can specify a
function f(x, t) for the PDE to feed to the solver function in wave1D_n0.py. Both approaches are
explained in the subexercises.

a)

One can insert u in the discretized PDE and find the corresponding f . Then one can insert u in the
discretized boundary conditions. This yields two equations for the four coefficients a0, . . . , a3. To

123

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_n0.py
https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_u0.py

DRAFT

2. Wave Equations

find the coefficients, one can set a0 = 0 and a1 = 1 for simplicity and then determine a2 and a3.
This approach will make a2 and a3 depend on ∆x and f will depend on both ∆x and ∆t.

Use sympy to perform analytical computations. A starting point is to define u as follows:

def test_cubic1():
import sympy as sm
x, t, c, L, dx, dt = sm.symbols('x t c L dx dt')
i, n = sm.symbols('i n', integer=True)

T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
a = sm.symbols('a_0 a_1 a_2 a_3')
X = lambda x: sum(a[q]*x**q for q in range(4)) # Spatial term
u = lambda x, t: X(x)*T(t)

The symbolic expression for u is reached by calling u(x,t) with x and t as sympy symbols.

Define DxDx(u, i, n), DtDt(u, i, n), and D2x(u, i, n) as Python functions for returning the
difference approximations [DxDxu]ni , [DtDtu]ni , and [D2xu]ni . The next step is to set up the residuals
for the equations [D2xu]n0 = 0 and [D2xu]nNx

= 0, where Nx = L/∆x. Call the residuals R_0 and
R_L. Substitute a0 and a1 by 0 and 1, respectively, in R_0, R_L, and a:

R_0 = R_0.subs(a[0], 0).subs(a[1], 1)
R_L = R_L.subs(a[0], 0).subs(a[1], 1)
a = list(a) # enable in-place assignment
a[0:2] = 0, 1

Determining a2 and a3 from the discretized boundary conditions is then about solving two equations
with respect to a2 and a3, i.e., a[2:]:

s = sm.solve([R_0, R_L], a[2:])
a[2:] = s[a[2]], s[a[3]]

Now, a contains computed values and u will automatically use these new values since X accesses a.

Compute the source term f from the discretized PDE: fn
i = [DtDtu − c2DxDxu]ni . Turn u, the

time derivative ut (needed for the initial condition V (x)), and f into Python functions. Set
numerical values for L, Nx, C, and c. Prescribe the time interval as ∆t = CL/(Nxc), which imply
∆x = c∆t/C = L/Nx. Define new functions I(x), V(x), and f(x,t) as wrappers of the ones made
above, where fixed values of L, c, ∆x, and ∆t are inserted, such that I, V, and f can be passed
on to the solver function. Finally, call solver with a user_action function that compares the
numerical solution to this exact solution u of the discrete PDE problem.

� To turn a sympy expression e, depending on a series of

symbols, say x, t, dx, dt, L, and c, into a plain Python function e_exact(x,t,L,dx,dt,c),
one can write

124

DRAFT

2. Wave Equations

e_exact = sm.lambdify([x,t,L,dx,dt,c], e, 'numpy')

The 'numpy' argument is a good habit as the e_exact function will then work with array
arguments if it contains mathematical functions (but here we only do plain arithmetics, which
automatically work with arrays).

b)

An alternative way of determining a0, . . . , a3 is to reason as follows. We first construct X(x) such
that the boundary conditions are fulfilled: X = x(L− x). However, to compensate for the fact that
this choice of X does not fulfill the discrete boundary condition, we seek u such that

ux = ∂

∂x
x(L− x)T (t)− 1

6uxxx∆x2,

since this u will fit the discrete boundary condition. Assuming u = T (t)∑3
j=0 ajx

j , we can use the
above equation to determine the coefficients a1, a2, a3. A value, e.g., 1 can be used for a0. The
following sympy code computes this u:

def test_cubic2():
import sympy as sm
x, t, c, L, dx = sm.symbols('x t c L dx')
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
X = lambda x: sum(a[i]*x**i for i in range(4))
a = sm.symbols('a_0 a_1 a_2 a_3')
u = lambda x, t: X(x)*T(t)
R = sm.diff(u(x,t), x) - (

x*(L-x) - sm.Rational(1,6)*sm.diff(u(x,t), x, x, x)*dx**2)
R = sm.poly(R, x)
coeff = R.all_coeffs()
s = sm.solve(coeff, a[1:]) # a[0] is not present in R
s[a[0]] = 1
X = lambda x: sm.simplify(sum(s[a[i]]*x**i for i in range(4)))
u = lambda x, t: X(x)*T(t)
print 'u:', u(x,t)

The next step is to find the source term f_e by inserting u_e in the PDE. Thereafter, turn u, f,
and the time derivative of u into plain Python functions as in a), and then wrap these functions
in new functions I, V, and f, with the right signature as required by the solver function. Set
parameters as in a) and check that the solution is exact to machine precision at each time level
using an appropriate user_action function.

125

DRAFT

2. Wave Equations

2.61. Analysis of the wave equation

2.61.1. Properties of the solution

The wave equation
∂2u

∂t2
= c2∂

2u

∂x2

has solutions of the form
u(x, t) = gR(x− ct) + gL(x+ ct), (2.78)

for any functions gR and gL sufficiently smooth to be differentiated twice. The result follows from
inserting (2.78) in the wave equation. A function of the form gR(x− ct) represents a signal moving
to the right in time with constant velocity c. This feature can be explained as follows. At time
t = 0 the signal looks like gR(x). Introducing a moving horizontal coordinate ξ = x− ct, we see the
function gR(ξ) is “at rest” in the ξ coordinate system, and the shape is always the same. Say the
gR(ξ) function has a peak at ξ = 0. This peak is located at x = ct, which means that it moves with
the velocity dx/dt = c in the x coordinate system. Similarly, gL(x+ ct) is a function, initially with
shape gL(x), that moves in the negative x direction with constant velocity c (introduce ξ = x+ ct,
look at the point ξ = 0, x = −ct, which has velocity dx/dt = −c).

With the particular initial conditions

u(x, 0) = I(x), ∂

∂t
u(x, 0) = 0,

we get, with u as in (2.78),

gR(x) + gL(x) = I(x), −cg′
R(x) + cg′

L(x) = 0 .

The former suggests gR = gL, and the former then leads to gR = gL = I/2. Consequently,

u(x, t) = 1
2I(x− ct) + 1

2I(x+ ct) . (2.79)

The interpretation of (2.79) is that the initial shape of u is split into two parts, each with the same
shape as I but half of the initial amplitude. One part is traveling to the left and the other one to
the right.

The solution has two important physical features: constant amplitude of the left and right wave,
and constant velocity of these two waves. It turns out that the numerical solution will also preserve
the constant amplitude, but the velocity depends on the mesh parameters ∆t and ∆x.

The solution (2.79) will be influenced by boundary conditions when the parts 1
2I(x − ct) and

1
2I(x + ct) hit the boundaries and get, e.g., reflected back into the domain. However, when I(x)
is nonzero only in a small part in the middle of the spatial domain [0, L], which means that the
boundaries are placed far away from the initial disturbance of u, the solution (2.79) is very clearly
observed in a simulation.

A useful representation of solutions of wave equations is a linear combination of sine and/or cosine
waves. Such a sum of waves is a solution if the governing PDE is linear and each sine or cosine wave
fulfills the equation. To ease analytical calculations by hand we shall work with complex exponential
functions instead of real-valued sine or cosine functions. The real part of complex expressions will

126

DRAFT

2. Wave Equations

typically be taken as the physical relevant quantity (whenever a physical relevant quantity is strictly
needed). The idea now is to build I(x) of complex wave components eikx:

I(x) ≈
∑
k∈K

bke
ikx . (2.80)

Here, k is the frequency of a component, K is some set of all the discrete k values needed to
approximate I(x) well, and bk are constants that must be determined. We will very seldom need to
compute the bk coefficients: most of the insight we look for, and the understanding of the numerical
methods we want to establish, come from investigating how the PDE and the scheme treat a single
component eikx wave.

Letting the number of k values in K tend to infinity, makes the sum (2.80) converge to I(x).
This sum is known as a Fourier series representation of I(x). Looking at (2.79), we see that the
solution u(x, t), when I(x) is represented as in (2.80), is also built of basic complex exponential
wave components of the form eik(x±ct) according to

u(x, t) = 1
2
∑
k∈K

bke
ik(x−ct) + 1

2
∑
k∈K

bke
ik(x+ct) . (2.81)

It is common to introduce the frequency in time ω = kc and assume that u(x, t) is a sum of
basic wave components written as eikx−ωt. (Observe that inserting such a wave component in the
governing PDE reveals that ω2 = k2c2, or ω = ±kc, reflecting the two solutions: one (+kc) traveling
to the right and the other (−kc) traveling to the left.)

2.62. More precise definition of Fourier representations

The above introduction to function representation by sine and cosine waves was quick and intuitive,
but will suffice as background knowledge for the following material of single wave component analysis.
However, to understand all details of how different wave components sum up to the analytical and
numerical solutions, a more precise mathematical treatment is helpful and therefore summarized
below.

It is well known that periodic functions can be represented by Fourier series. A generalization of
the Fourier series idea to non-periodic functions defined on the real line is the Fourier transform:

I(x) =
∫ ∞

−∞
A(k)eikxdk, (2.82)

A(k) =
∫ ∞

−∞
I(x)e−ikxdx . (2.83)

The function A(k) reflects the weight of each wave component eikx in an infinite sum of such wave
components. That is, A(k) reflects the frequency content in the function I(x). Fourier transforms
are particularly fundamental for analyzing and understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

u(x, t) =
∫ ∞

−∞
A(k)ei(kx−ω(k)t)dx .

127

DRAFT

2. Wave Equations

In a finite difference method, we represent u by a mesh function un
q , where n counts temporal mesh

points and q counts the spatial ones (the usual counter for spatial points, i, is here already used
as imaginary unit). Similarly, I(x) is approximated by the mesh function Iq, q = 0, . . . , Nx. On
a mesh, it does not make sense to work with wave components eikx for very large k, because the
shortest possible sine or cosine wave that can be represented uniquely on a mesh with spacing ∆x is
the wave with wavelength 2∆x. This wave has its peaks and throughs at every two mesh points.
That is, the wave “jumps up and down” between the mesh points.

The corresponding k value for the shortest possible wave in the mesh is k = 2π/(2∆x) = π/∆x. This
maximum frequency is known as the Nyquist frequency. Within the range of relevant frequencies
(0, π/∆x] one defines the discrete Fourier transform, using Nx + 1 discrete frequencies:

Iq = 1
Nx + 1

Nx∑
k=0

Ake
i2πkq/(Nx+1), q = 0, . . . , Nx, (2.84)

Ak =
Nx∑
q=0

Iqe
−i2πkq/(Nx+1), k = 0, . . . , Nx . (2.85)

The Ak values represent the discrete Fourier transform of the Iq values, which themselves are the
inverse discrete Fourier transform of the Ak values.

The discrete Fourier transform is efficiently computed by the Fast Fourier transform algorithm.
For a real function I(x), the relevant Python code for computing and plotting the discrete Fourier
transform appears in the example below.

import numpy as np
from numpy import pi, sin

def I(x):
return sin(2 * pi * x) + 0.5 * sin(4 * pi * x) + 0.1 * sin(6 * pi * x)

L = 10
Nx = 100
x = np.linspace(0, L, Nx + 1)
dx = L / float(Nx)

A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

freqs = np.linspace(0, pi / dx, A_amplitude.size)

import matplotlib.pyplot as plt

plt.plot(freqs, A_amplitude)
plt.show()

128

http://en.wikipedia.org/wiki/Discrete_Fourier_transform

DRAFT

2. Wave Equations

2.63. Stability

The scheme
[DtDtu = c2DxDxu]nq (2.86)

for the wave equation utt = c2uxx allows basic wave components

un
q = ei(kxq−ω̃tn)

as solution, but it turns out that the frequency in time, ω̃, is not equal to the exact frequency
ω = kc. The goal now is to find exactly what ω̃ is. We ask two key questions:

• How accurate is ω̃ compared to ω?
• Does the amplitude of such a wave component preserve its (unit) amplitude, as it should, or

does it get amplified or damped in time (because of a complex ω̃)?

The following analysis will answer these questions. We shall continue using q as an identifier for a
certain mesh point in the x direction.

2.63.1. Preliminary results

A key result needed in the investigations is the finite difference approximation of a second-order
derivative acting on a complex wave component:

[DtDte
iωt]n = − 4

∆t2 sin2
(
ω∆t

2

)
eiωn∆t .

By just changing symbols (ω → k, t→ x, n→ q) it follows that

[DxDxe
ikx]q = − 4

∆x2 sin2
(
k∆x

2

)
eikq∆x .

Numerical wave propagation Inserting a basic wave component un
q = ei(kxq−ω̃tn) in (2.86)

results in the need to evaluate two expressions:

[DtDte
ikxe−iω̃t]nq = [DtDte

−iω̃t]neikq∆x

= − 4
∆t2 sin2

(
ω̃∆t

2

)
e−iω̃n∆teikq∆x (2.87)

[DxDxe
ikxe−iω̃t]nq = [DxDxe

ikx]qe−iω̃n∆t

= − 4
∆x2 sin2

(
k∆x

2

)
eikq∆xe−iω̃n∆t . (2.88)

Then the complete scheme,

[DtDte
ikxe−iω̃t = c2DxDxe

ikxe−iω̃t]nq

leads to the following equation for the unknown numerical frequency ω̃ (after dividing by
−eikxe−iω̃t):

4
∆t2 sin2

(
ω̃∆t

2

)
= c2 4

∆x2 sin2
(
k∆x

2

)
,

129

DRAFT

2. Wave Equations

or
sin2

(
ω̃∆t

2

)
= C2 sin2

(
k∆x

2

)
, (2.89)

where
C = c∆t

∆x
is the Courant number. Taking the square root of (2.89) yields

sin
(
ω̃∆t

2

)
= C sin

(
k∆x

2

)
, (2.90)

Since the exact ω is real it is reasonable to look for a real solution ω̃ of (2.90). The right-hand side
of (2.90) must then be in [−1, 1] because the sine function on the left-hand side has values in [−1, 1]
for real ω̃. The magnitude of the sine function on the right-hand side attains the value 1 when

k∆x
2 = π

2 +mπ, m ∈ Z .

With m = 0 we have k∆x = π, which means that the wavelength λ = 2π/k becomes 2∆x. This
is the absolutely shortest wavelength that can be represented on the mesh: the wave jumps up
and down between each mesh point. Larger values of |m| are irrelevant since these correspond to k
values whose waves are too short to be represented on a mesh with spacing ∆x. For the shortest
possible wave in the mesh, sin (k∆x/2) = 1, and we must require

C ≤ 1 . (2.91)

Consider a right-hand side in (2.90) of magnitude larger than unity. The solution ω̃ of (2.90) must
then be a complex number ω̃ = ω̃r + iω̃i because the sine function is larger than unity for a complex
argument. One can show that for any ωi there will also be a corresponding solution with −ωi. The
component with ωi > 0 gives an amplification factor eωit that grows exponentially in time. We
cannot allow this and must therefore require C ≤ 1 as a stability criterion.

ñ Remark on the stability requirement

For smoother wave components with longer wave lengths per length ∆x, (2.91) can in theory
be relaxed. However, small round-off errors are always present in a numerical solution and
these vary arbitrarily from mesh point to mesh point and can be viewed as unavoidable noise
with wavelength 2∆x. As explained, C > 1 will for this very small noise lead to exponential
growth of the shortest possible wave component in the mesh. This noise will therefore grow
with time and destroy the whole solution.

2.64. Numerical dispersion relation

Equation (2.90) can be solved with respect to ω̃:

ω̃ = 2
∆t sin−1

(
C sin

(
k∆x

2

))
. (2.92)

130

DRAFT

2. Wave Equations

The relation between the numerical frequency ω̃ and the other parameters k, c, ∆x, and ∆t is
called a numerical dispersion relation. Correspondingly, ω = kc is the analytical dispersion relation.
In general, dispersion refers to the phenomenon where the wave velocity depends on the spatial
frequency (k, or the wave length λ = 2π/k) of the wave. Since the wave velocity is ω/k = c, we
realize that the analytical dispersion relation reflects the fact that there is no dispersion. However,
in a numerical scheme we have dispersive waves where the wave velocity depends on k.

The special case C = 1 deserves attention since then the right-hand side of (2.92) reduces to

2
∆t

k∆x
2 = 1

∆t
ω∆x
c

= ω

C
= ω .

That is, ω̃ = ω and the numerical solution is exact at all mesh points regardless of ∆x and ∆t!
This implies that the numerical solution method is also an analytical solution method, at least for
computing u at discrete points (the numerical method says nothing about the variation of u between
the mesh points, and employing the common linear interpolation for extending the discrete solution
gives a curve that in general deviates from the exact one).

For a closer examination of the error in the numerical dispersion relation when C < 1, we can
study ω̃ − ω, ω̃/ω, or the similar error measures in wave velocity: c̃− c and c̃/c, where c = ω/k and
c̃ = ω̃/k. It appears that the most convenient expression to work with is c̃/c, since it can be written
as a function of just two parameters:

c̃

c
= 1
Cp

sin−1 (C sin p) ,

with p = k∆x/2 as a non-dimensional measure of the spatial frequency. In essence, p tells how many
spatial mesh points we have per wave length in space for the wave component with frequency k
(recall that the wave length is 2π/k). That is, p reflects how well the spatial variation of the wave
component is resolved in the mesh. Wave components with wave length less than 2∆x (2π/k < 2∆x)
are not visible in the mesh, so it does not make sense to have p > π/2.

We may introduce the function r(C, p) = c̃/c for further investigation of numerical errors in the
wave velocity:

r(C, p) = 1
Cp

sin−1 (C sin p) , C ∈ (0, 1], p ∈ (0, π/2] . (2.93)

This function is very well suited for plotting since it combines several parameters in the problem
into a dependence on two dimensionless numbers, C and p.

Defining

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

we can plot r(C, p) as a function of p for various values of C, see Figure Figure 2.6. Note that the
shortest waves have the most erroneous velocity, and that short waves move more slowly than they
should.

We can also easily make a Taylor series expansion in the discretization parameter p:

131

DRAFT

2. Wave Equations

Figure 2.6.: The fractional error in the wave velocity for different Courant numbers.

132

DRAFT

2. Wave Equations

>>> import sympy as sym
>>> C, p = sym.symbols('C p')
>>> # Compute the 7 first terms around p=0 with no O() term
>>> rs = r(C, p).series(p, 0, 7).removeO()
>>> rs
p**6*(5*C**6/112 - C**4/16 + 13*C**2/720 - 1/5040) +
p**4*(3*C**4/40 - C**2/12 + 1/120) +
p**2*(C**2/6 - 1/6) + 1

>>> # Pick out the leading order term, but drop the constant 1
>>> rs_error_leading_order = (rs - 1).extract_leading_order(p)
>>> rs_error_leading_order
p**2*(C**2/6 - 1/6)

>>> # Turn the series expansion into a Python function
>>> rs_pyfunc = lambdify([C, p], rs, modules='numpy')

>>> # Check: rs_pyfunc is exact (=1) for C=1
>>> rs_pyfunc(1, 0.1)
1.0

Note that without the .removeO() call the series gets an O(x**7) term that makes it impossible to
convert the series to a Python function (for, e.g., plotting).

From the rs_error_leading_order expression above, we see that the leading order term in the
error of this series expansion is

1
6

(
k∆x

2

)2
(C2 − 1) = k2

24
(
c2∆t2 −∆x2

)
,

pointing to an errorO(∆t2,∆x2), which is compatible with the errors in the difference approximations
(DtDtu and DxDxu).

We can do more with a series expansion, e.g., factor it to see how the factor C − 1 plays a significant
role. To this end, we make a list of the terms, factor each term, and then sum the terms:

>>> rs = r(C, p).series(p, 0, 4).removeO().as_ordered_terms()
>>> rs
[1, C**2*p**2/6 - p**2/6,
3*C**4*p**4/40 - C**2*p**4/12 + p**4/120,
5*C**6*p**6/112 - C**4*p**6/16 + 13*C**2*p**6/720 - p**6/5040]

>>> rs = [factor(t) for t in rs]
>>> rs
[1, p**2*(C - 1)*(C + 1)/6,
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120,
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040]

>>> rs = sum(rs) # Python's sum function sums the list
>>> rs

133

DRAFT

2. Wave Equations

p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1

We see from the last expression that C = 1 makes all the terms in rs vanish. Since we already know
that the numerical solution is exact for C = 1, the remaining terms in the Taylor series expansion
will also contain factors of C − 1 and cancel for C = 1.

2.65. Extending the analysis to 2D and 3D

The typical analytical solution of a 2D wave equation

utt = c2(uxx + uyy),

is a wave traveling in the direction of k = kxi + kyj, where i and j are unit vectors in the x and y
directions, respectively (i should not be confused with i =

√
−1 here). Such a wave can be expressed

by
u(x, y, t) = g(kxx+ kyy − kct)

for some twice differentiable function g, or with ω = kc, k = |k|:

u(x, y, t) = g(kxx+ kyy − ωt) .

We can, in particular, build a solution by adding complex Fourier components of the form

e(i(kxx+kyy−ωt)) .

A discrete 2D wave equation can be written as

[DtDtu = c2(DxDxu+DyDyu)]nq,r . (2.94)

This equation admits a Fourier component

un
q,r = e(i(kxq∆x+kyr∆y−ω̃n∆t)), (2.95)

as solution. Letting the operators DtDt, DxDx, and DyDy act on un
q,r from (2.95) transforms (2.94)

to
4

∆t2 sin2
(
ω̃∆t

2

)
= c2 4

∆x2 sin2
(
kx∆x

2

)
+ c2 4

∆y2 sin2
(
ky∆y

2

)
.

or
sin2

(
ω̃∆t

2

)
= C2

x sin2 px + C2
y sin2 py,

where we have eliminated the factor 4 and introduced the symbols

Cx = c∆t
∆x , Cy = c∆t

∆y , px = kx∆x
2 , py = ky∆y

2 .

For a real-valued ω̃ the right-hand side must be less than or equal to unity in absolute value,
requiring in general that

C2
x + C2

y ≤ 1 . (2.96)

134

DRAFT

2. Wave Equations

This gives the stability criterion, more commonly expressed directly in an inequality for the time
step:

∆t ≤ 1
c

(1
∆x2 + 1

∆y2

)−1/2
(2.97)

A similar, straightforward analysis for the 3D case leads to

∆t ≤ 1
c

(1
∆x2 + 1

∆y2 + 1
∆z2

)−1/2

In the case of a variable coefficient c2 = c2(x), we must use the worst-case value

c̄ =
√

max
x∈Ω

c2(x)

in the stability criteria. Often, especially in the variable wave velocity case, it is wise to introduce a
safety factor β ∈ (0, 1] too:

∆t ≤ β 1
c̄

(1
∆x2 + 1

∆y2 + 1
∆z2

)−1/2

The exact numerical dispersion relations in 2D and 3D becomes, for constant c,

ω̃ = 2
∆t sin−1

((
C2

x sin2 px + C2
y sin2 py

) 1
2
)
, (2.98)

ω̃ = 2
∆t sin−1

((
C2

x sin2 px + C2
y sin2 py + C2

z sin2 pz

) 1
2
)
. (2.99)

We can visualize the numerical dispersion error in 2D much like we did in 1D. To this end, we need
to reduce the number of parameters in ω̃. The direction of the wave is parameterized by the polar
angle θ, which means that

kx = k sin θ, ky = k cos θ .

A simplification is to set ∆x = ∆y = h. Then Cx = Cy = c∆t/h, which we call C. Also,

px = 1
2kh cos θ, py = 1

2kh sin θ .

The numerical frequency ω̃ is now a function of three parameters:

• C, reflecting the number of cells a wave is displaced during a time step,
• p = 1

2kh, reflecting the number of cells per wave length in space,
• θ, expressing the direction of the wave.

We want to visualize the error in the numerical frequency. To avoid having ∆t as a free parameter
in ω̃, we work with c̃/c = ω̃/(kc). The coefficient in front of the sin−1 factor is then

2
kc∆t = 2

2kc∆th/h = 1
Ckh

= 2
Cp

,

and
c̃

c
= 2
Cp

sin−1
(
C
(
sin2(p cos θ) + sin2(p sin θ)

) 1
2
)
.

135

DRAFT

2. Wave Equations

We want to visualize this quantity as a function of p and θ for some values of C ≤ 1. It is instructive
to make color contour plots of 1− c̃/c in polar coordinates with θ as the angular coordinate and p
as the radial coordinate.

The stability criterion (2.96) becomes C ≤ Cmax = 1/
√

2 in the present 2D case with the C defined
above. Let us plot 1− c̃/c in polar coordinates for Cmax, 0.9Cmax, 0.5Cmax, 0.2Cmax. The program
below does the somewhat tricky work in Matplotlib, and the result appears in Figure Figure 2.7.
From the figure we clearly see that the maximum C value gives the best results, and that waves
whose propagation direction makes an angle of 45 degrees with an axis are the most accurate.

Figure 2.7.: Error in numerical dispersion in 2D.

2.66. Multi-dimensional wave equations

A natural next step is to consider extensions of the methods for various variants of the one-
dimensional wave equation to two-dimensional (2D) and three-dimensional (3D) versions of the
wave equation.

136

DRAFT

2. Wave Equations

2.67. Multi-dimensional wave equations

The general wave equation in d space dimensions, with constant wave velocity c, can be written in
the compact form

∂2u

∂t2
= c2∇2u for x ∈ Ω ⊂ Rd, t ∈ (0, T], (2.100)

where
∇2u = ∂2u

∂x2 + ∂2u

∂y2 ,

in a 2D problem (d = 2) and

∇2u = ∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 ,

in three space dimensions (d = 3).

Many applications involve variable coefficients, and the general wave equation in d dimensions is in
this case written as

ϱ
∂2u

∂t2
= ∇ · (q∇u) + f for x ∈ Ω ⊂ Rd, t ∈ (0, T], (2.101)

which in, e.g., 2D becomes

ϱ(x, y)∂
2u

∂t2
= ∂

∂x

(
q(x, y)∂u

∂x

)
+ ∂

∂y

(
q(x, y)∂u

∂y

)
+ f(x, y, t) .

To save some writing and space we may use the index notation, where subscript t, x, or y means
differentiation with respect to that coordinate. For example,

∂2u

∂t2
= utt,

∂

∂y

(
q(x, y)∂u

∂y

)
= (quy)y

.These comments extend straightforwardly to 3D, which means that the 3D versions of the two
wave PDEs, with and without variable coefficients, can be stated as

utt = c2(uxx + uyy + uzz) + f, (2.102)
ϱutt = (qux)x + (quy)y + (quz)z + f . (2.103)

At each point of the boundary ∂Ω (of Ω) we need one boundary condition involving the unknown u.
The boundary conditions are of three principal types:

1. u is prescribed (u = 0 or a known time variation of u at the boundary points, e.g., modeling
an incoming wave),

2. ∂u/∂n = n · ∇u is prescribed (zero for reflecting boundaries),
3. an open boundary condition (also called radiation condition) is specified to let waves travel

undisturbed out of the domain, see Exercise Section 2.57 for details.

All the listed wave equations with second-order derivatives in time need two initial conditions:

1. u = I,
2. ut = V .

137

DRAFT

2. Wave Equations

2.68. Mesh

We introduce a mesh in time and in space. The mesh in time consists of time points

t0 = 0 < t1 < · · · < tNt ,

normally, for wave equation problems, with a constant spacing ∆t = tn+1 − tn, n ∈ I−
t .

Finite difference methods are easy to implement on simple rectangle- or box-shaped spatial domains.
More complicated shapes of the spatial domain require substantially more advanced techniques
and implementational efforts (and a finite element method is usually a more convenient approach).
On a rectangle- or box-shaped domain, mesh points are introduced separately in the various space
directions:

x0 < x1 < · · · < xNx in the x direction,
y0 < y1 < · · · < yNy in the y direction,
z0 < z1 < · · · < zNz in the z direction .

We can write a general mesh point as (xi, yj , zk, tn), with i ∈ Ix, j ∈ Iy, k ∈ Iz, and n ∈ It.

It is a very common choice to use constant mesh spacings: ∆x = xi+1 − xi, i ∈ I−
x , ∆y = yj+1 − yj ,

j ∈ I−
y , and ∆z = zk+1 − zk, k ∈ I−

z . With equal mesh spacings one often introduces h = ∆x =
∆y = ∆z.

The unknown u at mesh point (xi, yj , zk, tn) is denoted by un
i,j,k. In 2D problems we just skip the z

coordinate (by assuming no variation in that direction: ∂/∂z = 0) and write un
i,j .

2.69. Discretization

Two- and three-dimensional wave equations are easily discretized by assembling building blocks for
discretization of 1D wave equations, because the multi-dimensional versions just contain terms of
the same type as those in 1D.

2.69.1. Discretizing the PDEs

Equation (2.102) can be discretized as

[DtDtu = c2(DxDxu+DyDyu+DzDzu) + f]ni,j,k .

A 2D version might be instructive to write out in detail:

[DtDtu = c2(DxDxu+DyDyu) + f]ni,j ,

which becomes

un+1 ∗ ∗i, j − 2un ∗ ∗i, j + un−1
i,j

∆t2 = c2u
n ∗ ∗i+ 1, j − 2un ∗ ∗i, j + un

i−1,j

∆x2 +c2u
n ∗ ∗i, j + 1− 2un ∗ ∗i, j + un

i,j−1
∆y2 +fn

i,j ,

138

DRAFT

2. Wave Equations

Assuming, as usual, that all values at time levels n and n− 1 are known, we can solve for the only
unknown un+1

i,j . The result can be compactly written as

un+1 ∗ ∗i, j = 2un ∗ ∗i, j + un−1
i,j + c2∆t2[DxDxu+DyDyu]ni,j . (2.104)

As in the 1D case, we need to develop a special formula for u1
i,j where we combine the general

scheme for un+1
i,j , when n = 0, with the discretization of the initial condition:

[D2tu = V]0i,j ⇒ u−1 ∗ ∗i, j = u1 ∗ ∗i, j − 2∆tVi,j .

The result becomes, in compact form,

u1 ∗ ∗i, j = u0 ∗ ∗i, j − 2∆Vi,j + 1
2c

2∆t2[DxDxu+DyDyu]0i,j . (2.105)

The PDE (2.103) with variable coefficients is discretized term by term using the corresponding
elements from the 1D case:

[ϱDtDtu = (Dxq
xDxu+Dyq

yDyu+Dzq
zDzu) + f]ni,j,k .

When written out and solved for the unknown un+1
i,j,k , one gets the scheme

un+1 ∗ ∗i, j, k = −un−1 ∗ ∗i, j, k + 2un
i,j,k+

1
ϱi,j,k

1
∆x2 (1

2(qi,j,k + qi+1,j,k)(un ∗ ∗i+ 1, j, k − un ∗ ∗i, j, k)−

1
2(qi−1,j,k + qi,j,k)(un ∗ ∗i, j, k − un ∗ ∗i− 1, j, k))+

1
ϱi,j,k

1
∆y2 (1

2(qi,j,k + qi,j+1,k)(un ∗ ∗i, j + 1, k − un ∗ ∗i, j, k)−

1
2(qi,j−1,k + qi,j,k)(un ∗ ∗i, j, k − un ∗ ∗i, j − 1, k))+

1
ϱi,j,k

1
∆z2 (1

2(qi,j,k + qi,j,k+1)(un ∗ ∗i, j, k + 1− un ∗ ∗i, j, k)−

1
2(qi,j,k−1 + qi,j,k)(un ∗ ∗i, j, k − un ∗ ∗i, j, k − 1))+

∆t2fn
i,j,k

.

Also here we need to develop a special formula for u1
i,j,k by combining the scheme for n = 0 with the

discrete initial condition, which is just a matter of inserting u−1 ∗ ∗i, j, k = u1 ∗ ∗i, j, k− 2∆tVi,j,k in
the scheme and solving for u1

i,j,k.

2.69.2. Handling boundary conditions where u is known

The schemes listed above are valid for the internal points in the mesh. After updating these, we
need to visit all the mesh points at the boundaries and set the prescribed u value.

139

DRAFT

2. Wave Equations

2.69.3. Discretizing the Neumann condition

The condition ∂u/∂n = 0 was implemented in 1D by discretizing it with a D2xu centered difference,
followed by eliminating the fictitious u point outside the mesh by using the general scheme at the
boundary point. Alternatively, one can introduce ghost cells and update a ghost value for use in the
Neumann condition. Exactly the same ideas are reused in multiple dimensions.

Consider the condition ∂u/∂n = 0 at a boundary y = 0 of a rectangular domain [0, Lx]× [0, Ly] in
2D. The normal direction is then in −y direction, so

∂u

∂n
= −∂u

∂y
,

and we set
[−D2yu = 0]ni,0 ⇒

un
i,1 − un

i,−1
2∆y = 0 .

From this it follows that un
i,−1 = un

i,1. The discretized PDE at the boundary point (i, 0) reads

un+1 ∗ ∗i, 0− 2un ∗ ∗i, 0 + un−1
i,0

∆t2 = c2u
n ∗ ∗i+ 1, 0− 2un ∗ ∗i, 0 + un

i−1,0
∆x2 +c2u

n ∗ ∗i, 1− 2un ∗ ∗i, 0 + un
i,−1

∆y2 +fn
i,j ,

We can then just insert un
i,1 for un

i,−1 in this equation and solve for the boundary value un+1
i,0 , just as

was done in 1D.

From these calculations, we see a pattern: the general scheme applies at the boundary j = 0 too
if we just replace j − 1 by j + 1. Such a pattern is particularly useful for implementations. The
details follow from the explained 1D case in Section Section 2.38.

The alternative approach to eliminating fictitious values outside the mesh is to have un
i,−1 available

as a ghost value. The mesh is extended with one extra line (2D) or plane (3D) of ghost cells at a
Neumann boundary. In the present example it means that we need a line with ghost cells below the
y axis. The ghost values must be updated according to un+1 ∗ ∗i,−1 = un+1 ∗ ∗i, 1.

2.70. The 2D Wave Equation with Devito

Extending the wave solver to two dimensions illustrates the power of Devito’s dimension-agnostic
approach. The same symbolic patterns apply, and Devito automatically generates optimized 2D
stencils.

2.70.1. The 2D Wave Equation

The two-dimensional wave equation on [0, Lx]× [0, Ly] is:

∂2u

∂t2
= c2

(
∂2u

∂x2 + ∂2u

∂y2

)
= c2∇2u (2.106)

where ∇2u = uxx + uyy is the Laplacian.

140

DRAFT

2. Wave Equations

2.70.2. Devito’s Dimension-Agnostic Laplacian

Devito provides the .laplace attribute that works in any dimension:

from devito import Grid, TimeFunction

2D grid
grid = Grid(shape=(Nx + 1, Ny + 1), extent=(Lx, Ly))

2D wave field
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

The Laplacian works the same as in 1D!
laplacian = u.laplace # Returns u_xx + u_yy automatically

This is one of Devito’s key strengths: the same code pattern scales from 1D to 2D to 3D without
changes.

2.70.3. CFL Stability Condition in 2D

The stability condition in 2D is more restrictive than in 1D:

C = c ·∆t ·
√

1
∆x2 + 1

∆y2 ≤ 1

For equal grid spacing ∆x = ∆y = h:
∆t ≤ h

c
√

2

Compared to the 1D condition ∆t ≤ h/c, the 2D condition allows smaller time steps by a factor of
1/
√

2 ≈ 0.707.

2.70.4. The 2D Solver

The src.wave module provides solve_wave_2d:

from src.wave import solve_wave_2d
import numpy as np

Initial condition: 2D standing wave
def I(X, Y):

return np.sin(np.pi * X) * np.sin(np.pi * Y)

result = solve_wave_2d(
Lx=1.0, Ly=1.0, # Domain size
c=1.0, # Wave speed

141

DRAFT

2. Wave Equations

Nx=50, Ny=50, # Grid points
T=1.0, # Final time
C=0.5, # Courant number
I=I, # Initial displacement

)

Result is a 2D array
print(result.u.shape) # (51, 51)

2.70.5. 2D Boundary Conditions

Dirichlet conditions must be applied on all four boundaries:

from devito import Eq

t_dim = grid.stepping_dim
x_dim, y_dim = grid.dimensions

Boundary conditions (u = 0 on all boundaries)
bc_x0 = Eq(u[t_dim + 1, 0, y_dim], 0) # Left
bc_xN = Eq(u[t_dim + 1, Nx, y_dim], 0) # Right
bc_y0 = Eq(u[t_dim + 1, x_dim, 0], 0) # Bottom
bc_yN = Eq(u[t_dim + 1, x_dim, Ny], 0) # Top

2.70.6. Standing Waves in 2D

The exact solution for the initial condition I(x, y) = sin(πx/Lx) sin(πy/Ly) with V = 0 is:

u(x, y, t) = sin
(
πx

Lx

)
sin
(
πy

Ly

)
cos(ωt)

where the angular frequency is:

ω = cπ

√
1
L2

x

+ 1
L2

y

This can be used for verification:

from src.wave import convergence_test_wave_2d

grid_sizes, errors, rate = convergence_test_wave_2d(
grid_sizes=[10, 20, 40, 80],
T=0.25,
C=0.5,

)

print(f"Observed convergence rate: {rate:.2f}") # Should be ~2.0

142

DRAFT

2. Wave Equations

2.70.7. Visualizing 2D Solutions

For 2D problems, surface plots and contour plots are useful:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

result = solve_wave_2d(Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=0.5, C=0.5)

X, Y = np.meshgrid(result.x, result.y, indexing='ij')

fig = plt.figure(figsize=(12, 5))

Surface plot
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot_surface(X, Y, result.u, cmap='viridis')
ax1.set_xlabel('x')
ax1.set_ylabel('y')
ax1.set_zlabel('u')
ax1.set_title(f't = {result.t:.3f}')

Contour plot
ax2 = fig.add_subplot(122)
c = ax2.contourf(X, Y, result.u, levels=20, cmap='RdBu_r')
plt.colorbar(c, ax=ax2)
ax2.set_xlabel('x')
ax2.set_ylabel('y')
ax2.set_title('Contour plot')
ax2.set_aspect('equal')

2.70.8. Animation of 2D Waves

from matplotlib.animation import FuncAnimation

result = solve_wave_2d(
Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=2.0, C=0.5,
save_history=True,

)

fig, ax = plt.subplots()
X, Y = np.meshgrid(result.x, result.y, indexing='ij')

vmax = np.abs(result.u_history).max()
im = ax.contourf(X, Y, result.u_history[0], levels=20,

cmap='RdBu_r', vmin=-vmax, vmax=vmax)

143

DRAFT

2. Wave Equations

def update(frame):
ax.clear()
ax.contourf(X, Y, result.u_history[frame], levels=20,

cmap='RdBu_r', vmin=-vmax, vmax=vmax)
ax.set_title(f't = {result.t_history[frame]:.3f}')
ax.set_aspect('equal')
return []

anim = FuncAnimation(fig, update, frames=len(result.t_history),
interval=50)

2.70.9. From 2D to 3D

The pattern extends naturally to three dimensions. In Devito, the main changes are:

1. Add a third dimension to the grid
2. The .laplace attribute automatically includes uzz

3D grid
grid = Grid(shape=(Nx+1, Ny+1, Nz+1), extent=(Lx, Ly, Lz))

3D wave field
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

The PDE is unchanged!
pde = u.dt2 - c**2 * u.laplace

The CFL condition in 3D becomes:
∆t ≤ h

c
√

3

for equal grid spacing in all directions.

2.70.10. Computational Considerations

2D and 3D wave simulations can become computationally expensive. Devito helps through:

• Automatic parallelization: Set OMP_NUM_THREADS for OpenMP
• Cache optimization: Loop tiling is applied automatically
• GPU support: Use platform='nvidiaX' for CUDA execution

For large-scale simulations, the generated C code is highly optimized and can match hand-tuned
implementations.

144

DRAFT

2. Wave Equations

2.70.11. Summary

Key points for 2D wave equations with Devito:

1. The .laplace attribute handles the dimension automatically
2. CFL conditions are more restrictive (factor of 1/

√
d in d dimensions)

3. Boundary conditions must be applied on all boundaries
4. Visualization requires surface/contour plots and animations
5. The same code patterns extend to 3D with minimal changes

Devito’s abstraction means we write the physics once and let the framework handle the computational
complexity across dimensions.

2.71. Implementation of 2D and 3D wave equations

We shall now describe in detail various Python implementations for solving a standard 2D, linear
wave equation with constant wave velocity and u = 0 on the boundary. The wave equation is to
be solved in the space-time domain Ω× (0, T], where Ω = (0, Lx)× (0, Ly) is a rectangular spatial
domain. More precisely, the complete initial-boundary value problem is defined by

utt = c2(uxx + uyy) + f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T], (2.107)
u(x, y, 0) = I(x, y), (x, y) ∈ Ω, (2.108)
ut(x, y, 0) = V (x, y), (x, y) ∈ Ω, (2.109)
u = 0, (x, y) ∈ ∂Ω, t ∈ (0, T], (2.110)

where ∂Ω is the boundary of Ω, in this case the four sides of the rectangle Ω = [0, Lx] × [0, Ly]:
x = 0, x = Lx, y = 0, and y = Ly.

The PDE is discretized as

[DtDtu = c2(DxDxu+DyDyu) + f]ni,j ,

which leads to an explicit updating formula to be implemented in a program:

un+1
i,j = −un−1

i,j + 2un
i,j+

C2
x(un

i+1,j − 2un
i,j + un

i−1,j) + C2
y (un

i,j+1 − 2un
i,j + un

i,j−1) + ∆t2fn
i,j ,

(2.111)

for all interior mesh points i ∈ Ii
x and j ∈ Ii

y, for n ∈ I+
t . The constants Cx and Cy are defined as

Cx = c
∆t
∆x, Cy = c

∆t
∆y .

At the boundary, we simply set un+1
i,j = 0 for i = 0, j = 0, . . . , Ny; i = Nx, j = 0, . . . , Ny; j = 0,

i = 0, . . . , Nx; and j = Ny, i = 0, . . . , Nx. For the first step, n = 0, (2.111) is combined with the
discretization of the initial condition ut = V , [D2tu = V]0i,j to obtain a special formula for u1

i,j at
the interior mesh points:

145

DRAFT

2. Wave Equations

u1
i,j = u0

i,j + ∆tVi,j+
1
2C

2
x(u0

i+1,j − 2u0
i,j + u0

i−1,j) + 1
2C

2
y (u0

i,j+1 − 2u0
i,j + u0

i,j−1)+
1
2∆t2fn

i,j ,

(2.112)

The algorithm is very similar to the one in 1D:

1. Set initial condition u0
i,j = I(xi, yj)

2. Compute u1
i,j from (2.111)

3. Set u1
i,j = 0 for the boundaries i = 0, Nx, j = 0, Ny

4. For n = 1, 2, . . . , Nt:
5. Find un+1

i,j from (2.111) for all internal mesh points, i ∈ Ii
x, j ∈ Ii

y

6. Set un+1
i,j = 0 for the boundaries i = 0, Nx, j = 0, Ny

2.72. Scalar computations

The solver function for a 2D case with constant wave velocity and boundary condition u = 0
is analogous to the 1D case with similar parameter values (see wave1D_u0.py), apart from a few
necessary extensions. The code is found in the program wave2D_u0.py.

2.72.1. Domain and mesh

The spatial domain is now [0, Lx] × [0, Ly], specified by the arguments Lx and Ly. Similarly, the
number of mesh points in the x and y directions, Nx and Ny, become the arguments Nx and Ny. In
multi-dimensional problems it makes less sense to specify a Courant number since the wave velocity
is a vector and mesh spacings may differ in the various spatial directions. We therefore give ∆t
explicitly. The signature of the solver function is then

def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version='scalar'):

Key parameters used in the calculations are created as

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
t = linspace(0, N*dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

146

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave2D_u0/wave2D_u0.py

DRAFT

2. Wave Equations

2.72.2. Solution arrays

We store un+1 ∗ ∗i, j, un ∗ ∗i, j, and un−1
i,j in three two-dimensional arrays,

u = zeros((Nx+1,Ny+1)) # solution array
u_n = [zeros((Nx+1,Ny+1)), zeros((Nx+1,Ny+1))] # t-dt, t-2*dt

where un+1
i,j corresponds to u[i,j], un

i,j to u_n[i,j], and un−1
i,j to u_nm1[i,j].

2.72.3. Index sets

It is also convenient to introduce the index sets (cf. Section Section 2.39)

Ix = range(0, u.shape[0])
It = range(0, u.shape[1])
It = range(0, t.shape[0])

2.72.4. Computing the solution

Inserting the initial condition I in u_n and making a callback to the user in terms of the user_action
function is a straightforward generalization of the 1D code from Section Section 2.7:

for i in Ix:
for j in It:

u_n[i,j] = I(x[i], y[j])

if user_action is not None:
user_action(u_n, x, xv, y, yv, t, 0)

The user_action function has additional arguments compared to the 1D case. The arguments xv
and yv will be commented upon in Section Section 2.73.

The key finite difference formula (2.104) for updating the solution at a time level is implemented in
a separate function as

def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); It = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:

147

DRAFT

2. Wave Equations

for j in It[1:-1]:
u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
j = It[0]
for i in Ix: u[i,j] = 0
j = It[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in It: u[i,j] = 0
i = Ix[-1]
for j in It: u[i,j] = 0
return u

The step1 variable has been introduced to allow the formula to be reused for the first step, computing
u1

i,j :

u = advance_scalar(u, u_n, f, x, y, t,
n, Cx2, Cy2, dt, V, step1=True)

Below, we will make many alternative implementations of the advance_scalar function to speed
up the code since most of the CPU time in simulations is spent in this function.

ñ Remark: How to use the solution

The solver function in the wave2D_u0.py code updates arrays for the next time step by
switching references as described in Section Section 2.27. Any use of u on the user’s side is
assumed to take place in the user action function. However, should the code be changed such
that u is returned and used as solution, have in mind that you must return u_n after the time
limit, otherwise a return u will actually return u_nm1 (due to the switching of array indices
in the loop)!

2.73. Vectorized computations

The scalar code above turns out to be extremely slow for large 2D meshes, and probably useless in
3D beyond debugging of small test cases. Vectorization is therefore a must for multi-dimensional
finite difference computations in Python. For example, with a mesh consisting of 30 × 30 cells,
vectorization brings down the CPU time by a factor of 70 (!). Equally important, vectorized code
can also easily be parallelized to take (usually) optimal advantage of parallel computer platforms.

In the vectorized case, we must be able to evaluate user-given functions like I(x, y) and f(x, y, t)
for the entire mesh in one operation (without loops). These user-given functions are provided as

148

DRAFT

2. Wave Equations

Python functions I(x,y) and f(x,y,t), respectively. Having the one-dimensional coordinate arrays
x and y is not sufficient when calling I and f in a vectorized way. We must extend x and y to their
vectorized versions xv and yv:

from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]
xv = x.reshape((x.size, 1))
yv = y.reshape((1, y.size))

This is a standard required technique when evaluating functions over a 2D mesh, say
sin(xv)*cos(xv), which then gives a result with shape (Nx+1,Ny+1). Calling I(xv, yv) and
f(xv, yv, t[n]) will now return I and f values for the entire set of mesh points.

With the xv and yv arrays for vectorized computing, setting the initial condition is just a matter
of

u_n[:,:] = I(xv, yv)

One could also have written u_n = I(xv, yv) and let u_n point to a new object, but vectorized
operations often make use of direct insertion in the original array through u_n[:,:], because
sometimes not all of the array is to be filled by such a function evaluation. This is the case with the
computational scheme for un+1

i,j :

def advance_vectorized(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2,
V=None, step1=False):

if step1:
dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

u_xx = u_n[:-2,1:-1] - 2*u_n[1:-1,1:-1] + u_n[2:,1:-1]
u_yy = u_n[1:-1,:-2] - 2*u_n[1:-1,1:-1] + u_n[1:-1,2:]
u[1:-1,1:-1] = D1*u_n[1:-1,1:-1] - D2*u_nm1[1:-1,1:-1] + \

Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
if step1:

u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
j = 0
u[:,j] = 0
j = u.shape[1]-1
u[:,j] = 0
i = 0
u[i,:] = 0
i = u.shape[0]-1
u[i,:] = 0
return u

149

DRAFT

2. Wave Equations

Array slices in 2D are more complicated to understand than those in 1D, but the logic from 1D
applies to each dimension separately. For example, when doing un ∗ ∗i, j − un ∗ ∗i− 1, j for i ∈ I+

x ,
we just keep j constant and make a slice in the first index: u_n[1:,j] - u_n[:-1,j], exactly as
in 1D. The 1: slice specifies all the indices i = 1, 2, . . . , Nx (up to the last valid index), while :-1
specifies the relevant indices for the second term: 0, 1, . . . , Nx − 1 (up to, but not including the last
index).

In the above code segment, the situation is slightly more complicated, because each displaced slice
in one direction is accompanied by a 1:-1 slice in the other direction. The reason is that we only
work with the internal points for the index that is kept constant in a difference.

The boundary conditions along the four sides make use of a slice consisting of all indices along a
boundary:

u[: ,0] = 0
u[:,Ny] = 0
u[0 ,:] = 0
u[Nx,:] = 0

In the vectorized update of u (above), the function f is first computed as an array over all mesh
points:

f_a = f(xv, yv, t[n])

We could, alternatively, have used the call f(xv, yv, t[n])[1:-1,1:-1] in the last term of the
update statement, but other implementations in compiled languages benefit from having f available
in an array rather than calling our Python function f(x,y,t) for every point.

Also in the advance_vectorized function we have introduced a boolean step1 to reuse the formula
for the first time step in the same way as we did with advance_scalar. We refer to the solver
function in wave2D_u0.py for the details on how the overall algorithm is implemented.

The callback function now has the arguments u, x, xv, y, yv, t, n. The inclusion of xv and
yv makes it easy to, e.g., compute an exact 2D solution in the callback function and compute errors,
through an expression like u - u_exact(xv, yv, t[n]).

2.74. Verification

2.74.1. Testing a quadratic solution

The 1D solution from Section Section 2.11 can be generalized to multi-dimensions and provides
a test case where the exact solution also fulfills the discrete equations, such that we know (to
machine precision) what numbers the solver function should produce. In 2D we use the following
generalization of (2.25):

ue(x, y, t) = x(Lx − x)y(Ly − y)(1 + 1
2 t) . (2.113)

150

DRAFT

2. Wave Equations

This solution fulfills the PDE problem if I(x, y) = ue(x, y, 0), V = 1
2ue(x, y, 0), and f = 2c2(1 +

1
2 t)(y(Ly − y) + x(Lx − x)). To show that ue also solves the discrete equations, we start with the
general results [DtDt1]n = 0, [DtDtt]n = 0, and [DtDtt

2] = 2, and use these to compute

[DxDxue]ni,j = [y(Ly − y)(1 + 1
2 t)DxDxx(Lx − x)]ni,j

= yj(Ly − yj)(1 + 1
2 tn)(−2) .

A similar calculation must be carried out for the [DyDyue]ni,j and [DtDtue]ni,j terms. One must
also show that the quadratic solution fits the special formula for u1

i,j . The details are left as
Exercise Section 2.76. The test_quadratic function in the wave2D_u0.py program implements
this verification as a proper test function for the pytest and nose frameworks.

2.75. Visualization

Eventually, we are ready for a real application with our code! Look at the wave2D_u0.py and the
gaussian function. It starts with a Gaussian function to see how it propagates in a square with
u = 0 on the boundaries:

def gaussian(plot_method=2, version='vectorized', save_plot=True):
"""
Initial Gaussian bell in the middle of the domain.
plot_method=1 applies mesh function,
=2 means surf, =3 means Matplotlib, =4 means mayavi,
=0 means no plot.
"""
for name in glob('tmp_*.png'):

os.remove(name)

Lx = 10
Ly = 10
c = 1.0

from numpy import exp

def I(x, y):
"""Gaussian peak at (Lx/2, Ly/2)."""
return exp(-0.5*(x-Lx/2.0)**2 - 0.5*(y-Ly/2.0)**2)

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""

...

Nx = 40; Ny = 40; T = 20

151

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave2D_u0/wave2D_u0.py

DRAFT

2. Wave Equations

dt, cpu = solver(I, None, None, c, Lx, Ly, Nx, Ny, -1, T,
user_action=plot_u, version=version)

2.75.1. Matplotlib

We want to animate a 3D surface in Matplotlib, but this is a really slow process and not recommended,
so we consider Matplotlib not an option as long as on-screen animation is desired. One can use the
recipes for single shots of u, where it does produce high-quality 3D plots.

2.75.2. Gnuplot

Let us look at different ways for visualization using Gnuplot. If you have the C package Gnuplot
and the Gnuplot.py Python interface module installed, you can get nice 3D surface plots with
contours beneath (Figure Figure 2.8). It gives a nice visualization with lifted surface and contours
beneath. Figure Figure 2.8 shows four plots of u.

Figure 2.8.: Snapshots of the surface plotted by Gnuplot.

Video files can be made of the PNG frames:

152

DRAFT

2. Wave Equations

Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec flv movie.flv
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec linx264 movie.mp4
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libtheora movie.ogg

It is wise to use a high frame rate – a low one will just skip many frames. There may also be
considerable quality differences between the different formats.

MOVIE: [https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-
wave/gnuplot/wave2D_u0_gaussian/movie25.mp4]

2.75.3. Mayavi

The best option for doing visualization of 2D and 3D scalar and vector fields in Python programs
is Mayavi, which is an interface to the high-quality package VTK in C++. There is good online
documentation and also an introduction in Chapter 5 of (Langtangen 2016a).

To obtain Mayavi on Ubuntu platforms you can write

pip install mayavi --upgrade

For Mac OS X and Windows, we recommend using Anaconda. To obtain Mayavi for Anaconda you
can write

conda install mayavi

Mayavi has a MATLAB-like interface called mlab. We can do

import mayavi.mlab as plt
from mayavi import mlab

and have plt (as usual) or mlab as a kind of MATLAB visualization access inside our program (just
more powerful and with higher visual quality).

The official documentation of the mlab module is provided in two places, one for the basic functionality
and one for further functionality. Basic figure handling is very similar to the one we know from
Matplotlib. Just as for Matplotlib, all plotting commands you do in mlab will go into the same
figure, until you manually change to a new figure.

Back to our application, the following code for the user action function with plotting in Mayavi is
relevant to add.

153

http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html

DRAFT

2. Wave Equations

try:
import mayavi.mlab as mlab

except:
pass

def solver(...):
...

def gaussian(...):
...
if plot_method == 3:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
plt.ion()
fig = plt.figure()
u_surf = None

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""
if t[n] == 0:

time.sleep(2)
if plot_method == 1:

st.mesh(x, y, u, title='t=%g' % t[n], zlim=[-1,1],
caxis=[-1,1])

elif plot_method == 2:
st.surfc(xv, yv, u, title='t=%g' % t[n], zlim=[-1, 1],

colorbar=True, colormap=st.hot(), caxis=[-1,1],
shading='flat')

elif plot_method == 3:
print 'Experimental 3D matplotlib...not recommended'

elif plot_method == 4:
mlab.clf()
extent1 = (0, 20, 0, 20,-2, 2)
s = mlab.surf(x , y, u,

colormap='Blues',
warp_scale=5,extent=extent1)

mlab.axes(s, color=(.7, .7, .7), extent=extent1,
ranges=(0, 10, 0, 10, -1, 1),
xlabel='', ylabel='', zlabel='',
x_axis_visibility=False,
z_axis_visibility=False)

mlab.outline(s, color=(0.7, .7, .7), extent=extent1)
mlab.text(6, -2.5, '', z=-4, width=0.14)
mlab.colorbar(object=None, title=None,

orientation='horizontal',
nb_labels=None, nb_colors=None,

154

DRAFT

2. Wave Equations

label_fmt=None)
mlab.title('Gaussian t=%g' % t[n])
mlab.view(142, -72, 50)
f = mlab.gcf()
camera = f.scene.camera
camera.yaw(0)

if plot_method > 0:
time.sleep(0) # pause between frames
if save_plot:

filename = 'tmp_%04d.png' % n
if plot_method == 4:

mlab.savefig(filename) # time consuming!
elif plot_method in (1,2):

st.savefig(filename) # time consuming!

This is a point to get started – visualization is as always a very time-consuming and experimental
discipline. With the PNG files we can use ffmpeg to create videos.

Figure 2.9.: Plot with Mayavi.

155

DRAFT

2. Wave Equations

MOVIE: [https://github.com/hplgit/fdm-book/blob/master/doc/pub/book/html/mov-
wave/mayavi/wave2D_u0_gaussian/movie.mp4]

2.76. Exercise: Check that a solution fulfills the discrete model

Carry out all mathematical details to show that (2.113) is indeed a solution of the discrete model
for a 2D wave equation with u = 0 on the boundary. One must check the boundary conditions,
the initial conditions, the general discrete equation at a time level and the special version of this
equation for the first time level.

2.77. Project: Calculus with 2D mesh functions

The goal of this project is to redo Project Section 2.34 with 2D mesh functions (fi,j).

Differentiation. The differentiation results in a discrete gradient function, which in the 2D case
can be represented by a three-dimensional array df[d,i,j] where d represents the direction of the
derivative, and i,j is a mesh point in 2D. Use centered differences for the derivative at inner points
and one-sided forward or backward differences at the boundary points. Construct unit tests and
write a corresponding test function.

Integration. The integral of a 2D mesh function fi,j is defined as

Fi,j =
∫ yj

y0

∫ xi

x0
f(x, y)dxdy,

where f(x, y) is a function that takes on the values of the discrete mesh function fi,j at the mesh
points, but can also be evaluated in between the mesh points. The particular variation between
mesh points can be taken as bilinear, but this is not important as we will use a product Trapezoidal
rule to approximate the integral over a cell in the mesh and then we only need to evaluate f(x, y)
at the mesh points.

Suppose Fi,j is computed. The calculation of Fi+1,j is then

Fi+1,j = Fi,j +
∫ xi+1

xi

∫ yj

y0
f(x, y)dydx

≈ ∆x1
2

(∫ yj

y0
f(xi, y)dy +

∫ yj

y0
f(xi+1, y)dy

)
The integrals in the y direction can be approximated by a Trapezoidal rule. A similar idea can be
used to compute Fi,j+1. Thereafter, Fi+1,j+1 can be computed by adding the integral over the final
corner cell to Fi+1,j + Fi,j+1 − Fi,j . Carry out the details of these computations and implement a
function that can return Fi,j for all mesh indices i and j. Use the fact that the Trapezoidal rule is
exact for linear functions and write a test function.

156

DRAFT

2. Wave Equations

2.78. Exercise: Implement Neumann conditions in 2D

Modify the wave2D_u0.py program, which solves the 2D wave equation utt = c2(uxx + uyy) with
constant wave velocity c and u = 0 on the boundary, to have Neumann boundary conditions:
∂u/∂n = 0. Include both scalar code (for debugging and reference) and vectorized code (for
speed).

To test the code, use u = 1.2 as solution (I(x, y) = 1.2, V = f = 0, and c arbitrary), which should be
exactly reproduced with any mesh as long as the stability criterion is satisfied. Another test is to use
the plug-shaped pulse in the pulse function from Section Section 2.49 and the wave1D_dn_vc.py
program. This pulse is exactly propagated in 1D if c∆t/∆x = 1. Check that also the 2D program can
propagate this pulse exactly in x direction (c∆t/∆x = 1, ∆y arbitrary) and y direction (c∆t/∆y = 1,
∆x arbitrary).

2.79. Exercise: Test the efficiency of compiled loops in 3D

Extend the wave2D_u0.py code and the Cython, Fortran, and C versions to 3D. Set up an efficiency
experiment to determine the relative efficiency of pure scalar Python code, vectorized code, Cython-
compiled loops, Fortran-compiled loops, and C-compiled loops. Normalize the CPU time for each
mesh by the fastest version.

2.80. Applications of wave equations

This section presents a range of wave equation models for different physical phenomena. Although
many wave motion problems in physics can be modeled by the standard linear wave equation, or a
similar formulation with a system of first-order equations, there are some exceptions. Perhaps the
most important is water waves: these are modeled by the Laplace equation with time-dependent
boundary conditions at the water surface (long water waves, however, can be approximated by a
standard wave equation, see Section Section 2.87). Quantum mechanical waves constitute another
example where the waves are governed by the Schrödinger equation, i.e., not by a standard wave
equation. Many wave phenomena also need to take nonlinear effects into account when the wave
amplitude is significant. Shock waves in the air is a primary example.

The derivations in the following are very brief. Those with a firm background in continuum mechanics
will probably have enough knowledge to fill in the details, while other readers will hopefully get some
impression of the physics and approximations involved when establishing wave equation models.

2.81. Waves on a string

Figure Figure 2.10 shows a model we may use to derive the equation for waves on a string. The string
is modeled as a set of discrete point masses (at mesh points) with elastic strings in between. The
string has a large constant tension T . We let the mass at mesh point xi be mi. The displacement of
this mass point in the y direction is denoted by ui(t).

157

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave2D_u0/wave2D_u0.py
https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_dn_vc.py

DRAFT

2. Wave Equations

Figure 2.10.: Discrete string model with point masses connected by elastic strings.

158

DRAFT

2. Wave Equations

The motion of mass mi is governed by Newton’s second law of motion. The position of the mass at
time t is xii + ui(t)j, where i and j are unit vectors in the x and y direction, respectively. The
acceleration is then u′′

i (t)j. Two forces are acting on the mass as indicated in Figure Figure 2.10.
The force T − acting toward the point xi−1 can be decomposed as

T − = −T sinϕi− T cosϕj,

where ϕ is the angle between the force and the line x = xi. Let ∆ui = ui − ui−1 and let ∆si =√
∆u2

i + (xi − xi−1)2 be the distance from mass mi−1 to mass mi. It is seen that cosϕ = ∆ui/∆si

and sinϕ = (xi − xi−1)/∆s or ∆x/∆si if we introduce a constant mesh spacing ∆x = xi − xi−1.
The force can then be written

T − = −T ∆x
∆si

i− T ∆ui

∆si
j .

The force T + acting toward xi+1 can be calculated in a similar way:

T + = T
∆x

∆si+1
i + T

∆ui+1
∆si+1

j .

Newton’s second law becomes
miu

′′
i (t)j = T + + T −,

which gives the component equations

T
∆x
∆si

= T
∆x

∆si+1
, (2.114)

miu
′′
i (t) = T

∆ui+1
∆si+1

− T ∆ui

∆si
. (2.115)

A basic reasonable assumption for a string is small displacements ui and small displacement gradients
∆ui/∆x. For small g = ∆ui/∆x we have that

∆si =
√

∆u2
i + ∆x2 = ∆x

√
1 + g2 + ∆x(1 + 1

2g
2 +O(g4)) ≈ ∆x .

Equation (2.114) is then simply the identity T = T , while (2.115) can be written as

miu
′′
i (t) = T

∆ui+1
∆x − T ∆ui

∆x ,

which upon division by ∆x and introducing the density ϱi = mi/∆x becomes

ϱiu
′′
i (t) = T

1
∆x2 (ui+1 − 2ui + ui−1) . (2.116)

We can now choose to approximate u′′
i by a finite difference in time and get the discretized wave

equation,
ϱi

1
∆t2

(
un+1

i − 2un
i − un−1

i

)
= T

1
∆x2 (ui+1 − 2ui + ui−1) .

On the other hand, we may go to the continuum limit ∆x→ 0 and replace ui(t) by u(x, t), ϱi by
ϱ(x), and recognize that the right-hand side of (2.116) approaches ∂2u/∂x2 as ∆x→ 0. We end up
with the continuous model for waves on a string:

ϱ
∂2u

∂t2
= T

∂2u

∂x2 . (2.117)

159

DRAFT

2. Wave Equations

Note that the density ϱ may change along the string, while the tension T is a constant. With
variable wave velocity c(x) =

√
T/ϱ(x) we can write the wave equation in the more standard form

∂2u

∂t2
= c2(x)∂

2u

∂x2 . (2.118)

Because of the way ϱ enters the equations, the variable wave velocity does not appear inside the
derivatives as in many other versions of the wave equation. However, most strings of interest have
constant ϱ.

The end points of a string are fixed so that the displacement u is zero. The boundary conditions
are therefore u = 0.

2.81.1. Damping

Air resistance and non-elastic effects in the string will contribute to reduce the amplitudes of the
waves so that the motion dies out after some time. This damping effect can be modeled by a term
but on the left-hand side of the equation

ϱ
∂2u

∂t2
+ b

∂u

∂t
= T

∂2u

∂x2 . (2.119)

The parameter b ≥ 0 is small for most wave phenomena, but the damping effect may become
significant in long time simulations.

2.81.2. External forcing

It is easy to include an external force acting on the string. Say we have a vertical force f̃ij acting
on mass mi, modeling the effect of gravity on a string. This force affects the vertical component of
Newton’s law and gives rise to an extra term f̃(x, t) on the right-hand side of (2.117). In the model
(2.118) we would add a term f(x, t) = f̃(x, t)/ϱ(x).

2.81.3. Modeling the tension via springs

We assumed, in the derivation above, that the tension in the string, T , was constant. It is easy to
check this assumption by modeling the string segments between the masses as standard springs,
where the force (tension T) is proportional to the elongation of the spring segment. Let k be the
spring constant, and set Ti = k∆ℓ for the tension in the spring segment between xi−1 and xi, where
∆ℓ is the elongation of this segment from the tension-free state. A basic feature of a string is that
it has high tension in the equilibrium position u = 0. Let the string segment have an elongation
∆ℓ0 in the equilibrium position. After deformation of the string, the elongation is ∆ℓ = ∆ℓ0 + ∆si:
Ti = k(∆ℓ0 + ∆si) ≈ k(∆ℓ0 + ∆x). This shows that Ti is independent of i. Moreover, the extra
approximate elongation ∆x is very small compared to ∆ℓ0, so we may well set Ti = T = k∆ℓ0. This
means that the tension is completely dominated by the initial tension determined by the tuning
of the string. The additional deformations of the spring during the vibrations do not introduce
significant changes in the tension.

160

DRAFT

2. Wave Equations

2.82. Elastic waves in a rod

Consider an elastic rod subject to a hammer impact at the end. This experiment will give rise to
an elastic deformation pulse that travels through the rod. A mathematical model for longitudinal
waves along an elastic rod starts with the general equation for deformations and stresses in an
elastic medium,

ϱutt = ∇ · σ + ϱf , (2.120)

where ϱ is the density, u the displacement field, σ the stress tensor, and f body forces. The latter
has normally no impact on elastic waves.

For stationary deformation of an elastic rod, aligned with the x axis, one has that σxx = Eux,
with all other stress components being zero. The parameter E is known as Young’s modulus.
Moreover, we set u = u(x, t)i and neglect the radial contraction and expansion (where Poisson’s
ratio is the important parameter). Assuming that this simple stress and deformation field is a good
approximation, (2.120) simplifies to

ϱ
∂2u

∂t2
= ∂

∂x

(
E
∂u

∂x

)
. (2.121)

The associated boundary conditions are u or σxx = Eux known, typically u = 0 for a fixed end and
σxx = 0 for a free end.

2.83. Waves on a membrane

Think of a thin, elastic membrane with shape as a circle or rectangle. This membrane can be brought
into oscillatory motion and will develop elastic waves. We can model this phenomenon somewhat
similar to waves in a rod: waves in a membrane are simply the two-dimensional counterpart. We
assume that the material is deformed in the z direction only and write the elastic displacement field
on the form u(x, y, t) = w(x, y, t)i. The z coordinate is omitted since the membrane is thin and
all properties are taken as constant throughout the thickness. Inserting this displacement field in
Newton’s 2nd law of motion (2.120) results in

ϱ
∂2w

∂t2
= ∂

∂x

(
µ
∂w

∂x

)
+ ∂

∂y

(
µ
∂w

∂y

)
. (2.122)

This is nothing but a wave equation in w(x, y, t), which needs the usual initial conditions on w
and wt as well as a boundary condition w = 0. When computing the stress in the membrane, one
needs to split σ into a constant high-stress component due to the fact that all membranes are
normally pre-stressed, plus a component proportional to the displacement and governed by the wave
motion.

2.84. The acoustic model for seismic waves

Seismic waves are used to infer properties of subsurface geological structures. The physical model is
a heterogeneous elastic medium where sound is propagated by small elastic vibrations. The general

161

DRAFT

2. Wave Equations

mathematical model for deformations in an elastic medium is based on Newton’s second law,

ϱutt = ∇ · σ + ϱf , (2.123)

and a constitutive law relating σ to u, often Hooke’s generalized law,

σ = K∇ · u I +G(∇u + (∇u)T − 2
3∇ · u I) . (2.124)

Here, u is the displacement field, σ is the stress tensor, I is the identity tensor, ϱ is the medium’s
density, f are body forces (such as gravity), K is the medium’s bulk modulus and G is the shear
modulus. All these quantities may vary in space, while u and σ will also show significant variation
in time during wave motion.

The acoustic approximation to elastic waves arises from a basic assumption that the second term in
Hooke’s law, representing the deformations that give rise to shear stresses, can be neglected. This
assumption can be interpreted as approximating the geological medium by a fluid. Neglecting also
the body forces f , (2.123) becomes

ϱutt = ∇(K∇ · u) (2.125)

Introducing p as a pressure via
p = −K∇ · u, (2.126)

and dividing (2.125) by ϱ, we get
utt = −1

ϱ
∇p .

Taking the divergence of this equation, using ∇ · u = −p/K from (2.126), gives the acoustic
approximation to elastic waves:

ptt = K∇ ·
(1
ϱ
∇p
)
. (2.127)

This is a standard, linear wave equation with variable coefficients. It is common to add a source
term s(x, y, z, t) to model the generation of sound waves:

ptt = K∇ ·
(1
ϱ
∇p
)

+ s . (2.128)

A common additional approximation of (2.128) is based on using the chain rule on the right-hand
side,

K∇ ·
(1
ϱ
∇p
)

= K

ϱ
∇2p+K∇

(1
ϱ

)
· ∇p ≈ K

ϱ
∇2p,

under the assumption that the relative spatial gradient∇ϱ−1 = −ϱ−2∇ϱ is small. This approximation
results in the simplified equation

ptt = K

ϱ
∇2p+ s . (2.129)

The acoustic approximations to seismic waves are used for sound waves in the ground, and the
Earth’s surface is then a boundary where p equals the atmospheric pressure p0 such that the
boundary condition becomes p = p0.

162

DRAFT

2. Wave Equations

2.84.1. Anisotropy

Quite often in geological materials, the effective wave velocity c =
√
K/ϱ is different in different

spatial directions because geological layers are compacted, and often twisted, in such a way that the
properties in the horizontal and vertical direction differ. With z as the vertical coordinate, we can
introduce a vertical wave velocity cz and a horizontal wave velocity ch, and generalize (2.129) to

ptt = c2
zpzz + c2

h(pxx + pyy) + s . (2.130)

2.85. Sound waves in liquids and gases

Sound waves arise from pressure and density variations in fluids. The starting point of modeling
sound waves is the basic equations for a compressible fluid where we omit viscous (frictional) forces,
body forces (gravity, for instance), and temperature effects:

ϱt +∇ · (ϱu) = 0, (2.131)

ϱut + ϱu · ∇u = −∇p, (2.132)

ϱ = ϱ(p) . (2.133)

These equations are often referred to as the Euler equations for the motion of a fluid. The parameters
involved are the density ϱ, the velocity u, and the pressure p. Equation (2.131) reflects mass balance,
(2.132) is Newton’s second law for a fluid, with frictional and body forces omitted, and (2.133) is a
constitutive law relating density to pressure by thermodynamic considerations. A typical model
for (2.133) is the so-called isentropic relation, valid for adiabatic processes where there is no heat
transfer:

ϱ = ϱ0

(
p

p0

)1/γ

. (2.134)

Here, p0 and ϱ0 are reference values for p and ϱ when the fluid is at rest, and γ is the ratio of
specific heat at constant pressure and constant volume (γ = 5/3 for air).

The key approximation in a mathematical model for sound waves is to assume that these waves are
small perturbations to the density, pressure, and velocity. We therefore write

p = p0 + p̂,

ϱ = ϱ0 + ϱ̂,

u = û,

where we have decomposed the fields in a constant equilibrium value, corresponding to u = 0, and a
small perturbation marked with a hat symbol. By inserting these decompositions in (2.131) and
(2.132), neglecting all product terms of small perturbations and/or their derivatives, and dropping
the hat symbols, one gets the following linearized PDE system for the small perturbations in density,
pressure, and velocity:

ϱt + ϱ0∇ · u = 0,

163

http://en.wikipedia.org/wiki/Isentropic_process

DRAFT

2. Wave Equations

ϱ0ut = −∇p .

Now we can eliminate ϱt by differentiating the relation ϱ(p),

ϱt = ϱ0
1
γ

(
p

p0

)1/γ−1 1
p0
pt = ϱ0

γp0

(
p

p0

)1/γ−1
pt .

The product term p1/γ−1pt can be linearized as p1/γ−1
0 pt, resulting in

ϱt ≈
ϱ0
γp0

pt .

We then get

pt + γp0∇ · u = 0, (2.135)

ut = − 1
ϱ0
∇p . (2.136)

Taking the divergence of (2.136) and differentiating (2.135) with respect to time gives the possibility
to easily eliminate ∇ · ut and arrive at a standard, linear wave equation for p:

ptt = c2∇2p,

where c =
√
γp0/ϱ0 is the speed of sound in the fluid.

2.86. Spherical waves

Spherically symmetric three-dimensional waves propagate in the radial direction r only so that
u = u(r, t). The fully three-dimensional wave equation

∂2u

∂t2
= ∇ · (c2∇u) + f

then reduces to the spherically symmetric wave equation

∂2u

∂t2
= 1
r2

∂

∂r

(
c2(r)r2∂u

∂r

)
+ f(r, t), r ∈ (0, R), t > 0 .

One can easily show that the function v(r, t) = ru(r, t) fulfills a standard wave equation in Cartesian
coordinates if c is constant. To this end, insert u = v/r in

1
r2

∂

∂r

(
c2(r)r2∂u

∂r

)
to obtain

r

(
dc2

dr

∂v

∂r
+ c2∂

2v

∂r2

)
− dc2

dr
v .

The two terms in the parenthesis can be combined to

r
∂

∂r

(
c2∂v

∂r

)
,

164

DRAFT

2. Wave Equations

which is recognized as the variable-coefficient Laplace operator in one Cartesian coordinate. The
spherically symmetric wave equation in terms of v(r, t) now becomes

∂2v

∂t2
= ∂

∂r

(
c2(r)∂v

∂r

)
− 1
r

dc2

dr
v + rf(r, t), r ∈ (0, R), t > 0 .

In the case of constant wave velocity c, this equation reduces to the wave equation in a single
Cartesian coordinate called r:

∂2v

∂t2
= c2∂

2v

∂r2 + rf(r, t), r ∈ (0, R), t > 0 . (2.137)

That is, any program for solving the one-dimensional wave equation in a Cartesian coordinate
system can be used to solve (2.137), provided the source term is multiplied by the coordinate, and
that we divide the Cartesian mesh solution by r to get the spherically symmetric solution. Moreover,
if r = 0 is included in the domain, spherical symmetry demands that ∂u/∂r = 0 at r = 0, which
means that

∂u

∂r
= 1
r2

(
r
∂v

∂r
− v

)
= 0, r = 0 .

For this to hold in the limit r → 0, we must have v(0, t) = 0 at least as a necessary condition. In
most practical applications, we exclude r = 0 from the domain and assume that some boundary
condition is assigned at r = ϵ, for some ϵ > 0.

2.87. The linear shallow water equations

The next example considers water waves whose wavelengths are much larger than the depth and
whose wave amplitudes are small. This class of waves may be generated by catastrophic geophysical
events, such as earthquakes at the sea bottom, landslides moving into water, or underwater slides
(or a combination, as earthquakes frequently release avalanches of masses). For example, a subsea
earthquake will normally have an extension of many kilometers but lift the water only a few meters.
The wave length will have a size dictated by the earthquake area, which is much lager than the water
depth, and compared to this wave length, an amplitude of a few meters is very small. The water is
essentially a thin film, and mathematically we can average the problem in the vertical direction
and approximate the 3D wave phenomenon by 2D PDEs. Instead of a moving water domain in
three space dimensions, we get a horizontal 2D domain with an unknown function for the surface
elevation and the water depth as a variable coefficient in the PDEs.

Let η(x, y, t) be the elevation of the water surface, H(x, y) the water depth corresponding to a flat
surface (η = 0), u(x, y, t) and v(x, y, t) the depth-averaged horizontal velocities of the water. Mass
and momentum balance of the water volume give rise to the PDEs involving these quantities:

ηt = −(Hu)x − (Hv)x (2.138)

ut = −gηx, (2.139)

vt = −gηy, (2.140)

where g is the acceleration of gravity. Equation (2.138) corresponds to mass balance while the other
two are derived from momentum balance (Newton’s second law).

165

DRAFT

2. Wave Equations

The initial conditions associated with (2.138)-(2.140) are η, u, and v prescribed at t = 0. A
common condition is to have some water elevation η = I(x, y) and assume that the surface is at
rest: u = v = 0. A subsea earthquake usually means a sufficiently rapid motion of the bottom and
the water volume to say that the bottom deformation is mirrored at the water surface as an initial
lift I(x, y) and that u = v = 0.

Boundary conditions may be η prescribed for incoming, known waves, or zero normal velocity at
reflecting boundaries (steep mountains, for instance): unx + vny = 0, where (nx, ny) is the outward
unit normal to the boundary. More sophisticated boundary conditions are needed when waves
run up at the shore, and at open boundaries where we want the waves to leave the computational
domain undisturbed.

Equations (2.138), (2.139), and (2.140) can be transformed to a standard, linear wave equation.
First, multiply (2.139) and (2.140) by H, differentiate (2.139)) with respect to x and (2.140) with
respect to y. Second, differentiate (2.138) with respect to t and use that (Hu)xt = (Hut) ∗ ∗x and
(Hv) ∗ ∗yt = (Hvt)y when H is independent of t. Third, eliminate (Hut)x and (Hvt)y with the aid
of the other two differentiated equations. These manipulations result in a standard, linear wave
equation for η:

ηtt = (gHηx)x + (gHηy)y = ∇ · (gH∇η) . (2.141)

In the case we have an initial non-flat water surface at rest, the initial conditions become η = I(x, y)
and ηt = 0. The latter follows from (2.138) if u = v = 0, or simply from the fact that the vertical
velocity of the surface is ηt, which is zero for a surface at rest.

The system (2.138)-(2.140) can be extended to handle a time-varying bottom topography, which is
relevant for modeling long waves generated by underwater slides. In such cases the water depth
function H is also a function of t, due to the moving slide, and one must add a time-derivative
term Ht to the left-hand side of (2.138). A moving bottom is best described by introducing z = H0
as the still-water level, z = B(x, y, t) as the time- and space-varying bottom topography, so that
H = H0 −B(x, y, t). In the elimination of u and v one may assume that the dependence of H on t
can be neglected in the terms (Hu) ∗ ∗xt and (Hv) ∗ ∗yt. We then end up with a source term in
(2.141), because of the moving (accelerating) bottom:

ηtt = ∇ · (gH∇η) +Btt . (2.142)

The reduction of (2.142) to 1D, for long waves in a straight channel, or for approximately plane
waves in the ocean, is trivial by assuming no change in y direction (∂/∂y = 0):

ηtt = (gHηx) ∗ ∗x+B ∗ ∗tt . (2.143)

2.87.1. Wind drag on the surface

Surface waves are influenced by the drag of the wind, and if the wind velocity some meters above the
surface is (U, V), the wind drag gives contributions CV

√
U2 + V 2U and CV

√
U2 + V 2V to (2.139)

and (2.140), respectively, on the right-hand sides.

166

DRAFT

2. Wave Equations

2.87.2. Bottom drag

The waves will experience a drag from the bottom, often roughly modeled by a term similar to the
wind drag: CB

√
u2 + v2u on the right-hand side of (2.139) and CB

√
u2 + v2v on the right-hand

side of (2.140). Note that in this case the PDEs (2.139) and (2.140) become nonlinear and the
elimination of u and v to arrive at a 2nd-order wave equation for η is not possible anymore.

2.87.3. Effect of the Earth’s rotation

Long geophysical waves will often be affected by the rotation of the Earth because of the Coriolis
force. This force gives rise to a term fv on the right-hand side of (2.139) and −fu on the right-hand
side of (2.140). Also in this case one cannot eliminate u and v to work with a single equation for η.
The Coriolis parameter is f = 2Ω sinϕ, where Ω is the angular velocity of the earth and ϕ is the
latitude.

2.88. Waves in blood vessels

The flow of blood in our bodies is basically fluid flow in a network of pipes. Unlike rigid pipes, the
walls in the blood vessels are elastic and will increase their diameter when the pressure rises. The
elastic forces will then push the wall back and accelerate the fluid. This interaction between the flow
of blood and the deformation of the vessel wall results in waves traveling along our blood vessels.

A model for one-dimensional waves along blood vessels can be derived from averaging the fluid
flow over the cross section of the blood vessels. Let x be a coordinate along the blood vessel and
assume that all cross sections are circular, though with different radii R(x, t). The main quantities
to compute is the cross section area A(x, t), the averaged pressure P (x, t), and the total volume
flux Q(x, t). The area of this cross section is

A(x, t) = 2π
∫ R(x,t)

0
rdr,

Let vx(x, t) be the velocity of blood averaged over the cross section at point x. The volume flux,
being the total volume of blood passing a cross section per time unit, becomes

Q(x, t) = A(x, t)vx(x, t)

Mass balance and Newton’s second law lead to the PDEs

∂A

∂t
+ ∂Q

∂x
= 0, (2.144)

∂Q

∂t
+ γ + 2
γ + 1

∂

∂x

(
Q2

A

)
+ A

ϱ

∂P

∂x
= −2π(γ + 2)µ

ϱ

Q

A
, (2.145)

where γ is a parameter related to the velocity profile, ϱ is the density of blood, and µ is the dynamic
viscosity of blood.

167

DRAFT

2. Wave Equations

We have three unknowns A, Q, and P , and two equations (2.144) and (2.145). A third equation is
needed to relate the flow to the deformations of the wall. A common form for this equation is

∂P

∂t
+ 1
C

∂Q

∂x
= 0, (2.146)

where C is the compliance of the wall, given by the constitutive relation

C = ∂A

∂P
+ ∂A

∂t
,

which requires a relationship between A and P . One common model is to view the vessel wall,
locally, as a thin elastic tube subject to an internal pressure. This gives the relation

P = P0 + πhE

(1− ν2)A0
(
√
A−

√
A0),

where P0 and A0 are corresponding reference values when the wall is not deformed, h is the thickness
of the wall, and E and ν are Young’s modulus and Poisson’s ratio of the elastic material in the wall.
The derivative becomes

C = ∂A

∂P
= 2(1− ν2)A0

πhE

√
A0 + 2

(
(1− ν2)A0

πhE

)2

(P − P0) .

Another (nonlinear) deformation model of the wall, which has a better fit with experiments, is

P = P0 exp (β(A/A0 − 1)),

where β is some parameter to be estimated. This law leads to

C = ∂A

∂P
= A0
βP

.

Reduction to the standard wave equation. It is not uncommon to neglect the viscous term
on the right-hand side of (2.145) and also the quadratic term with Q2 on the left-hand side. The
reduced equations (2.145) and (2.146) form a first-order linear wave equation system:

C
∂P

∂t
= −∂Q

∂x
,

∂Q

∂t
= −A

ϱ

∂P

∂x
.

These can be combined into standard 1D wave PDE by differentiating the first equation with respect
to t and the second with respect to x,

∂

∂t

(
C
∂P

∂t

)
= ∂

∂x

(
A

ϱ

∂P

∂x

)
,

which can be approximated by

∂2Q

∂t2
= c2∂

2Q

∂x2 , c =
√
A

ϱC
,

where the A and C in the expression for c are taken as constant reference values.

168

DRAFT

2. Wave Equations

2.89. Electromagnetic waves

Light and radio waves are governed by standard wave equations arising from Maxwell’s general
equations. When there are no charges and no currents, as in a vacuum, Maxwell’s equations take
the form

∇ ·EEE = 0,
∇ ·BBB = 0,

∇×EEE = −∂BBB
∂t
,

∇×BBB = µ0ϵ0
∂EEE

∂t
,

where ϵ0 = 8.854187817620 · 10−12 (F/m) is the permittivity of free space, also known as the electric
constant, and µ0 = 1.2566370614 · 10−6 (H/m) is the permeability of free space, also known as the
magnetic constant. Taking the curl of the two last equations and using the mathematical identity

∇× (∇×EEE) = ∇(∇ ·EEE) +∇2EEE = −∇2EEE when ∇ ·EEE = 0,

gives the wave equation governing the electric and magnetic field:

∂2EEE

∂t2
= c2∇2EEE, (2.147)

∂2BBB

∂t2
= c2∇2BBB, (2.148)

with c = 1/√µ0ϵ0 as the velocity of light. Each component of EEE and BBB fulfills a wave equation and
can hence be solved independently.

2.90. Exercise: Simulate waves on a non-homogeneous string

Simulate waves on a string that consists of two materials with different density. The tension in
the string is constant, but the density has a jump at the middle of the string. Experiment with
different sizes of the jump and produce animations that visualize the effect of the jump on the wave
motion.

� According to Section Section 2.81,

the density enters the mathematical model as ϱ in ϱutt = Tuxx, where T is the string tension.
Modify, e.g., the wave1D_u0v.py code to incorporate the tension and two density values. Make
a mesh function rho with density values at each spatial mesh point. A value for the tension may
be 150 N. Corresponding density values can be computed from the wave velocity estimations
in the guitar function in the wave1D_u0v.py file.

169

DRAFT

2. Wave Equations

2.91. Exercise: Simulate damped waves on a string

Formulate a mathematical model for damped waves on a string. Use data from Section Section 2.20,
and tune the damping parameter so that the string is very close to the rest state after 15 s. Make a
movie of the wave motion.

2.92. Exercise: Simulate elastic waves in a rod

A hammer hits the end of an elastic rod. The exercise is to simulate the resulting wave motion
using the model (2.121) from Section Section 2.82. Let the rod have length L and let the boundary
x = L be stress free so that σxx = 0, implying that ∂u/∂x = 0. The left end x = 0 is subject to a
strong stress pulse (the hammer), modeled as

σxx(t) =
{
S, 0 < t ≤ ts,
0, t > ts

The corresponding condition on u becomes ux = S/E for t ≤ ts and zero afterwards (recall that
σxx = Eux). This is a non-homogeneous Neumann condition, and you will need to approximate this
condition and combine it with the scheme (the ideas and manipulations follow closely the handling
of a non-zero initial condition ut = V in wave PDEs or the corresponding second-order ODEs for
vibrations).

2.93. Exercise: Simulate spherical waves

Implement a model for spherically symmetric waves using the method described in Section Sec-
tion 2.86. The boundary condition at r = 0 must be ∂u/∂r = 0, while the condition at r = R can
either be u = 0 or a radiation condition as described in Problem Section 2.57. The u = 0 condition
is sufficient if R is so large that the amplitude of the spherical wave has become insignificant. Make
movie(s) of the case where the source term is located around r = 0 and sends out pulses

f(r, t) =
{
Q exp (− r2

2∆r2) sinωt, sinωt ≥ 0
0, sinωt < 0

Here, Q and ω are constants to be chosen.

� Use the program wave1D_u0v.py as a starting point. Let solver

compute the v function and then set u = v/r. However, u = v/r for r = 0 requires special
treatment. One possibility is to compute u[1:] = v[1:]/r[1:] and then set u[0]=u[1].
The latter makes it evident that ∂u/∂r = 0 in a plot.

170

DRAFT

2. Wave Equations

2.94. Problem: Earthquake-generated tsunami over a subsea hill

A subsea earthquake leads to an immediate lift of the water surface, see Figure Figure 2.11. The
lifted water surface splits into two tsunamis, one traveling to the right and one to the left, as
depicted in Figure Figure 2.12. Since tsunamis are normally very long waves, compared to the depth,
with a small amplitude, compared to the wave length, a standard wave equation is relevant:

ηtt = (gH(x)ηx)x,

where η is the elevation of the water surface, g is the acceleration of gravity, and H(x) is the still
water depth.

Figure 2.11.: Sketch of initial water surface due to a subsea earthquake.

Figure 2.12.: An initial surface elevation is split into two waves.

To simulate the right-going tsunami, we can impose a symmetry boundary at x = 0: ∂η/∂x = 0.
We then simulate the wave motion in [0, L]. Unless the ocean ends at x = L, the waves should
travel undisturbed through the boundary x = L. A radiation condition as explained in Problem

171

DRAFT

2. Wave Equations

Section 2.57 can be used for this purpose. Alternatively, one can just stop the simulations before the
wave hits the boundary at x = L. In that case it does not matter what kind of boundary condition
we use at x = L. Imposing η = 0 and stopping the simulations when |ηn

i | > ϵ, i = Nx − 1, is a
possibility (ϵ is a small parameter).

The shape of the initial surface can be taken as a Gaussian function,

I(x; I0, Ia, Im, Is) = I0 + Ia exp
(
−
(
x− Im

Is

)2
)
,

with Im = 0 reflecting the location of the peak of I(x) and Is being a measure of the width of the
function I(x) (Is is

√
2 times the standard deviation of the familiar normal distribution curve).

Now we extend the problem with a hill at the sea bottom, see Figure Figure 2.13. The wave speed
c =

√
gH(x) =

√
g(H0 −B(x)) will then be reduced in the shallow water above the hill.

Figure 2.13.: Sketch of an earthquake-generated tsunami passing over a subsea hill.

One possible form of the hill is a Gaussian function,

B(x;B0, Ba, Bm, Bs) = B0 +Ba exp
(
−
(
x−Bm

Bs

)2
)
, (2.149)

but many other shapes are also possible, e.g., a “cosine hat” where

B(x;B0, Ba, Bm, Bs) = B0 +Ba cos
(
π
x−Bm

2Bs

)
, (2.150)

when x ∈ [Bm −Bs, Bm +Bs] while B = B0 outside this interval.

Also an abrupt construction may be tried:

B(x;B0, Ba, Bm, Bs) = B0 +Ba, (2.151)

for x ∈ [Bm −Bs, Bm +Bs] while B = B0 outside this interval.

172

DRAFT

2. Wave Equations

The wave1D_dn_vc.py program can be used as starting point for the implementation. Visualize
both the bottom topography and the water surface elevation in the same plot. Allow for a flexible
choice of bottom shape: (2.149), (2.150), (2.151), or B(x) = B0 (flat).

The purpose of this problem is to explore the quality of the numerical solution ηn
i for different

shapes of the bottom obstruction. The “cosine hat” and the box-shaped hills have abrupt changes
in the derivative of H(x) and are more likely to generate numerical noise than the smooth Gaussian
shape of the hill. Investigate if this is true.

2.95. Problem: Earthquake-generated tsunami over a 3D hill

This problem extends Problem Section 2.94 to a three-dimensional wave phenomenon, governed by
the 2D PDE

ηtt = (gHηx)x + (gHηy)y = ∇ · (gH∇η) . (2.152)

We assume that the earthquake arises from a fault along the line x = 0 in the xy-plane so that the
initial lift of the surface can be taken as I(x) in Problem Section 2.94. That is, a plane wave is
propagating to the right, but will experience bending because of the bottom.

The bottom shape is now a function of x and y. An “elliptic” Gaussian function in two dimensions,
with its peak at (Bmx, Bmy), generalizes (2.149):

B = B0 +Ba exp
(
−
(
x−Bmx

Bs

)2
−
(
y −Bmy

bBs

)2
)
, (2.153)

where b is a scaling parameter: b = 1 gives a circular Gaussian function with circular contour lines,
while b ̸= 1 gives an elliptic shape with elliptic contour lines. To indicate the input parameters in
the model, we may write

B = B(x;B0, Ba, Bmx, Bmy, Bs, b) .

The “cosine hat” (2.150) can also be generalized to

B = B0 +Ba cos
(
π
x−Bmx

2Bs

)
cos

(
π
y −Bmy

2Bs

)
, (2.154)

when 0 ≤
√
x2 + y2 ≤ Bs and B = B0 outside this circle.

A box-shaped obstacle means that

B(x;B0, Ba, Bm, Bs, b) = B0 +Ba (2.155)

for x and y inside a rectangle

Bmx −Bs ≤ x ≤ Bmx +Bs, Bmy − bBs ≤ y ≤ Bmy + bBs,

and B = B0 outside this rectangle. The b parameter controls the rectangular shape of the cross
section of the box.

Note that the initial condition and the listed bottom shapes are symmetric around the line y = Bmy.
We therefore expect the surface elevation also to be symmetric with respect to this line. This
means that we can halve the computational domain by working with [0, Lx]× [0, Bmy]. Along the

173

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_dn_vc.py

DRAFT

2. Wave Equations

upper boundary, y = Bmy, we must impose the symmetry condition ∂η/∂n = 0. Such a symmetry
condition (−ηx = 0) is also needed at the x = 0 boundary because the initial condition has a
symmetry here. At the lower boundary y = 0 we also set a Neumann condition (which becomes
−ηy = 0). The wave motion is to be simulated until the wave hits the reflecting boundaries where
∂η/∂n = ηx = 0 (one can also set η = 0 - the particular condition does not matter as long as the
simulation is stopped before the wave is influenced by the boundary condition).

Visualize the surface elevation. Investigate how different hill shapes, different sizes of the water gap
above the hill, and different resolutions ∆x = ∆y = h and ∆t influence the numerical quality of the
solution.

2.96. Problem: Investigate Mayavi for visualization

Play with Mayavi code for visualizing 2D solutions of the wave equation with variable wave velocity.
See if there are effective ways to visualize both the solution and the wave velocity scalar field at the
same time.

2.97. Problem: Investigate visualization packages

Create some fancy 3D visualization of the water waves and the subsea hill in Problem Section 2.95.
Try to make the hill transparent. Possible visualization tools are Mayavi, Paraview, and OpenDX.

2.98. Problem: Implement loops in compiled languages

Extend the program from Problem Section 2.95 such that the loops over mesh points, inside the
time loop, are implemented in compiled languages. Consider implementations in Cython, Fortran
via f2py, C via Cython, C via f2py, C/C++ via Instant, and C/C++ via scipy.weave. Perform
efficiency experiments to investigate the relative performance of the various implementations. It is
often advantageous to normalize CPU times by the fastest method on a given mesh.

2.99. Exercise: Simulate seismic waves in 2D

The goal of this exercise is to simulate seismic waves using the PDE model (2.130) in a 2D xz
domain with geological layers. Introduce m horizontal layers of thickness hi, i = 0, . . . ,m− 1. Inside
layer number i we have a vertical wave velocity cz,i and a horizontal wave velocity ch,i. Make a
program for simulating such 2D waves. Test it on a case with 3 layers where

cz,0 = cz,1 = cz,2, ch,0 = ch,2, ch,1 ≪ ch,0 .

Let s be a localized point source at the middle of the Earth’s surface (the upper boundary) and
investigate how the resulting wave travels through the medium. The source can be a localized
Gaussian peak that oscillates in time for some time interval. Place the boundaries far enough from
the expanding wave so that the boundary conditions do not disturb the wave. Then the type of

174

http://code.enthought.com/projects/mayavi/
http://www.paraview.org/
http://www.opendx.org/

DRAFT

2. Wave Equations

boundary condition does not matter, except that we physically need to have p = p0, where p0 is the
atmospheric pressure, at the upper boundary.

2.100. Project: Model 3D acoustic waves in a room

The equation for sound waves in air is derived in Section Section 2.85 and reads

ptt = c2∇2p,

where p(x, y, z, t) is the pressure and c is the speed of sound, taken as 340 m/s. However, sound is
absorbed in the air due to relaxation of molecules in the gas. A model for simple relaxation, valid
for gases consisting only of one type of molecules, is a term c2τs∇2pt in the PDE, where τs is the
relaxation time. If we generate sound from, e.g., a loudspeaker in the room, this sound source must
also be added to the governing equation.

The PDE with the mentioned type of damping and source then becomes

ptt = c2∇p + c2τs∇2pt + f,

where f(x, y, z, t) is the source term.

The walls can absorb some sound. A possible model is to have a “wall layer” (thicker than the
physical wall) outside the room where c is changed such that some of the wave energy is reflected
and some is absorbed in the wall. The absorption of energy can be taken care of by adding a
damping term bpt in the equation:

ptt+ bpt = c2∇p + c2τs∇2pt + f .

Typically, b = 0 in the room and b > 0 in the wall. A discontinuity in b or c will give rise to
reflections. It can be wise to use a constant c in the wall to control reflections because of the
discontinuity between c in the air and in the wall, while b is gradually increased as we go into
the wall to avoid reflections because of rapid changes in b. At the outer boundary of the wall
the condition p = 0 or ∂p/∂n = 0 can be imposed. The waves should anyway be approximately
dampened to p = 0 this far out in the wall layer.

There are two strategies for discretizing the ∇2pt term: using a center difference between times
n+ 1 and n− 1 (if the equation is sampled at level n), or use a one-sided difference based on levels
n and n− 1. The latter has the advantage of not leading to any equation system, while the former
is second-order accurate as the scheme for the simple wave equation ptt = c2∇2p. To avoid an
equation system, go for the one-sided difference such that the overall scheme becomes explicit and
only of first order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer. Test the solver with the
method of manufactured solutions. Make some demonstrations where the wall reflects and absorbs
the waves (reflection because of discontinuity in b and absorption because of growing b). Experiment
with the impact of the τs parameter.

175

DRAFT

2. Wave Equations

2.101. Project: Solve a 1D transport equation

We shall study the wave equation

ut + cux = 0, x ∈ (0, L], t ∈ (0, T], (2.156)

with initial condition
u(x, 0) = I(x), x ∈ [0, L],

and one periodic boundary condition

u(0, t) = u(L, t) .

This boundary condition means that what goes out of the domain at x = L comes in at x = 0.
Roughly speaking, we need only one boundary condition because the spatial derivative is of first
order only.

Physical interpretation. The parameter c can be constant or variable, c = c(x). The equation
(2.156) arises in transport problems where a quantity u, which could be temperature or concentration
of some contaminant, is transported with the velocity c of a fluid. In addition to the transport
imposed by “travelling with the fluid’ ’, u may also be transported by diffusion (such as heat
conduction or Fickian diffusion), but we have in the model ut + cux assumed that diffusion effects
are negligible, which they often are.

a)

Show that under the assumption of a = const,

u(x, t) = I(x− ct) (2.157)

fulfills the PDE as well as the initial and boundary condition (provided I(0) = I(L)).

A widely used numerical scheme for (2.156) applies a forward difference in time and a backward
difference in space when c > 0:

[D+
t u+ cD−

x u = 0]ni . (2.158)

For c < 0 we use a forward difference in space: [cD+
x u]ni .

b)

Set up a computational algorithm and implement it in a function. Assume a is constant and
positive.

c)

Test the implementation by using the remarkable property that the numerical solution is exact at
the mesh points if ∆t = c−1∆x.

d)

Make a movie comparing the numerical and exact solution for the following two choices of initial
conditions:

I(x) =
[
sin
(
π
x

L

)]2n

(2.159)

176

DRAFT

2. Wave Equations

where n is an integer, typically n = 5, and

I(x) = exp
(
−(x− L/2)2

2σ2

)
. (2.160)

Choose ∆t = c−1∆x, 0.9c−1∆x, 0.5c−1∆x.

e)

The performance of the suggested numerical scheme can be investigated by analyzing the numerical
dispersion relation. Analytically, we have that the Fourier component

u(x, t) = ei(kx−ωt),

is a solution of the PDE if ω = kc. This is the analytical dispersion relation. A complete solution
of the PDE can be built by adding up such Fourier components with different amplitudes, where
the initial condition I determines the amplitudes. The solution u is then represented by a Fourier
series.

A similar discrete Fourier component at (xp, tn) is

uq
p = ei(kp∆x−ω̃n∆t),

where in general ω̃ is a function of k, ∆t, and ∆x, and differs from the exact ω = kc.

Insert the discrete Fourier component in the numerical scheme and derive an expression for ω̃, i.e.,
the discrete dispersion relation. Show in particular that if ∆t/(c∆x) = 1, the discrete solution
coincides with the exact solution at the mesh points, regardless of the mesh resolution (!). Show
that if the stability condition

∆t
c∆x ≤ 1,

the discrete Fourier component cannot grow (i.e., ω̃ is real).

f)

Write a test for your implementation where you try to use information from the numerical dispersion
relation.

We shall hereafter assume that c(x) > 0.

g)

Set up a computational algorithm for the variable coefficient case and implement it in a function.
Make a test that the function works for constant a.

h)

It can be shown that for an observer moving with velocity c(x), u is constant. This can be used to
derive an exact solution when a varies with x. Show first that

u(x, t) = f(C(x)− t), (2.161)

where
C ′(x) = 1

c(x) ,

is a solution of (2.156) for any differentiable function f .

177

DRAFT

2. Wave Equations

� Solution

Let ξ = C(x)− t. We have that
ut = f ′(ξ)(−1),

while
ux = f ′(ξ)C ′(x) = f ′(ξ) 1

c(x) ,

implying that aux = f ′(ξ). Then we have ut + cux = −f ′(ξ) + f ′(ξ) = 0.

i)

Use the initial condition to show that an exact solution is

u(x, t) = I(C−1(C(x)− t)),

with C−1 being the inverse function of C =
∫
c1dx. Since C(x) is an integral

∫ x
0 (1/c)dx, C(x) is

monotonically increasing and there exists hence an inverse function C−1 with values in [0, L].

� Solution

In general we have u(x, t) = f(C(x)− t) and the solution is of this form with f(ξ) = I(C−1(ξ)).
Moreover, at t = 0 we have I(C−1(C(x))) = I(x), which is the required initial condition.

To compute (2.161) we need to integrate 1/c to obtain C and then compute the inverse of C.

The inverse function computation can be easily done if we first think discretely. Say we have some
function y = g(x) and seek its inverse. Plotting (xi, yi), where yi = g(xi) for some mesh points xi,
displays g as a function of x. The inverse function is simply x as a function of g, i.e., the curve with
points (yi, xi). We can therefore quickly compute points at the curve of the inverse function. One
way of extending these points to a continuous function is to assume a linear variation (known as
linear interpolation) between the points (which actually means to draw straight lines between the
points, exactly as done by a plotting program).

The function scipy.interpolate.interp1d can take a set of points and return a continuous
function that corresponds to linear variation between the points. The computation of the inverse of
a function g on [0, L] can then be done by

def inverse(g, domain, resolution=101):
x = linspace(domain[0], domain[L], resolution)
y = g(x)
from scipy.interpolate import interp1d
g_inverse = interp1d(y, x, kind='linear', fill_value='extrapolate')
return g_inverse

To compute C(x) we need to integrate 1/c, which can be done by a Trapezoidal rule. Suppose we
have computed C(xi) and need to compute C(xi+1). Using the Trapezoidal rule with m subintervals
over the integration domain [xi, xi+1] gives

C(xi+1) = C(xi) +
∫ xi+1

xi

dx

c
≈ h

1
2

1
c(xi)

+ 1
2

1
c(xi+1) +

m−1∑
j=1

1
c(xi + jh)

 , (2.162)

178

DRAFT

2. Wave Equations

where h = (xi+1 − xi)/m is the length of the subintervals used for the integral over [xi, xi+1]. We
observe that (2.162) is a difference equation which we can solve by repeatedly applying (2.162) for
i = 0, 1, . . . , Nx − 1 if a mesh x0, x, . . . , xNx is prescribed. Note that C(0) = 0.

j)

Implement a function for computing C(xi) and one for computing C−1(x) for any x. Use these
two functions for computing the exact solution I(C−1(C(x) − t)). End up with a function
u_exact_variable_c(x, n, c, I) that returns the value of I(C−1(C(x)− tn)).

k)

Make movies showing a comparison of the numerical and exact solutions for the two initial conditions
(1) and (2.160). Choose ∆t = ∆x/max0,L c(x) and the velocity of the medium as

1. c(x) = 1 + ϵ sin(kπx/L), ϵ < 1,
2. c(x) = 1 + I(x), where I is given by

(1) or (2.160).

The PDE ut + cux = 0 expresses that the initial condition I(x) is transported with velocity c(x).

2.102. Problem: General analytical solution of a 1D damped wave
equation

2.103. For solution, see damped_wave_equation.pdf in joakibo on
bitbucket.

We consider an initial-boundary value problem for the damped wave equation:

utt + but = c2uxx, x ∈ (0, L), t ∈ (0, T]
u(0, t) = 0,
u(L, t) = 0,
u(x, 0) = I(x),
ut(x, 0) = V (x) .

Here, b ≥ 0 and c are given constants. The aim is to derive a general analytical solution of this
problem. Familiarity with the method of separation of variables for solving PDEs will be assumed.

a)

Seek a solution on the form u(x, t) = X(x)T (t). Insert this solution in the PDE and show that it
leads to two differential equations for X and T :

T ′′ + bT ′ + λT = 0, c2X ′′ + λX = 0,

with X(0) = X(L) = 0 as boundary conditions, and λ as a constant to be determined.

179

DRAFT

2. Wave Equations

b)

Show that X(x) is on the form

Xn(x) = Cn sin kx, k = nπ

L
, n = 1, 2, . . .

where Cn is an arbitrary constant.

c)

Under the assumption that (b/2)2 < k2, show that T (t) is on the form

Tn(t) = e− 1
2 bt(an cosωt+ bn sinωt), ω =

√
k2 − 1

4b
2, n = 1, 2, . . .

The complete solution is then

u(x, t) =
∞∑

n=1
sin kxe− 1

2 bt(An cosωt+Bn sinωt),

where the constants An and Bn must be computed from the initial conditions.

d)

Derive a formula for An from u(x, 0) = I(x) and developing I(x) as a sine Fourier series on [0, L].

e)

Derive a formula for Bn from ut(x, 0) = V (x) and developing V (x) as a sine Fourier series on
[0, L].

f)

Calculate An and Bn from vibrations of a string where V (x) = 0 and

I(x) =
{
ax/x0, x < x0,
a(L− x)/(L− x0), otherwise

g)

Implement a function u_series(x, t, tol=1E-10) for the series for u(x, t), where tol is a tolerance
for truncating the series. Simply sum the terms until |an| and |bb| both are less than tol.

h)

What will change in the derivation of the analytical solution if we have ux(0, t) = ux(L, t) = 0 as
boundary conditions? And how will you solve the problem with u(0, t) = 0 and ux(L, t) = 0?

2.104. Problem: General analytical solution of a 2D damped wave
equation

Carry out Problem Section 2.102 in the 2D case: utt + but = c2(uxx + uyy), where (x, y) ∈
(0, Lx)× (0, Ly). Assume a solution on the form u(x, y, t) = X(x)Y (y)T (t).

180

DRAFT

2. Wave Equations

2.105. Exercises: Wave Equations with Devito

These exercises explore wave equation solutions using the Devito DSL. They progress from basic
usage through verification techniques to more advanced applications.

2.105.1. Exercise 1: Standing Wave Simulation

Use the solve_wave_1d function to simulate a standing wave with:

• Domain: L = 1, wave speed c = 1
• Initial condition: I(x) = sin(2πx) (two half-wavelengths)
• Initial velocity: V = 0
• Boundary conditions: u(0, t) = u(1, t) = 0

a) Compute and plot the solution at t = 0, 0.25, 0.5, 0.75, 1.0. How does the pattern differ from the
fundamental mode?

b) Derive the exact solution for this initial condition and compare with the numerical solution.
Compute the maximum error at t = 1 for Nx = 50, 100, 200.

181

DRAFT

2. Wave Equations

� Solution

from src.wave import solve_wave_1d, exact_standing_wave
import numpy as np
import matplotlib.pyplot as plt

Part (a)
def I(x):

return np.sin(2 * np.pi * x)

times = [0, 0.25, 0.5, 0.75, 1.0]
fig, axes = plt.subplots(1, 5, figsize=(15, 3))

for ax, T in zip(axes, times):
result = solve_wave_1d(L=1.0, c=1.0, Nx=100, T=T, C=0.9, I=I)
ax.plot(result.x, result.u)
ax.set_title(f't = {T}')
ax.set_ylim(-1.2, 1.2)

plt.tight_layout()

Part (b) - The exact solution for m=2 mode
u(x,t) = sin(2*pi*x) * cos(2*pi*t)
def u_exact(x, t):

return np.sin(2 * np.pi * x) * np.cos(2 * np.pi * t)

for Nx in [50, 100, 200]:
result = solve_wave_1d(L=1.0, c=1.0, Nx=Nx, T=1.0, C=0.9, I=I)
error = np.abs(result.u - u_exact(result.x, 1.0)).max()
print(f"Nx = {Nx:3d}: max error = {error:.2e}")

2.105.2. Exercise 2: Convergence Rate Verification

The theoretical convergence rate for the wave equation solver is O(∆t2 + ∆x2) = O(h2) when
∆t ∝ ∆x.

a) Use convergence_test_wave_1d with grid sizes Nx = 20, 40, 80, 160, 320 and verify the observed
rate is close to 2.

b) Repeat with Courant number C = 1. What happens to the errors? Explain why.

182

DRAFT

2. Wave Equations

� Solution

from src.wave import convergence_test_wave_1d
import numpy as np

Part (a)
grid_sizes, errors, rate = convergence_test_wave_1d(

grid_sizes=[20, 40, 80, 160, 320],
T=0.5,
C=0.9,

)
print(f"C = 0.9: Observed rate = {rate:.3f}")

Compute individual rates
for i in range(1, len(errors)):

r = np.log(errors[i-1] / errors[i]) / np.log(2)
print(f" Nx {grid_sizes[i-1]} -> {grid_sizes[i]}: rate = {r:.3f}")

Part (b)
grid_sizes, errors, rate = convergence_test_wave_1d(

grid_sizes=[20, 40, 80, 160, 320],
T=0.5,
C=1.0,

)
print(f"\nC = 1.0: Observed rate = {rate:.3f}")
print(f"Errors: {errors}")

At C=1, the numerical method is exact for the standing wave!
Errors should be near machine precision.

2.105.3. Exercise 3: Guitar String

Simulate a plucked guitar string with a triangular initial shape:

I(x) =
{
ax/x0 x < x0

a(L− x)/(L− x0) x ≥ x0

where L = 0.75 m, x0 = 0.8L, and a = 0.005 m.

a) For a guitar with fundamental frequency 440 Hz, compute the wave speed c given that λ = 2L.

b) Simulate one complete period and create an animation. Does the triangular shape remain sharp
as time progresses?

c) Run with C = 1 and observe the difference. Explain why the result is different.

183

DRAFT

2. Wave Equations

� Solution

from src.wave import solve_wave_1d
import numpy as np

Parameters
L = 0.75
x0 = 0.8 * L
a = 0.005
freq = 440 # Hz

Part (a)
wavelength = 2 * L
c = freq * wavelength
print(f"Wave speed c = {c} m/s")

Period
period = 1 / freq
print(f"Period = {period*1000:.3f} ms")

Part (b)
def I(x):

return np.where(x < x0, a * x / x0, a * (L - x) / (L - x0))

result = solve_wave_1d(
L=L, c=c, Nx=150, T=period,
C=0.9, I=I, save_history=True

)

The triangular shape becomes "wavy" due to numerical dispersion
Different Fourier components travel at slightly different speeds

Part (c)
result_exact = solve_wave_1d(

L=L, c=c, Nx=150, T=period,
C=1.0, I=I, save_history=True

)

At C=1, D'Alembert's solution is exactly reproduced:
The triangular pulse splits into two, bounces off walls, and
recombines after one period to give the original shape.

2.105.4. Exercise 4: Source Wavelets

a) Use ricker_wavelet to create wavelets with peak frequencies f0 = 10, 25, 50 Hz. Plot them and
their frequency spectra.

184

DRAFT

2. Wave Equations

b) What is the relationship between f0 and the dominant wavelength λ in a medium with c = 1500
m/s?

c) For seismic imaging, we typically want the wavelet to have negligible amplitude at t = 0. What
constraint does this place on t0 relative to f0?

� Solution

from src.wave import ricker_wavelet, get_source_spectrum
import numpy as np
import matplotlib.pyplot as plt

Part (a)
t = np.linspace(0, 0.5, 1001)
dt = t[1] - t[0]

fig, axes = plt.subplots(2, 3, figsize=(12, 6))

for i, f0 in enumerate([10, 25, 50]):
wavelet = ricker_wavelet(t, f0=f0)
freq, amp = get_source_spectrum(wavelet, dt)

axes[0, i].plot(t, wavelet)
axes[0, i].set_title(f'f0 = {f0} Hz')
axes[0, i].set_xlabel('Time (s)')

axes[1, i].plot(freq[:100], amp[:100])
axes[1, i].axvline(f0, color='r', linestyle='--')
axes[1, i].set_xlabel('Frequency (Hz)')

Part (b)
c = 1500 # m/s
for f0 in [10, 25, 50]:

wavelength = c / f0
print(f"f0 = {f0} Hz: wavelength = {wavelength} m")

Part (c)
The Ricker wavelet is centered at t0, and has amplitude ~0 when
|t - t0| > 1/f0. For the wavelet to be ~0 at t=0, we need:
t0 > 1/f0, typically t0 = 1.5/f0 is used as default

2.105.5. Exercise 5: 2D Wave Propagation

a) Solve the 2D wave equation with an initial Gaussian pulse centered at (0.5, 0.5):

I(x, y) = e−100((x−0.5)2+(y−0.5)2)

185

DRAFT

2. Wave Equations

Plot the solution at t = 0, 0.1, 0.2, 0.3 using contour plots.

b) How does the wave pattern differ from the 1D case? Explain the amplitude decay you observe.

� Solution

from src.wave import solve_wave_2d
import numpy as np
import matplotlib.pyplot as plt

Part (a)
def I(X, Y):

return np.exp(-100 * ((X - 0.5)**2 + (Y - 0.5)**2))

fig, axes = plt.subplots(1, 4, figsize=(16, 4))

for ax, T in zip(axes, [0, 0.1, 0.2, 0.3]):
result = solve_wave_2d(

Lx=1.0, Ly=1.0, Nx=100, Ny=100,
T=T, C=0.5, I=I

)

X, Y = np.meshgrid(result.x, result.y, indexing='ij')
c = ax.contourf(X, Y, result.u, levels=20, cmap='RdBu_r')
ax.set_title(f't = {T}')
ax.set_aspect('equal')

Part (b)
In 2D, the wave spreads as a circular wavefront. The amplitude
decays as 1/sqrt(r) due to geometric spreading - the energy is
distributed over an expanding circle rather than staying constant
as in 1D.

2.105.6. Exercise 6: Reflection from Interface

Consider a 1D domain [0, 2] with a velocity interface at x = 1: c(x) = 1 for x < 1 and c(x) = 2 for
x ≥ 1.

a) Starting with a Gaussian pulse centered at x = 0.3, simulate the wave propagation until t = 2.0.

b) Identify the reflected and transmitted waves. Do the amplitudes match the theoretical reflection
(R = 1/3) and transmission (T = 4/3) coefficients?

c) What happens at the boundaries x = 0 and x = 2? Are there additional reflections?

186

DRAFT

2. Wave Equations

� Solution

187

DRAFT

2. Wave Equations

This requires implementing variable velocity, which is
demonstrated in the wave1D_features.qmd chapter.
A simplified approach using manual stencil computation:

import numpy as np
import matplotlib.pyplot as plt

L = 2.0
Nx = 400
dx = L / Nx
x = np.linspace(0, L, Nx + 1)

Velocity profile
c = np.where(x < 1.0, 1.0, 2.0)
c_max = 2.0

Time stepping
C = 0.5
dt = C * dx / c_max
T = 2.0
Nt = int(T / dt)

Initial condition
sigma = 0.1
x0 = 0.3
u_nm1 = np.exp(-((x - x0) / sigma)**2)
u_n = u_nm1.copy()
u = np.zeros_like(u_n)

Store snapshots
snapshots = []
times = []

for n in range(Nt):
Update interior
for i in range(1, Nx):

C_local = c[i] * dt / dx
u[i] = 2*u_n[i] - u_nm1[i] + C_local**2 * (u_n[i+1] - 2*u_n[i] + u_n[i-1])

Dirichlet BCs
u[0] = 0
u[Nx] = 0

Swap
u_nm1, u_n, u = u_n, u, u_nm1

Store snapshots
if n % 50 == 0:

snapshots.append(u_n.copy())
times.append(n * dt)

Plot snapshots
fig, axes = plt.subplots(2, 4, figsize=(16, 6))
for ax, snap, t in zip(axes.flat, snapshots, times):

ax.plot(x, snap)
ax.axvline(1.0, color='gray', linestyle='--', label='interface')
ax.set_ylim(-1, 1)
ax.set_title(f't = {t:.2f}')

188

DRAFT

2. Wave Equations

2.105.7. Exercise 7: Manufactured Solution

Use the method of manufactured solutions to verify the solver. Choose u(x, t) = x(L− x)(1 + t/2)
which satisfies zero Dirichlet boundary conditions.

a) Compute the required source term f(x, t) and initial conditions I(x), V (x).

b) Modify the solver (or use the source term capability) to solve with this f(x, t). Verify the
numerical solution matches the exact solution to machine precision.

� Solution

Manufactured solution: u = x(L-x)(1 + t/2)
u_t = x(L-x) * (1/2)
u_tt = 0
u_x = (L - 2x)(1 + t/2)
u_xx = -2(1 + t/2)
#
PDE: u_tt = cˆ2 * u_xx + f
0 = cˆ2 * (-2)(1 + t/2) + f
f = 2*cˆ2*(1 + t/2)

L = 2.5
c = 1.5

def u_exact(x, t):
return x * (L - x) * (1 + 0.5 * t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5 * x * (L - x)

def f(x, t):
return 2 * c**2 * (1 + 0.5 * t)

The solution should be exact to machine precision because
the discretization error is zero for quadratic solutions

2.105.8. Exercise 8: Wave Energy Conservation

The total energy of the wave system is:

E = 1
2

∫ L

0

[
u2

t + c2u2
x

]
dx

a) Implement a function to compute the discrete energy at each time step.

189

DRAFT

2. Wave Equations

b) Run a simulation with zero Dirichlet BCs and plot the energy versus time. Is energy conserved?

c) What happens to energy conservation if C > 1?

� Solution

from src.wave import solve_wave_1d
import numpy as np

def compute_energy(u_history, x, dt, c):
"""Compute discrete energy at each time step."""
dx = x[1] - x[0]
Nt = u_history.shape[0]
energy = np.zeros(Nt)

for n in range(1, Nt-1):
u_t approximation (central difference)
u_t = (u_history[n+1] - u_history[n-1]) / (2 * dt)

u_x approximation
u_x = np.zeros_like(u_history[n])
u_x[1:-1] = (u_history[n, 2:] - u_history[n, :-2]) / (2 * dx)

Energy integral
energy[n] = 0.5 * dx * np.sum(u_t**2 + c**2 * u_x**2)

return energy

Part (b)
result = solve_wave_1d(

L=1.0, c=1.0, Nx=100, T=5.0, C=0.9,
save_history=True

)

E = compute_energy(result.u_history, result.x, result.dt, 1.0)

import matplotlib.pyplot as plt
plt.plot(result.t_history[1:-1], E[1:-1])
plt.xlabel('Time')
plt.ylabel('Energy')
plt.title('Energy Conservation')
Energy should be nearly constant for stable schemes

Part (c)
For C > 1, the scheme is unstable and energy grows exponentially

190

DRAFT

2. Wave Equations

2.105.9. Exercise 9: Numerical Dispersion

The numerical scheme introduces dispersion: different frequencies travel at different speeds.

a) Create an initial condition with multiple frequencies:

I(x) = sin(2πx) + 0.5 sin(6πx)

Simulate for several periods and observe how the shape changes.

b) Run the same simulation with C = 1. Is dispersion present?

� Solution

from src.wave import solve_wave_1d
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(2 * np.pi * x) + 0.5 * np.sin(6 * np.pi * x)

Part (a) - C < 1: dispersion present
result_a = solve_wave_1d(

L=1.0, c=1.0, Nx=100, T=10.0, C=0.8,
I=I, save_history=True

)

Part (b) - C = 1: no dispersion
result_b = solve_wave_1d(

L=1.0, c=1.0, Nx=100, T=10.0, C=1.0,
I=I, save_history=True

)

Compare at final time
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

ax1.plot(result_a.x, I(result_a.x), 'k--', label='Initial')
ax1.plot(result_a.x, result_a.u, 'r-', label=f't = {result_a.t}')
ax1.set_title('C = 0.8 (dispersion present)')
ax1.legend()

ax2.plot(result_b.x, I(result_b.x), 'k--', label='Initial')
ax2.plot(result_b.x, result_b.u, 'r-', label=f't = {result_b.t}')
ax2.set_title('C = 1.0 (dispersion-free)')
ax2.legend()

At C = 1, the solution returns exactly to the initial shape
after one period, while at C < 1, the shape is distorted.

191

DRAFT

2. Wave Equations

2.105.10. Exercise 10: Extension to Higher Order

Devito supports higher-order spatial discretization through the space_order parameter.

a) Compare the errors at t = 1 for space_order = 2, 4, 6, 8 with Nx = 50.

b) For which problems might higher spatial order be beneficial?

� Solution

Note: This requires modifying the solver to accept space_order
as a parameter. The key change is:
#
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=order)
#
Higher order gives more accurate spatial derivatives but
requires wider stencils and more boundary handling.
#
Higher order is beneficial when:
1. The solution is smooth
2. Long propagation distances are needed
3. Minimizing numerical dispersion is important
4. Fewer grid points are desired for a given accuracy

192

DRAFT
3. Diffusion Equations

The famous diffusion equation, also known as the heat equation, reads

∂u

∂t
= α

∂2u

∂x2 ,

where u(x, t) is the unknown function to be solved for, x is a coordinate in space, and t is time.
The coefficient α is the diffusion coefficient and determines how fast u changes in time. A quick
short form for the diffusion equation is ut = αuxx.

Compared to the wave equation, utt = c2uxx, which looks very similar, the diffusion equation features
solutions that are very different from those of the wave equation. Also, the diffusion equation makes
quite different demands to the numerical methods.

Typical diffusion problems may experience rapid change in the very beginning, but then the evolution
of u becomes slower and slower. The solution is usually very smooth, and after some time, one
cannot recognize the initial shape of u. This is in sharp contrast to solutions of the wave equation
where the initial shape is preserved in homogeneous media – the solution is then basically a moving
initial condition. The standard wave equation utt = c2uxx has solutions that propagate with speed
c forever, without changing shape, while the diffusion equation converges to a stationary solution
ū(x) as t→∞. In this limit, ut = 0, and ū is governed by ū′′(x) = 0. This stationary limit of the
diffusion equation is called the Laplace equation and arises in a very wide range of applications
throughout the sciences.

It is possible to solve for u(x, t) using an explicit scheme, as we do in Section Section 3.1, but
the time step restrictions soon become much less favorable than for an explicit scheme applied to
the wave equation. And of more importance, since the solution u of the diffusion equation is very
smooth and changes slowly, small time steps are not convenient and not required by accuracy as
the diffusion process converges to a stationary state. Therefore, implicit schemes (as described in
Section Section 3.7) are popular, but these require solutions of systems of algebraic equations. We
shall use ready-made software for this purpose, but also program some simple iterative methods.
The exposition is, as usual in this book, very basic and focuses on the basic ideas and how to
implement. More comprehensive mathematical treatments and classical analysis of the methods are
found in lots of textbooks. A favorite of ours in this respect is the one by LeVeque (LeVeque 2007).
The books by Strikwerda (Strikwerda 2007) and by Lapidus and Pinder (Lapidus and Pinder 1982)
are also highly recommended as additional material on the topic.

3.1. An explicit method for the 1D diffusion equation

Explicit finite difference methods for the wave equation utt = c2uxx can be used, with small
modifications, for solving ut = αuxx as well. The exposition below assumes that the reader is
familiar with the basic ideas of discretization and implementation of wave equations from Chapter

193

DRAFT

3. Diffusion Equations

Chapter 2. Readers not familiar with the Forward Euler, Backward Euler, and Crank-Nicolson (or
centered or midpoint) discretization methods in time should consult, e.g., Section 1.1 in (Langtangen
2016b).

3.2. The initial-boundary value problem for 1D diffusion

To obtain a unique solution of the diffusion equation, or equivalently, to apply numerical methods,
we need initial and boundary conditions. The diffusion equation goes with one initial condition
u(x, 0) = I(x), where I is a prescribed function. One boundary condition is required at each point
on the boundary, which in 1D means that u must be known, ux must be known, or some combination
of them.

We shall start with the simplest boundary condition: u = 0. The complete initial-boundary value
diffusion problem in one space dimension can then be specified as

∂u

∂t
= α

∂2u

∂x2 + f, x ∈ (0, L), t ∈ (0, T]

u(x, 0) = I(x), x ∈ [0, L]
u(0, t) = 0, t > 0,
u(L, t) = 0, t > 0 .

(3.1)

With only a first-order derivative in time, only one initial condition is needed, while the second-order
derivative in space leads to a demand for two boundary conditions. We have added a source term
f = f(x, t), which is convenient when testing implementations.

Diffusion equations like (3.1) have a wide range of applications throughout physical, biological,
and financial sciences. One of the most common applications is propagation of heat, where u(x, t)
represents the temperature of some substance at point x and time t. Other applications are listed
in Section Section 3.66.

3.3. Forward Euler scheme

The first step in the discretization procedure is to replace the domain [0, L]× [0, T] by a set of mesh
points. Here we apply equally spaced mesh points

xi = i∆x, i = 0, . . . , Nx,

and
tn = n∆t, n = 0, . . . , Nt .

Moreover, un
i denotes the mesh function that approximates u(xi, tn) for i = 0, . . . , Nx and n =

0, . . . , Nt. Requiring the PDE (3.1) to be fulfilled at a mesh point (xi, tn) leads to the equation

∂

∂t
u(xi, tn) = α

∂2

∂x2u(xi, tn) + f(xi, tn), (3.2)

194

DRAFT

3. Diffusion Equations

The next step is to replace the derivatives by finite difference approximations. The computationally
simplest method arises from using a forward difference in time and a central difference in space:

[D+
t u = αDxDxu+ f]ni . (3.3)

Written out,
un+1

i − un
i

∆t = α
un

i+1 − 2un
i + un

i−1
∆x2 + fn

i . (3.4)

We have turned the PDE into algebraic equations, also often called discrete equations. The key
property of the equations is that they are algebraic, which makes them easy to solve. As usual, we
anticipate that un

i is already computed such that un+1
i is the only unknown in (3.4). Solving with

respect to this unknown is easy:

un+1
i = un

i + F
(
un

i+1 − 2un
i + un

i−1
)

+ ∆tfn
i , (3.5)

where we have introduced the mesh Fourier number :

F = α
∆t

∆x2 .

ñ F is the key parameter in the discrete diffusion equation

Note that F is a dimensionless number that lumps the key physical parameter in the problem,
α, and the discretization parameters ∆x and ∆t into a single parameter. Properties of the
numerical method are critically dependent upon the value of F (see Section Section 3.15 for
details).

The computational algorithm then becomes

1. compute u0
i = I(xi) for i = 0, . . . , Nx

2. for n = 0, 1, . . . , Nt: 1. apply (3.5) for all the internal spatial points i = 1, . . . , Nx − 1 1. set
the boundary values un+1

i = 0 for i = 0 and i = Nx

The algorithm is compactly and fully specified in Python:

import numpy as np
x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = np.linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]
F = a*dt/dx**2
u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level

for i in range(0, Nx+1):
u_n[i] = I(x[i])

for n in range(0, Nt):
for i in range(1, Nx):

195

DRAFT

3. Diffusion Equations

u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt*f(x[i], t[n])

u[0] = 0; u[Nx] = 0

u_n[:]= u

Note that we use a for α in the code, motivated by easy visual mapping between the variable name
and the mathematical symbol in formulas.

We need to state already now that the shown algorithm does not produce meaningful results unless
F ≤ 1/2. Why is explained in Section Section 3.15.

3.4. Implementation

The file diffu1D_u0.py contains a complete function solver_FE_simple for solving the 1D diffusion
equation with u = 0 on the boundary as specified in the algorithm above:

import numpy as np
import scipy.sparse
import scipy.sparse.linalg

def solver_FE_simple(I, a, f, L, dt, F, T):
"""
Simplest expression of the computational algorithm
using the Forward Euler method and explicit Python loops.
For this method F <= 0.5 for stability.
"""
import time

t0 = time.perf_counter() # For measuring the CPU time

Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

196

https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu1D_u0.py

DRAFT

3. Diffusion Equations

for n in range(0, Nt):
for i in range(1, Nx):

u[i] = (
u_n[i] + F * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 1]) + dt * f(x[i], t[n])

)

u[0] = 0
u[Nx] = 0

u_n, u = u, u_n

t1 = time.perf_counter()
return u_n, x, t, t1 - t0 # u_n holds latest u

def solver_FE(I, a, f, L, dt, F, T, user_action=None, version="scalar"):
"""
Vectorized implementation of solver_FE_simple.
"""
import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array
u_n = np.zeros(Nx + 1) # solution at t-dt

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
if version == "scalar":

for i in range(1, Nx):
u[i] = (

u_n[i]
+ F * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 1])
+ dt * f(x[i], t[n])

)

197

DRAFT

3. Diffusion Equations

elif version == "vectorized":
u[1:Nx] = (

u_n[1:Nx]
+ F * (u_n[0 : Nx - 1] - 2 * u_n[1:Nx] + u_n[2 : Nx + 1])
+ dt * f(x[1:Nx], t[n])

)
else:

raise ValueError("version=%s" % version)

u[0] = 0
u[Nx] = 0
if user_action is not None:

user_action(u, x, t, n + 1)

u_n, u = u, u_n

t1 = time.perf_counter()
return t1 - t0

def solver_BE_simple(I, a, f, L, dt, F, T, user_action=None):
"""
Simplest expression of the computational algorithm
for the Backward Euler method, using explicit Python loops
and a dense matrix format for the coefficient matrix.
"""
import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)

A = np.zeros((Nx + 1, Nx + 1))
b = np.zeros(Nx + 1)

for i in range(1, Nx):
A[i, i - 1] = -F
A[i, i + 1] = -F
A[i, i] = 1 + 2 * F

198

DRAFT

3. Diffusion Equations

A[0, 0] = A[Nx, Nx] = 1

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
for i in range(1, Nx):

b[i] = u_n[i] + dt * f(x[i], t[n + 1])
b[0] = b[Nx] = 0
u[:] = np.linalg.solve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

u_n, u = u, u_n

t1 = time.perf_counter()
return t1 - t0

def solver_BE(I, a, f, L, dt, F, T, user_action=None):
"""
Vectorized implementation of solver_BE_simple using also
a sparse (tridiagonal) matrix for efficiency.
"""
import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array at t[n+1]
u_n = np.zeros(Nx + 1) # solution at t[n]

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx + 1)

diagonal[:] = 1 + 2 * F

199

DRAFT

3. Diffusion Equations

lower[:] = -F # 1
upper[:] = -F # 1
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

)
print(A.todense())

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
b = u_n + dt * f(x[:], t[n + 1])
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

u_n, u = u, u_n

t1 = time.perf_counter()
return t1 - t0

def solver_theta(I, a, f, L, dt, F, T, theta=0.5, u_L=0, u_R=0, user_action=None):
"""
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5).
Vectorized implementation and sparse (tridiagonal)
coefficient matrix.
"""
import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))

200

DRAFT

3. Diffusion Equations

t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array at t[n+1]
u_n = np.zeros(Nx + 1) # solution at t[n]

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx + 1)

Fl = F * theta
Fr = F * (1 - theta)
diagonal[:] = 1 + 2 * Fl
lower[:] = -Fl # 1
upper[:] = -Fl # 1
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

diags = [0, -1, 1]
A = scipy.sparse.diags(

diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

)

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
b[1:-1] = (

u_n[1:-1]
+ Fr * (u_n[:-2] - 2 * u_n[1:-1] + u_n[2:])
+ dt * theta * f(x[1:-1], t[n + 1])
+ dt * (1 - theta) * f(x[1:-1], t[n])

)
b[0] = u_L

201

DRAFT

3. Diffusion Equations

b[-1] = u_R # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

u_n, u = u, u_n

t1 = time.perf_counter()
return t1 - t0

def viz(I, a, L, dt, F, T, umin, umax, scheme="FE", animate=True, framefiles=True):
def plot_u(u, x, t, n):

plt.plot(x, u, "r-", axis=[0, L, umin, umax], title="t=%f" % t[n])
if framefiles:

plt.savefig("tmp_frame%04d.png" % n)
if t[n] == 0:

time.sleep(2)
elif not framefiles:

time.sleep(0.2)

user_action = plot_u if animate else lambda u, x, t, n: None

cpu = eval("solver_" + scheme)(I, a, L, dt, F, T, user_action=user_action)
return cpu

def plug(scheme="FE", F=0.5, Nx=50):
L = 1.0
a = 1.0
T = 0.1
dx = L / Nx
dt = F / a * dx**2

def I(x):
"""Plug profile as initial condition."""
if abs(x - L / 2.0) > 0.1:

return 0
else:

return 1

cpu = viz(
I,
a,
L,
dt,
F,
T,

202

DRAFT

3. Diffusion Equations

umin=-0.1,
umax=1.1,
scheme=scheme,
animate=True,
framefiles=True,

)
print("CPU time:", cpu)

def gaussian(scheme="FE", F=0.5, Nx=50, sigma=0.05):
L = 1.0
a = 1.0
T = 0.1
dx = L / Nx
dt = F / a * dx**2

def I(x):
"""Gaussian profile as initial condition."""
return exp(-0.5 * ((x - L / 2.0) ** 2) / sigma**2)

u, cpu = viz(
I,
a,
L,
dt,
F,
T,
umin=-0.1,
umax=1.1,
scheme=scheme,
animate=True,
framefiles=True,

)
print("CPU time:", cpu)

def expsin(scheme="FE", F=0.5, m=3):
L = 10.0
a = 1
T = 1.2

def exact(x, t):
return exp(-(m**2) * pi**2 * a / L**2 * t) * sin(m * pi / L * x)

def I(x):
return exact(x, 0)

Nx = 80
dx = L / Nx

203

DRAFT

3. Diffusion Equations

dt = F / a * dx**2
viz(I, a, L, dt, F, T, -1, 1, scheme=scheme, animate=True, framefiles=True)

def action(u, x, t, n):
e = abs(u - exact(x, t[n])).max()
errors.append(e)

errors = []
Nx_values = [10, 20, 40, 80, 160]
for Nx in Nx_values:

eval("solver_" + scheme)(I, a, L, Nx, F, T, user_action=action)
dt = F * (L / Nx) ** 2 / a
print(dt, errors[-1])

def test_solvers():
def u_exact(x, t):

return x * (L - x) * 5 * t # fulfills BC at x=0 and x=L

def I(x):
return u_exact(x, 0)

def f(x, t):
return 5 * x * (L - x) + 10 * a * t

a = 3.5
L = 1.5
Nx = 4
F = 0.5
dx = L / Nx
dt = F / a * dx**2

def compare(u, x, t, n): # user_action function
"""Compare exact and computed solution."""
u_e = u_exact(x, t[n])
diff = abs(u_e - u).max()
tol = 1e-14
assert diff < tol, "max diff: %g" % diff

import functools

s = functools.partial # object for calling a function w/args
solvers = [

s(solver_FE_simple, I=I, a=a, f=f, L=L, dt=dt, F=F, T=0.2),
s(

solver_FE,
I=I,
a=a,

204

DRAFT

3. Diffusion Equations

f=f,
L=L,
dt=dt,
F=F,
T=2,
user_action=compare,
version="scalar",

),
s(

solver_FE,
I=I,
a=a,
f=f,
L=L,
dt=dt,
F=F,
T=2,
user_action=compare,
version="vectorized",

),
s(solver_BE_simple, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, user_action=compare),
s(solver_BE, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, user_action=compare),
s(

solver_theta,
I=I,
a=a,
f=f,
L=L,
dt=dt,
F=F,
T=2,
theta=0,
u_L=0,
u_R=0,
user_action=compare,

),
]
u, x, t, cpu = solvers[0]()
u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1e-14
print(u_e)
print(u)
assert diff < tol, "max diff solver_FE_simple: %g" % diff

for solver in solvers:
solver()

205

DRAFT

3. Diffusion Equations

if __name__ == "__main__":
if len(sys.argv) < 2:

print("""Usage %s function arg1 arg2 arg3 ...""" % sys.argv[0])
sys.exit(0)

cmd = "%s(%s)" % (sys.argv[1], ", ".join(sys.argv[2:]))
print(cmd)
eval(cmd)

A faster alternative is available in the function solver_FE, which adds the possibility of solving the
finite difference scheme by vectorization. The vectorized version replaces the explicit loop

for i in range(1, Nx):
u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) \

+ dt*f(x[i], t[n])

by arithmetics on displaced slices of the u array:

u[1:Nx] = u_n[1:Nx] + F*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1]) \
+ dt*f(x[1:Nx], t[n])

u[1:-1] = u_n[1:-1] + F*(u_n[0:-2] - 2*u_n[1:-1] + u_n[2:]) \
+ dt*f(x[1:-1], t[n])

For example, the vectorized version runs 70 times faster than the scalar version in a case with 100
time steps and a spatial mesh of 105 cells.

The solver_FE function also features a callback function such that the user can process the solution
at each time level. The callback function looks like user_action(u, x, t, n), where u is the
array containing the solution at time level n, x holds all the spatial mesh points, while t holds all
the temporal mesh points. The solver_FE function is very similar to solver_FE_simple above:

"""
Functions for solving a 1D diffusion equations of simplest types
(constant coefficient, no source term):

u_t = a*u_xx on (0,L)

with boundary conditions u=0 on x=0,L, for t in (0,T].
Initial condition: u(x,0)=I(x).

The following naming convention of variables are used.

===== ==
Name Description
===== ==
Nx The total number of mesh cells; mesh points are numbered

from 0 to Nx.

206

DRAFT

3. Diffusion Equations

F The dimensionless number a*dt/dx**2, which implicitly
specifies the time step.

T The stop time for the simulation.
I Initial condition (Python function of x).
a Variable coefficient (constant).
L Length of the domain ([0,L]).
x Mesh points in space.
t Mesh points in time.
n Index counter in time.
u Unknown at current/new time level.
u_n u at the previous time level.
dx Constant mesh spacing in x.
dt Constant mesh spacing in t.
===== ==

user_action is a function of (u, x, t, n), u[i] is the solution at
spatial mesh point x[i] at time t[n], where the calling code
can add visualization, error computations, data analysis,
store solutions, etc.
"""

import sys
import time

import matplotlib.pyplot as plt
import numpy as np
import scipy.sparse
import scipy.sparse.linalg

def solver_FE_simple(I, a, f, L, dt, F, T):
"""
Simplest expression of the computational algorithm
using the Forward Euler method and explicit Python loops.
For this method F <= 0.5 for stability.
"""
import time

t0 = time.perf_counter() # For measuring the CPU time

Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]

207

DRAFT

3. Diffusion Equations

u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

for n in range(0, Nt):
for i in range(1, Nx):

u[i] = (
u_n[i] + F * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 1]) + dt * f(x[i], t[n])

)

u[0] = 0
u[Nx] = 0

u_n, u = u, u_n

t1 = time.perf_counter()
return u_n, x, t, t1 - t0 # u_n holds latest u

def solver_FE(I, a, f, L, dt, F, T, user_action=None, version="scalar"):
"""
Vectorized implementation of solver_FE_simple.
"""
import time

t0 = time.perf_counter() # for measuring the CPU time

Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array
u_n = np.zeros(Nx + 1) # solution at t-dt

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
if version == "scalar":

208

DRAFT

3. Diffusion Equations

for i in range(1, Nx):
u[i] = (

u_n[i]
+ F * (u_n[i - 1] - 2 * u_n[i] + u_n[i + 1])
+ dt * f(x[i], t[n])

)

elif version == "vectorized":
u[1:Nx] = (

u_n[1:Nx]
+ F * (u_n[0 : Nx - 1] - 2 * u_n[1:Nx] + u_n[2 : Nx + 1])
+ dt * f(x[1:Nx], t[n])

)
else:

raise ValueError("version=%s" % version)

u[0] = 0
u[Nx] = 0
if user_action is not None:

user_action(u, x, t, n + 1)

u_n, u = u, u_n

t1 = time.perf_counter()
return t1 - t0

3.5. Verification

3.5.1. Exact solution of discrete equations

Before thinking about running the functions in the previous section, we need to construct a suitable
test example for verification. It appears that a manufactured solution that is linear in time and at
most quadratic in space fulfills the Forward Euler scheme exactly. With the restriction that u = 0
for x = 0, L, we can try the solution

u(x, t) = 5tx(L− x) .
Inserted in the PDE, it requires a source term

f(x, t) = 10αt+ 5x(L− x) .
With the formulas from Appendix Section 6.3 we can easily check that the manufactured u fulfills
the scheme:

[D+
t u = αDxDxu+ f]ni = [5x(L− x)D+

t t = 5tαDxDx(xL− x2)+
10αt+ 5x(L− x)]ni

= [5x(L− x) = 5tα(−2) + 10αt+ 5x(L− x)]ni ,

209

DRAFT

3. Diffusion Equations

which is a 0=0 expression. The computation of the source term, given any u, is easily automated
with sympy:

import sympy as sym
x, t, a, L = sym.symbols('x t a L')
u = x*(L-x)*5*t

def pde(u):
return sym.diff(u, t) - a*sym.diff(u, x, x)

f = sym.simplify(pde(u))

Now we can choose any expression for u and automatically get the suitable source term f. However,
the manufactured solution u will in general not be exactly reproduced by the scheme: only constant
and linear functions are differentiated correctly by a forward difference, while only constant, linear,
and quadratic functions are differentiated exactly by a [DxDxu]ni difference.

The numerical code will need to access the u and f above as Python functions. The exact solution
is wanted as a Python function u_exact(x, t), while the source term is wanted as f(x, t). The
parameters a and L in u and f above are symbols and must be replaced by float objects in a Python
function. This can be done by redefining a and L as float objects and performing substitutions of
symbols by numbers in u and f. The appropriate code looks like this:

a = 0.5
L = 1.5
u_exact = sym.lambdify(

[x, t], u.subs('L', L).subs('a', a), modules='numpy')
f = sym.lambdify(

[x, t], f.subs('L', L).subs('a', a), modules='numpy')
I = lambda x: u_exact(x, 0)

Here we also make a function I for the initial condition.

The idea now is that our manufactured solution should be exactly reproduced by the code (to
machine precision). For this purpose we make a test function for comparing the exact and numerical
solutions at the end of the time interval:

def test_solver_FE():

dx = L/3 # 3 cells
F = 0.5
dt = F*dx**2

u, x, t, cpu = solver_FE_simple(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14

210

DRAFT

3. Diffusion Equations

assert diff < tol, 'max diff solver_FE_simple: %g' % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version='scalar')

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, 'max diff solver_FE, scalar: %g' % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version='vectorized')

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, 'max diff solver_FE, vectorized: %g' % diff

ñ The critical value F = 0.5

We emphasize that the value F=0.5 is critical: the tests above will fail if F has a larger value.
This is because the Forward Euler scheme is unstable for F > 1/2.
The reader may wonder if F = 1/2 is safe or if F < 1/2 should be required. Experiments show
that F = 1/2 works fine for ut = αuxx, so there is no accumulation of rounding errors in this
case and hence no need to introduce any safety factor to keep F away from the limiting value
0.5.

3.5.2. Checking convergence rates

If our chosen exact solution does not satisfy the discrete equations exactly, we are left with
checking the convergence rates, just as we did previously for the wave equation. However, with
the Euler scheme here, we have different accuracies in time and space, since we use a second order
approximation to the spatial derivative and a first order approximation to the time derivative. Thus,
we must expect different convergence rates in time and space. For the numerical error,

E = Ct∆tr + Cx∆xp,

we should get convergence rates r = 1 and p = 2 (Ct and Cx are unknown constants). As previously,
in Section Section 2.10.1, we simplify matters by introducing a single discretization parameter h:

h = ∆t, ∆x = Khr/p,

where K is any constant. This allows us to factor out only one discretization parameter h from the
formula:

E = Cth+ Cx(Khr/p)p = C̃hr, C̃ = Ct + CsK
r .

The computed rate r should approach 1 with increasing resolution.

211

DRAFT

3. Diffusion Equations

It is tempting, for simplicity, to choose K = 1, which gives ∆x = hr/p, expected to be
√

∆t. However,
we have to control the stability requirement: F ≤ 1

2 , which means

α∆t
∆x2 ≤

1
2 ⇒ ∆x ≥

√
2αh1/2,

implying that K =
√

2α is our choice in experiments where we lie on the stability limit F = 1/2.

3.6. Numerical experiments

When a test function like the one above runs silently without errors, we have some evidence for a
correct implementation of the numerical method. The next step is to do some experiments with
more interesting solutions.

We target a scaled diffusion problem where x/L is a new spatial coordinate and αt/L2 is a new
time coordinate. The source term f is omitted, and u is scaled by maxx∈[0,L] |I(x)| (see Section 3.2
in (Langtangen and Pedersen 2016) for details). The governing PDE is then

∂u

∂t
= ∂2u

∂x2 ,

in the spatial domain [0, L], with boundary conditions u(0) = u(1) = 0. Two initial conditions will
be tested: a discontinuous plug,

I(x) =
{

0, |x− L/2| > 0.1
1, otherwise

and a smooth Gaussian function,
I(x) = e− 1

2σ2 (x−L/2)2
.

The functions plug and gaussian in diffu1D_u0.py run the two cases, respectively:

def plug(scheme="FE", F=0.5, Nx=50):
L = 1.0
a = 1.0
T = 0.1
dx = L / Nx
dt = F / a * dx**2

def I(x):
"""Plug profile as initial condition."""
if abs(x - L / 2.0) > 0.1:

return 0
else:

return 1

cpu = viz(
I,
a,

212

https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu1D_u0.py

DRAFT

3. Diffusion Equations

L,
dt,
F,
T,
umin=-0.1,
umax=1.1,
scheme=scheme,
animate=True,
framefiles=True,

)
print("CPU time:", cpu)

def gaussian(scheme="FE", F=0.5, Nx=50, sigma=0.05):
L = 1.0
a = 1.0
T = 0.1
dx = L / Nx
dt = F / a * dx**2

def I(x):
"""Gaussian profile as initial condition."""
return exp(-0.5 * ((x - L / 2.0) ** 2) / sigma**2)

u, cpu = viz(
I,
a,
L,
dt,
F,
T,
umin=-0.1,
umax=1.1,
scheme=scheme,
animate=True,
framefiles=True,

)
print("CPU time:", cpu)

These functions make use of the function viz for running the solver and visualizing the solution
using a callback function with plotting:

def viz(I, a, L, dt, F, T, umin, umax, scheme="FE", animate=True, framefiles=True):
def plot_u(u, x, t, n):

plt.plot(x, u, "r-", axis=[0, L, umin, umax], title="t=%f" % t[n])
if framefiles:

plt.savefig("tmp_frame%04d.png" % n)
if t[n] == 0:

213

DRAFT

3. Diffusion Equations

time.sleep(2)
elif not framefiles:

time.sleep(0.2)

user_action = plot_u if animate else lambda u, x, t, n: None

cpu = eval("solver_" + scheme)(I, a, L, dt, F, T, user_action=user_action)
return cpu

Notice that this viz function stores all the solutions in a list solutions in the callback function.
Modern computers have hardly any problem with storing a lot of such solutions for moderate values
of Nx in 1D problems, but for 2D and 3D problems, this technique cannot be used and solutions
must be stored in files.

Our experiments employ a time step ∆t = 0.0002 and simulate for t ∈ [0, 0.1]. First we try the
highest value of F : F = 0.5. This resolution corresponds to Nx = 50. A possible terminal command
is

Terminal> python -c 'from diffu1D_u0 import gaussian
gaussian("solver_FE", F=0.5, dt=0.0002)'

The u(x, t) curve as a function of x is shown in Figure Figure 3.1 at four time levels.

We see that the curves have saw-tooth waves in the beginning of the simulation. This non-physical
noise is smoothed out with time, but solutions of the diffusion equations are known to be smooth,
and this numerical solution is definitely not smooth. Lowering F helps: F ≤ 0.25 gives a smooth
solution, see Figure Figure 3.2.

Increasing F slightly beyond the limit 0.5, to F = 0.51, gives growing, non-physical instabilities, as
seen in Figure Figure 3.3.

Instead of a discontinuous initial condition we now try the smooth Gaussian function for I(x). A
simulation for F = 0.5 is shown in Figure Figure 3.4. Now the numerical solution is smooth for all
times, and this is true for any F ≤ 0.5.

Experiments with these two choices of I(x) reveal some important observations:

• The Forward Euler scheme leads to growing solutions if F > 1
2 .

• I(x) as a discontinuous plug leads to a saw tooth-like noise for F = 1
2 , which is absent for

F ≤ 1
4 .

• The smooth Gaussian initial function leads to a smooth solution for all relevant F values
(F ≤ 1

2).

3.7. Implicit methods for the 1D diffusion equation

Simulations with the Forward Euler scheme show that the time step restriction, F ≤ 1
2 , which means

∆t ≤ ∆x2/(2α), may be relevant in the beginning of the diffusion process, when the solution changes
quite fast, but as time increases, the process slows down, and a small ∆t may be inconvenient. With

214

DRAFT

3. Diffusion Equations

Figure 3.1.: Forward Euler scheme for F = 0.5.

215

DRAFT

3. Diffusion Equations

Figure 3.2.: Forward Euler scheme for F = 0.25.

216

DRAFT

3. Diffusion Equations

Figure 3.3.: Forward Euler scheme for F = 0.51.

217

DRAFT

3. Diffusion Equations

Figure 3.4.: Forward Euler scheme for F = 0.5.

218

DRAFT

3. Diffusion Equations

implicit schemes, which lead to coupled systems of linear equations to be solved at each time level,
any size of ∆t is possible (but the accuracy decreases with increasing ∆t). The Backward Euler
scheme, derived and implemented below, is the simplest implicit scheme for the diffusion equation.

3.8. Backward Euler scheme

In (3.2), we now apply a backward difference in time, but the same central difference in space:

[D−
t u = DxDxu+ f]ni , (3.6)

which written out reads

un
i − un−1 ∗ ∗i

∆t = α
un ∗ ∗i+ 1− 2un

i + un
i−1

∆x2 + fn
i . (3.7)

Now we assume un−1
i is already computed, but that all quantities at the “new” time level n are

unknown. This time it is not possible to solve with respect to un
i because this value couples to its

neighbors in space, un
i−1 and un

i+1, which are also unknown. Let us examine this fact for the case
when Nx = 3. Equation (3.7) written for i = 1, . . . , Nx− 1 = 1, 2 becomes

un
1 − un−1 ∗ ∗1

∆t = α
un ∗ ∗2− 2un

1 + un
0

∆x2 + fn
1 (3.8)

un
2 − un−1 ∗ ∗2

∆t = α
un ∗ ∗3− 2un

2 + un
1

∆x2 + fn
2 (3.9)

The boundary values un
0 and un

3 are known as zero. Collecting the unknown new values un
1 and un

2
on the left-hand side and multiplying by ∆t gives

(1 + 2F)un ∗ ∗1− Fun ∗ ∗2 = un−1
1 + ∆tfn

1 , (3.10)
−Fun

1 + (1 + 2F)un
2 = un−1

2 + ∆tfn
2 . (3.11)

This is a coupled 2× 2 system of algebraic equations for the unknowns un
1 and un

2 . The equivalent
matrix form is (

1 + 2F −F
−F 1 + 2F

)(
un

1
un

2

)
=
(
un−1

1 + ∆tfn
1

un−1
2 + ∆tfn

2

)

ñ Terminology: implicit vs. explicit methods

Discretization methods that lead to a coupled system of equations for the unknown function at
a new time level are said to be implicit methods. The counterpart, explicit methods, refers to
discretization methods where there is a simple explicit formula for the values of the unknown
function at each of the spatial mesh points at the new time level. From an implementational
point of view, implicit methods are more comprehensive to code since they require the solution
of coupled equations, i.e., a matrix system, at each time level. With explicit methods we have
a closed-form formula for the value of the unknown at each mesh point.

219

DRAFT

3. Diffusion Equations

Very often explicit schemes have a restriction on the size of the time step that can be relaxed
by using implicit schemes. In fact, implicit schemes are frequently unconditionally stable,
so the size of the time step is governed by accuracy and not by stability. This is the great
advantage of implicit schemes.

In the general case, (3.7) gives rise to a coupled (Nx − 1)× (Nx − 1) system of algebraic equations
for all the unknown un

i at the interior spatial points i = 1, . . . , Nx − 1. Collecting the unknowns on
the left-hand side, (3.7) can be written

−Fun
i−1 + (1 + 2F)un ∗ ∗i− Fun ∗ ∗i+ 1 = un−1

i−1 , (3.12)

for i = 1, . . . , Nx − 1. One can either view these equations as a system where the un
i values at the

internal mesh points, i = 1, . . . , Nx − 1, are unknown, or we may append the boundary values un
0

and un
Nx

to the system. In the latter case, all un
i for i = 0, . . . , Nx are considered unknown, and we

must add the boundary equations to the Nx − 1 equations in (3.12):

un
0 = 0, (3.13)

un
Nx

= 0 . (3.14)

A coupled system of algebraic equations can be written on matrix form, and this is important if we
want to call up ready-made software for solving the system. The equations (3.12) and (3.13)–(3.14)
correspond to the matrix equation

AU = b

where U = (un
0 , . . . , u

n
Nx

), and the matrix A has the following structure:

A =



A0,0 A0,1 0 · · · · · · · · · · · · · · · 0
A1,0 A1,1 A1,2

.
0 A2,1 A2,2 A2,3

.
... 0

...
...
... 0 Ai,i−1 Ai,i Ai,i+1

.
... 0
... ANx−1,Nx

0 · · · · · · · · · · · · · · · 0 ANx,Nx−1 ANx,Nx



(3.15)

The nonzero elements are given by

Ai,i−1 = −F (3.16)
Ai,i = 1 + 2F (3.17)

Ai,i+1 = −F (3.18)

in the equations for internal points, i = 1, . . . , Nx − 1. The first and last equation correspond to the
boundary condition, where we know the solution, and therefore we must have

220

DRAFT

3. Diffusion Equations

A0,0 = 1, (3.19)
A0,1 = 0, (3.20)

ANx,Nx−1 = 0, (3.21)
ANx,Nx = 1 . (3.22)

The right-hand side b is written as

b =



b0
b1
...
bi
...
bNx


with

b0 = 0, (3.23)
bi = un−1

i , i = 1, . . . , Nx − 1, (3.24)
bNx = 0 . (3.25)

We observe that the matrix A contains quantities that do not change in time. Therefore, A can be
formed once and for all before we enter the recursive formulas for the time evolution. The right-hand
side b, however, must be updated at each time step. This leads to the following computational
algorithm, here sketched with Python code:

x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = np.linspace(0, T, N+1) # mesh points in time
u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level

A = np.zeros((Nx+1, Nx+1))
b = np.zeros(Nx+1)

for i in range(1, Nx):
A[i,i-1] = -F
A[i,i+1] = -F
A[i,i] = 1 + 2*F

A[0,0] = A[Nx,Nx] = 1

for i in range(0, Nx+1):
u_n[i] = I(x[i])

import scipy.linalg

221

DRAFT

3. Diffusion Equations

for n in range(0, Nt):
for i in range(1, Nx):

b[i] = -u_n[i]
b[0] = b[Nx] = 0
u[:] = scipy.linalg.solve(A, b)

u_n[:] = u

Regarding verification, the same considerations apply as for the Forward Euler method (Section
Section 3.5.1).

3.9. Sparse matrix implementation

We have seen from (3.15) that the matrix A is tridiagonal. The code segment above used a full,
dense matrix representation of A, which stores a lot of values we know are zero beforehand, and
worse, the solution algorithm computes with all these zeros. With Nx + 1 unknowns, the work
by the solution algorithm is 1

3(Nx + 1)3 and the storage requirements (Nx + 1)2. By utilizing the
fact that A is tridiagonal and employing corresponding software tools that work with the three
diagonals, the work and storage demands can be proportional to Nx only. This leads to a dramatic
improvement: with Nx = 200, which is a realistic resolution, the code runs about 40,000 times faster
and reduces the storage to just 1.5%! It is no doubt that we should take advantage of the fact that
A is tridiagonal.

The key idea is to apply a data structure for a tridiagonal or sparse matrix. The scipy.sparse
package has relevant utilities. For example, we can store only the nonzero diagonals of a matrix.
The package also has linear system solvers that operate on sparse matrix data structures. The code
below illustrates how we can store only the main diagonal and the upper and lower diagonals.

main = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

main[:] = 1 + 2*F
lower[:] = -F
upper[:] = -F
main[0] = 1
main[Nx] = 1

A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format='csr')

print A.todense() # Check that A is correct

222

DRAFT

3. Diffusion Equations

for i in range(0,Nx+1):
u_n[i] = I(x[i])

for n in range(0, Nt):
b = u_n
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)
u_n[:] = u

The scipy.sparse.linalg.spsolve function utilizes the sparse storage structure of A and performs,
in this case, a very efficient Gaussian elimination solve.

The program diffu1D_u0.py contains a function solver_BE, which implements the Backward Euler
scheme sketched above. As mentioned in Section Section 3.3, the functions plug and gaussian run
the case with I(x) as a discontinuous plug or a smooth Gaussian function. All experiments point to
two characteristic features of the Backward Euler scheme: 1) it is always stable, and 2) it always
gives a smooth, decaying solution.

3.10. Crank-Nicolson scheme

The idea in the Crank-Nicolson scheme is to apply centered differences in space and time, combined
with an average in time. We demand the PDE to be fulfilled at the spatial mesh points, but midway
between the points in the time mesh:

∂

∂t
u(xi, tn+ 1

2
) = α

∂2

∂x2u(xi, tn+ 1
2
) + f(xi, tn+ 1

2
),

for i = 1, . . . , Nx − 1 and n = 0, . . . , Nt − 1.

With centered differences in space and time, we get

[Dtu = αDxDxu+ f]n+ 1
2

i .

On the right-hand side we get an expression

1
∆x2

(
u

n+ 1
2

i−1 − 2un+ 1
2 ∗ ∗i+ un+ 1

2 ∗ ∗i+ 1
)

+ f
n+ 1

2
i .

This expression is problematic since un+ 1
2

i is not one of the unknowns we compute. A possibility is
to replace un+ 1

2
i by an arithmetic average:

u
n+ 1

2
i ≈ 1

2
(
un ∗ ∗i+ un+1 ∗ ∗i

)
.

In the compact notation, we can use the arithmetic average notation ut:

[Dtu = αDxDxu
t + f]n+ 1

2
i .

223

https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu1D_u0.py

DRAFT

3. Diffusion Equations

We can also use an average for fn+ 1
2

i :

[Dtu = αDxDxu
t + f

t]n+ 1
2

i .

After writing out the differences and average, multiplying by ∆t, and collecting all unknown terms
on the left-hand side, we get

un+1 ∗ ∗i− 1
2F (un+1 ∗ ∗i− 1− 2un+1 ∗ ∗i+ un+1 ∗ ∗i+ 1) = un ∗ ∗i+ 1

2F (un ∗ ∗i− 1− 2un ∗ ∗i+ un ∗ ∗i+ 1)

+ 1
2f

n+1
i + 1

2f
n
i . (3.26)

Also here, as in the Backward Euler scheme, the new unknowns un+1 ∗ ∗i− 1, un+1 ∗ ∗i, and un+1
i+1

are coupled in a linear system AU = b, where A has the same structure as in (3.15), but with
slightly different entries:

Ai,i−1 = −1
2F (3.27)

Ai,i = 1 + F (3.28)

Ai,i+1 = −1
2F (3.29)

in the equations for internal points, i = 1, . . . , Nx − 1. The equations for the boundary points
correspond to

A0,0 = 1, (3.30)
A0,1 = 0, (3.31)

ANx,Nx−1 = 0, (3.32)
ANx,Nx = 1 . (3.33)

The right-hand side b has entries

b0 = 0, (3.34)

bi = un−1
i + 1

2(fn
i + fn+1

i), i = 1, . . . , Nx − 1, (3.35)

bNx = 0 . (3.36)

When verifying some implementation of the Crank-Nicolson scheme by convergence rate testing,
one should note that the scheme is second order accurate in both space and time. The numerical
error then reads

E = Ct∆tr + Cx∆xr,

224

DRAFT

3. Diffusion Equations

where r = 2 (Ct and Cx are unknown constants, as before). When introducing a single discretization
parameter, we may now simply choose

h = ∆x = ∆t,

which gives
E = Cth

r + Cxh
r = (Ct + Cx)hr,

where r should approach 2 as resolution is increased in the convergence rate computations.

3.11. The unifying θ rule

For the equation
∂u

∂t
= G(u),

where G(u) is some spatial differential operator, the θ-rule looks like

un+1
i − un

i

∆t = θG(un+1
i) + (1− θ)G(un

i) .

The important feature of this time discretization scheme is that we can implement one formula and
then generate a family of well-known and widely used schemes:

• θ = 0 gives the Forward Euler scheme in time
• θ = 1 gives the Backward Euler scheme in time
• θ = 1

2 gives the Crank-Nicolson scheme in time

In the compact difference notation, we write the θ rule as

[Dtu = αDxDxu]n+θ .

We have that tn+θ = θtn+1 + (1− θ)tn.

Applied to the 1D diffusion problem, the θ-rule gives

un+1
i − un

i

∆t = α

(
θ
un+1

i+1 − 2un+1 ∗ ∗i+ un+1 ∗ ∗i− 1
∆x2 + (1− θ)

un
i+1 − 2un

i + un
i−1

∆x2

)
+ θfn+1

i + (1− θ)fn
i

.This scheme also leads to a matrix system with entries

Ai,i−1 = −Fθ, Ai,i = 1 + 2Fθ ,Ai,i+1 = −Fθ,

while right-hand side entry bi is

bi = un
i + F (1− θ)

un
i+1 − 2un

i + un
i−1

∆x2 + ∆tθfn+1
i + ∆t(1− θ)fn

i .

The corresponding entries for the boundary points are as in the Backward Euler and Crank-Nicolson
schemes listed earlier.

225

DRAFT

3. Diffusion Equations

Note that convergence rate testing with implementations of the theta rule must adjust the error
expression according to which of the underlying schemes is actually being run. That is, if θ = 0 (i.e.,
Forward Euler) or θ = 1 (i.e., Backward Euler), there should be first order convergence, whereas
with θ = 0.5 (i.e., Crank-Nicolson), one should get second order convergence (as outlined in previous
sections).

[Dtu = αDxDxu
t,θ]ni

3.12. Experiments

We can repeat the experiments from Section Section 3.6 to see if the Backward Euler or Crank-
Nicolson schemes have problems with sawtooth-like noise when starting with a discontinuous initial
condition. We can also verify that we can have F > 1

2 , which allows larger time steps than in the
Forward Euler method.

Figure 3.5.: Backward Euler scheme for F = 0.5.

The Backward Euler scheme always produces smooth solutions for any F . Figure Figure 3.5 shows
one example. Note that the mathematical discontinuity at t = 0 leads to a linear variation on a
mesh, but the approximation to a jump becomes better as Nx increases. In our simulation, we

226

DRAFT

3. Diffusion Equations

specify ∆t and F , and set Nx to L/
√
α∆t/F . Since Nx ∼

√
F , the discontinuity looks sharper in

the Crank-Nicolson simulations with larger F .

The Crank-Nicolson method produces smooth solutions for small F , F ≤ 1
2 , but small noise gets

more and more evident as F increases. Figures Figure 3.6 and Figure 3.7 demonstrate the effect for
F = 3 and F = 10, respectively. Section Section 3.15 explains why such noise occur.

Figure 3.6.: Crank-Nicolson scheme for F = 3.

3.13. The Laplace and Poisson equation

The Laplace equation,∇2u = 0, and the Poisson equation, −∇2u = f , occur in numerous applications
throughout science and engineering. In 1D these equations read u′′(x) = 0 and −u′′(x) = f(x),
respectively. We can solve 1D variants of the Laplace equations with the listed software, because
we can interpret uxx = 0 as the limiting solution of ut = αuxx when u reaches a steady state limit
where ut → 0. Similarly, Poisson’s equation −uxx = f arises from solving ut = uxx + f and letting
t→∞ so ut → 0.

Technically in a program, we can simulate t→∞ by just taking one large time step: ∆t→∞. In

227

DRAFT

3. Diffusion Equations

Figure 3.7.: Crank-Nicolson scheme for F = 10.

228

DRAFT

3. Diffusion Equations

the limit, the Backward Euler scheme gives

−
un+1

i+1 − 2un+1 ∗ ∗i+ un+1 ∗ ∗i− 1
∆x2 = fn+1

i ,

which is nothing but the discretization [−DxDxu = f]n+1
i = 0 of −uxx = f .

The result above means that the Backward Euler scheme can solve the limit equation directly and
hence produce a solution of the 1D Laplace equation. With the Forward Euler scheme we must do
the time stepping since ∆t > ∆x2/α is illegal and leads to instability. We may interpret this time
stepping as solving the equation system from −uxx = f by iterating on a pseudo time variable.

3.14. Solving the Diffusion Equation with Devito

Having established the finite difference discretization of the diffusion equation, we now implement
the Forward Euler scheme using Devito. The symbolic approach allows us to express the PDE
directly and let Devito generate optimized code.

3.14.1. From Discretization to Devito

Recall the Forward Euler scheme for the diffusion equation:

un+1
i = un

i + F
(
un

i+1 − 2un
i + un

i−1
)

where the Fourier number F = α∆t/∆x2 must satisfy F ≤ 0.5 for stability.

In Devito, we express this as the PDE ut = αuxx and let the framework derive the update formula
automatically.

3.14.2. The Devito Implementation

from devito import Grid, TimeFunction, Eq, solve, Operator, Constant
import numpy as np

Domain and discretization
L = 1.0 # Domain length
Nx = 100 # Grid points
a = 1.0 # Diffusion coefficient
F = 0.5 # Fourier number

dx = L / Nx
dt = F * dx**2 / a # Time step from stability condition

Create Devito grid
grid = Grid(shape=(Nx + 1,), extent=(L,))

229

DRAFT

3. Diffusion Equations

Time-varying temperature field
time_order=1 for first-order time derivative
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

3.14.3. Key Differences from the Wave Equation

Compare this to the wave equation setup:

Parameter Wave Equation Diffusion Equation
time_order 2 (for utt) 1 (for ut)
Time derivative .dt2 .dt
Time levels 3 (un−1, un, un+1) 2 (un, un+1)
Stability number Courant: C = c∆t/∆x ≤ 1 Fourier: F = α∆t/∆x2 ≤ 0.5

3.14.4. Symbolic PDE Definition

With time_order=1, Devito provides the .dt derivative:

Diffusion coefficient as a Devito constant
a_const = Constant(name='a_const')

PDE: u_t = a * u_xx => u_t - a * u_xx = 0
pde = u.dt - a_const * u.dx2

Solve for u at the forward time level
stencil = Eq(u.forward, solve(pde, u.forward))

When we print the stencil, we see:

print(stencil)
Eq(u(t + dt, x), dt*a_const*u(t, x).dx2 + u(t, x))

This is exactly the Forward Euler update: un+1 = un + ∆t · α · un
xx.

3.14.5. Boundary Conditions

For homogeneous Dirichlet conditions u(0, t) = u(L, t) = 0:

t_dim = grid.stepping_dim
bc_left = Eq(u[t_dim + 1, 0], 0)
bc_right = Eq(u[t_dim + 1, Nx], 0)

230

DRAFT

3. Diffusion Equations

3.14.6. Complete Solver

The src.diffu module provides solve_diffusion_1d:

from src.diffu import solve_diffusion_1d
import numpy as np

Initial condition: sinusoidal temperature profile
def I(x):

return np.sin(np.pi * x)

result = solve_diffusion_1d(
L=1.0, # Domain length
a=1.0, # Diffusion coefficient
Nx=100, # Grid points
T=0.1, # Final time
F=0.5, # Fourier number (at stability limit)
I=I, # Initial condition

)

print(f"Final time: {result.t:.4f}")
print(f"Max temperature: {result.u.max():.6f}")

3.14.7. Verification with Exact Solution

For the initial condition I(x) = sin(πx/L), the exact solution is:

u(x, t) = e−α(π/L)2t sin(πx/L)

This exponentially decaying sinusoid can verify our implementation:

from src.diffu import exact_diffusion_sine

Compare numerical and exact solutions
u_exact = exact_diffusion_sine(result.x, result.t, L=1.0, a=1.0)
error = np.max(np.abs(result.u - u_exact))
print(f"Maximum error: {error:.2e}")

3.14.8. Convergence Testing

We verify second-order spatial accuracy:

231

DRAFT

3. Diffusion Equations

from src.diffu import convergence_test_diffusion_1d

grid_sizes, errors, rate = convergence_test_diffusion_1d(
grid_sizes=[10, 20, 40, 80],
T=0.1,
F=0.5,

)

print(f"Observed convergence rate: {rate:.2f}") # Should approach 2.0

With F fixed, refining the grid means ∆x → ∆x/2 and ∆t → ∆t/4 (since F = α∆t/∆x2). The
spatial error O(∆x2) dominates, giving second-order convergence.

3.14.9. Visualizing the Solution Evolution

import matplotlib.pyplot as plt

result = solve_diffusion_1d(
L=1.0, a=1.0, Nx=100, T=0.5, F=0.5,
save_history=True,

)

Plot at several times
times_to_plot = [0, 0.1, 0.2, 0.3, 0.5]
plt.figure(figsize=(10, 6))

for t in times_to_plot:
idx = int(t / result.dt)
if idx < len(result.t_history):

plt.plot(result.x, result.u_history[idx],
label=f't = {result.t_history[idx]:.2f}')

plt.xlabel('x')
plt.ylabel('u(x, t)')
plt.title('Diffusion of a Sinusoidal Profile')
plt.legend()
plt.grid(True)

The solution shows the characteristic behavior of the heat equation: the sinusoidal profile decays
exponentially in time while maintaining its shape.

3.14.10. The Fourier Number and Physical Interpretation

The Fourier number F = α∆t/∆x2 has a physical interpretation. It represents the ratio of the
diffusion time scale to the computational time step:

232

DRAFT

3. Diffusion Equations

• Large F : Heat diffuses quickly relative to the time step
• Small F : Slow diffusion, finer time resolution

The stability limit F ≤ 0.5 means we cannot take time steps larger than half the time for heat to
diffuse across one grid cell.

3.14.11. Handling Different Initial Conditions

The diffusion equation smooths out discontinuities over time. Let’s compare a smooth Gaussian
and a discontinuous “plug”:

from src.diffu import gaussian_initial_condition, plug_initial_condition

Gaussian: smooth initial condition
result_gaussian = solve_diffusion_1d(

L=1.0, Nx=100, T=0.1, F=0.5,
I=lambda x: gaussian_initial_condition(x, L=1.0, sigma=0.05),

)

Plug: discontinuous initial condition
result_plug = solve_diffusion_1d(

L=1.0, Nx=100, T=0.1, F=0.5,
I=lambda x: plug_initial_condition(x, L=1.0, width=0.1),

)

For smooth initial conditions, the Forward Euler scheme with F = 0.5 works well. For discontinuous
initial conditions, a smaller Fourier number (F ≤ 0.25) may be needed to avoid oscillations.

3.14.12. Summary

Key points for the diffusion equation with Devito:

1. Use time_order=1 for the first-order time derivative
2. The .dt attribute provides the time derivative
3. The Fourier number F = α∆t/∆x2 must satisfy F ≤ 0.5
4. The exact sinusoidal solution provides excellent verification
5. Smooth initial conditions work well at F = 0.5; discontinuous conditions may need smaller F

The Forward Euler scheme is simple and explicit, but the time step restriction can be severe for
accuracy. In the next section, we discuss implicit methods that remove this restriction.

233

DRAFT

3. Diffusion Equations

3.15. Analysis of schemes for the diffusion equation

The numerical experiments in Sections Section 3.6 and Section 3.12 reveal that there are some
numerical problems with the Forward Euler and Crank-Nicolson schemes: sawtooth-like noise is
sometimes present in solutions that are, from a mathematical point of view, expected to be smooth.
This section presents a mathematical analysis that explains the observed behavior and arrives at
criteria for obtaining numerical solutions that reproduce the qualitative properties of the exact
solutions. In short, we shall explain what is observed in Figures Figure 3.13.7.

3.16. Properties of the solution

A particular characteristic of diffusive processes, governed by an equation like

ut = αuxx, (3.37)

is that the initial shape u(x, 0) = I(x) spreads out in space with time, along with a decaying
amplitude. Three different examples will illustrate the spreading of u in space and the decay in
time.

3.16.1. Similarity solution

The diffusion equation (3.37) admits solutions that depend on η = (x− c)/
√

4αt for a given value
of c. One particular solution is

u(x, t) = a erf(η) + b, (3.38)
where

erf(η) = 2√
π

∫ η

0
e−ζ2

dζ, (3.39)

is the error function, and a and b are arbitrary constants. The error function lies in (−1, 1), is odd
around η = 0, and goes relatively quickly to ±1:

lim
η→−∞

erf(η) = −1,

lim
η→∞

erf(η) = 1,

erf(η) = −erf(−η),
erf(0) = 0,
erf(2) = 0.99532227,
erf(3) = 0.99997791

.

As t→ 0, the error function approaches a step function centered at x = c. For a diffusion problem
posed on the unit interval [0, 1], we may choose the step at x = 1/2 (meaning c = 1/2), a = −1/2,
b = 1/2. Then

u(x, t) = 1
2

(
1− erf

(
x− 1

2√
4αt

))
= 1

2erfc
(
x− 1

2√
4αt

)
, (3.40)

234

DRAFT

3. Diffusion Equations

where we have introduced the complementary error function erfc(η) = 1 − erf(η). The solution
(3.40) implies the boundary conditions

u(0, t) = 1
2

(
1− erf

(−1/2√
4αt

))
, (3.41)

u(1, t) = 1
2

(
1− erf

(1/2√
4αt

))
. (3.42)

For small enough t, u(0, t) ≈ 1 and u(1, t) ≈ 0, but as t→∞, u(x, t)→ 1/2 on [0, 1].

3.16.2. Solution for a Gaussian pulse

The standard diffusion equation ut = αuxx admits a Gaussian function as solution:

u(x, t) = 1√
4παt

exp
(
−(x− c)2

4αt

)
. (3.43)

At t = 0 this is a Dirac delta function, so for computational purposes one must start to view the
solution at some time t = tϵ > 0. Replacing t by tϵ + t in (3.43) makes it easy to operate with a
(new) t that starts at t = 0 with an initial condition with a finite width. The important feature of
(3.43) is that the standard deviation σ of a sharp initial Gaussian pulse increases in time according
to σ =

√
2αt, making the pulse diffuse and flatten out.

3.16.3. Solution for a sine component

Also, (3.37) admits a solution of the form

u(x, t) = Qe−at sin (kx) . (3.44)

The parameters Q and k can be freely chosen, while inserting (3.44) in (3.37) gives the constraint

a = −αk2 .

A very important feature is that the initial shape I(x) = Q sin (kx) undergoes a damping exp (−αk2t),
meaning that rapid oscillations in space, corresponding to large k, are very much faster dampened
than slow oscillations in space, corresponding to small k. This feature leads to a smoothing of the
initial condition with time. (In fact, one can use a few steps of the diffusion equation as a method
for removing noise in signal processing.) To judge how good a numerical method is, we may look at
its ability to smoothen or dampen the solution in the same way as the PDE does.

The following example illustrates the damping properties of (3.44). We consider the specific
problem

ut = uxx, x ∈ (0, 1), t ∈ (0, T],
u(0, t) = u(1, t) = 0, t ∈ (0, T],
u(x, 0) = sin(πx) + 0.1 sin(100πx)

235

DRAFT

3. Diffusion Equations

.The initial condition has been chosen such that adding two solutions like (3.44) constructs an
analytical solution to the problem:

u(x, t) = e−π2t sin(πx) + 0.1e−π2104t sin(100πx) . (3.45)

Figure Figure 3.8 illustrates the rapid damping of rapid oscillations sin(100πx) and the very much
slower damping of the slowly varying sin(πx) term. After about t = 0.5 · 10−4 the rapid oscillations
do not have a visible amplitude, while we have to wait until t ∼ 0.5 before the amplitude of the
long wave sin(πx) becomes very small.

Figure 3.8.: Evolution of the solution of a diffusion problem: initial condition (upper left), 1/100
reduction of the small waves (upper right), 1/10 reduction of the long wave (lower left),
and 1/100 reduction of the long wave (lower right).

3.17. Analysis of discrete equations

A counterpart to (3.44) is the complex representation of the same function:

u(x, t) = Qe−ateikx,

236

DRAFT

3. Diffusion Equations

where i =
√
−1 is the imaginary unit. We can add such functions, often referred to as wave

components, to make a Fourier representation of a general solution of the diffusion equation:

u(x, t) ≈
∑
k∈K

bke
−αk2teikx, (3.46)

where K is a set of an infinite number of k values needed to construct the solution. In practice,
however, the series is truncated and K is a finite set of k values needed to build a good approximate
solution. Note that (3.45) is a special case of (3.46) where K = {π, 100π}, bπ = 1, and b100π = 0.1.

The amplitudes bk of the individual Fourier waves must be determined from the initial condition.
At t = 0 we have u ≈∑k bk exp (ikx) and find K and bk such that

I(x) ≈
∑
k∈K

bke
ikx .

(The relevant formulas for bk come from Fourier analysis, or equivalently, a least-squares method for
approximating I(x) in a function space with basis exp (ikx).)

Much insight about the behavior of numerical methods can be obtained by investigating how a wave
component exp (−αk2t) exp (ikx) is treated by the numerical scheme. It appears that such wave
components are also solutions of the schemes, but the damping factor exp (−αk2t) varies among
the schemes. To ease the forthcoming algebra, we write the damping factor as An. The exact
amplification factor corresponding to A is Ae = exp (−αk2∆t).

3.18. Analysis of the finite difference schemes

We have seen that a general solution of the diffusion equation can be built as a linear combination
of basic components

e−αk2teikx .

A fundamental question is whether such components are also solutions of the finite difference
schemes. This is indeed the case, but the amplitude exp (−αk2t) might be modified (which also
happens when solving the ODE counterpart u′ = −αu). We therefore look for numerical solutions
of the form

un
q = Aneikq∆x = Aneikx, (3.47)

where the amplification factor A must be determined by inserting the component into an actual
scheme. Note that An means A raised to the power of n, n being the index in the time mesh, while
the superscript n in un

q just denotes u at time tn.

3.18.1. Stability

The exact amplification factor is Ae = exp (−α2k2∆t). We should therefore require |A| < 1 to have
a decaying numerical solution as well. If −1 ≤ A < 0, An will change sign from time level to time
level, and we get stable, non-physical oscillations in the numerical solutions that are not present in
the exact solution.

237

DRAFT

3. Diffusion Equations

3.18.2. Accuracy

To determine how accurately a finite difference scheme treats one wave component (3.47), we see
that the basic deviation from the exact solution is reflected in how well An approximates An

e , or
how well A approximates Ae. We can plot Ae and the various expressions for A, and we can make
Taylor expansions of A/Ae to see the error more analytically.

3.18.3. Truncation error

As an alternative to examining the accuracy of the damping of a wave component, we can perform
a general truncation error analysis as explained in Chapter 7. Such results are more general, but
less detailed than what we get from the wave component analysis. The truncation error can almost
always be computed and represents the error in the numerical model when the exact solution is
substituted into the equations. In particular, the truncation error analysis tells the order of the
scheme, which is of fundamental importance when verifying codes based on empirical estimation of
convergence rates.

3.19. Analysis of the Forward Euler scheme

The Forward Euler finite difference scheme for ut = αuxx can be written as

[D+
t u = αDxDxu]nq .

Inserting a wave component (3.47) in the scheme demands calculating the terms

eikq∆x[D+
t A]n = eikq∆xAnA− 1

∆t ,

and
AnDxDx[eikx]q = An

(
−eikq∆x 4

∆x2 sin2
(
k∆x

2

))
.

Inserting these terms in the discrete equation and dividing by Aneikq∆x leads to

A− 1
∆t = −α 4

∆x2 sin2
(
k∆x

2

)
,

and consequently
A = 1− 4F sin2 p

where
F = α∆t

∆x2

is the numerical Fourier number, and p = k∆x/2. The complete numerical solution is then

un
q =

(
1− 4F sin2 p

)n
eikq∆x .

Stability We easily see that A ≤ 1. However, the A can be less than −1, which will lead to
growth of a numerical wave component. The criterion A ≥ −1 implies

4F sin2(p/2) ≤ 2 .

238

DRAFT

3. Diffusion Equations

The worst case is when sin2(p/2) = 1, so a sufficient criterion for stability is

F ≤ 1
2 ,

or expressed as a condition on ∆t:

∆t ≤ ∆x2

2α .

Note that halving the spatial mesh size, ∆x→ 1
2∆x, requires ∆t to be reduced by a factor of 1/4.

The method hence becomes very expensive for fine spatial meshes.

3.19.1. Accuracy

Since A is expressed in terms of F and the parameter we now call p = k∆x/2, we should also express
Ae by F and p. The exponent in Ae is −αk2∆t, which equals −Fk2∆x2 = −F4p2. Consequently,

Ae = exp (−αk2∆t) = exp (−4Fp2) .
All our A expressions as well as Ae are now functions of the two dimensionless parameters F and
p.

Computing the Taylor series expansion of A/Ae in terms of F can easily be done with aid of
sympy:

def A_exact(F, p):
return exp(-4*F*p**2)

def A_FE(F, p):
return 1 - 4*F*sin(p)**2

from sympy import *
F, p = symbols('F p')
A_err_FE = A_FE(F, p)/A_exact(F, p)
print A_err_FE.series(F, 0, 6)

The result is
A

Ae
= 1− 4F sin2 p+ 2Fp2 − 16F 2p2 sin2 p+ 8F 2p4 + · · ·

Recalling that F = α∆t/∆x2, p = k∆x/2, and that sin2 p ≤ 1, we realize that the dominating terms
in A/Ae are at most

1− 4α ∆t
∆x2 + α∆t− 4α2∆t2 + α2∆t2∆x2 + · · · .

Truncation error We follow the theory explained in Chapter 7. The recipe is to set up the
scheme in operator notation and use formulas from Section 7.7 to derive an expression for the
residual. The details are documented in Section 7.27. We end up with a truncation error

Rn
i = O(∆t) +O(∆x2) .

Although this is not the true error ue(xi, tn)− un
i , it indicates that the true error is of the form

E = Ct∆t+ Cx∆x2

for two unknown constants Ct and Cx.

239

DRAFT

3. Diffusion Equations

3.20. Analysis of the Backward Euler scheme

Discretizing ut = αuxx by a Backward Euler scheme,

[D−
t u = αDxDxu]nq ,

and inserting a wave component (3.47), leads to calculations similar to those arising from the
Forward Euler scheme, but since

eikq∆x[D−
t A]n = Aneikq∆x 1−A−1

∆t ,

we get
1−A−1

∆t = −α 4
∆x2 sin2

(
k∆x

2

)
,

and then
A =

(
1 + 4F sin2 p

)−1
. (3.48)

The complete numerical solution can be written

un
q =

(
1 + 4F sin2 p

)−n
eikq∆x .

Stability We see from (3.48) that 0 < A < 1, which means that all numerical wave components
are stable and non-oscillatory for any ∆t > 0.

3.20.1. Truncation error

The derivation of the truncation error for the Backward Euler scheme is almost identical to that for
the Forward Euler scheme. We end up with

Rn
i = O(∆t) +O(∆x2) .

3.21. Analysis of the Crank-Nicolson scheme

The Crank-Nicolson scheme can be written as

[Dtu = αDxDxu
x]n+ 1

2
q ,

or
[Dtu]n+ 1

2
q = 1

2α
(
[DxDxu]nq + [DxDxu]n+1

q

)
.

Inserting (3.47) in the time derivative approximation leads to

[DtA
neikq∆x]n+ 1

2 = An+ 1
2 eikq∆xA

1
2 −A− 1

2

∆t = Aneikq∆xA− 1
∆t .

Inserting (3.47) in the other terms and dividing by Aneikq∆x gives the relation

A− 1
∆t = −1

2α
4

∆x2 sin2
(
k∆x

2

)
(1 +A),

240

DRAFT

3. Diffusion Equations

and after some more algebra,

A = 1− 2F sin2 p

1 + 2F sin2 p
.

The exact numerical solution is hence

un
q =

(
1− 2F sin2 p

1 + 2F sin2 p

)n

eikq∆x .

Stability The criteria A > −1 and A < 1 are fulfilled for any ∆t > 0. Therefore, the solution
cannot grow, but it will oscillate if 1− 2F sinp < 0. To avoid such non-physical oscillations, we must
demand F ≤ 1

2 .

3.21.1. Truncation error

The truncation error is derived in Section 7.27:

R
n+ 1

2
i = O(∆x2) +O(∆t2) .

Analysis of the Leapfrog scheme {#sec-diffu-pde1-analysis-leapfrog}

An attractive feature of the Forward Euler scheme is the explicit time stepping and no need for
solving linear systems. However, the accuracy in time is only O(∆t). We can get an explicit
second-order scheme in time by using the Leapfrog method:

[D2tu = αDxDxu+ f]nq .

Written out,
un+1

q = un−1
q + 2α∆t

∆x2 (un
q+1 − 2un

q + un
q−1) + f(xq, tn) .

We need some formula for the first step, u1
q , but for that we can use a Forward Euler step.

Unfortunately, the Leapfrog scheme is always unstable for the diffusion equation. To see this, we
insert a wave component Aneikx and get

A−A−1

∆t = −α 4
∆x2 sin2 p,

or
A2 + 4F sin2 pA− 1 = 0,

which has roots
A = −2F sin2 p±

√
4F 2 sin4 p+ 1 .

Both roots have |A| > 1 so the amplitude always grows, which is not in accordance with the physics
of the problem. However, for a PDE with a first-order derivative in space, instead of a second-order
one, the Leapfrog scheme performs very well. Details are provided in Section Section 4.4.1.

241

DRAFT

3. Diffusion Equations

Figure 3.9.: Amplification factors for large time steps.

Figure 3.10.: Amplification factors for time steps around the Forward Euler stability limit.

Figure 3.11.: Amplification factors for small time steps.

242

DRAFT

3. Diffusion Equations

3.22. Summary of accuracy of amplification factors

We can plot the various amplification factors against p = k∆x/2 for different choices of the F
parameter. Figures Figure 3.9, Figure 3.10, and Figure 3.11 show how long and small waves are
damped by the various schemes compared to the exact damping. As long as all schemes are stable,
the amplification factor is positive, except for Crank-Nicolson when F > 0.5.

The effect of negative amplification factors is that An changes sign from one time level to the next,
thereby giving rise to oscillations in time in an animation of the solution. We see from Figure
Figure 3.9 that for F = 20, waves with p ≥ π/4 undergo a damping close to −1, which means that
the amplitude does not decay and that the wave component jumps up and down (flips amplitude) in
time. For F = 2 we have a damping of a factor of 0.5 from one time level to the next, which is very
much smaller than the exact damping. Short waves will therefore fail to be effectively dampened.
These waves will manifest themselves as high frequency oscillatory noise in the solution.

A value p = π/4 corresponds to four mesh points per wave length of eikx, while p = π/2 implies
only two points per wave length, which is the smallest number of points we can have to represent
the wave on the mesh.

To demonstrate the oscillatory behavior of the Crank-Nicolson scheme, we choose an initial condition
that leads to short waves with significant amplitude. A discontinuous I(x) will in particular serve
this purpose: Figures Figure 3.6 and Figure 3.7 correspond to F = 3 and F = 10, respectively, and
we see how short waves pollute the overall solution.

3.23. Analysis of the 2D diffusion equation

Diffusion in several dimensions is treated later, but it is appropriate to include the analysis here.
We first consider the 2D diffusion equation

ut = α(uxx + uyy),

which has Fourier component solutions of the form

u(x, y, t) = Ae−αk2tei(kxx+kyy),

and the schemes have discrete versions of this Fourier component:

un
q,r = Aξnei(kxq∆x+kyr∆y) .

The Forward Euler scheme For the Forward Euler discretization,

[D+
t u = α(DxDxu+DyDyu)]nq,r,

we get
ξ − 1
∆t = −α 4

∆x2 sin2
(
kx∆x

2

)
− α 4

∆y2 sin2
(
ky∆y

2

)
.

Introducing
px = kx∆x

2 , py = ky∆y
2 ,

243

DRAFT

3. Diffusion Equations

we can write the equation for ξ more compactly as

ξ − 1
∆t = −α 4

∆x2 sin2 px − α
4

∆y2 sin2 py,

and solve for ξ:
ξ = 1− 4Fx sin2 px − 4Fy sin2 py . (3.49)

The complete numerical solution for a wave component is

un
q,r = A(1− 4Fx sin2 px − 4Fy sin2 py)nei(kxq∆x+kyr∆y) . (3.50)

For stability we demand −1 ≤ ξ ≤ 1, and −1 ≤ ξ is the critical limit, since clearly ξ ≤ 1, and the
worst case happens when the sines are at their maximum. The stability criterion becomes

Fx + Fy ≤
1
2 . (3.51)

For the special, yet common, case ∆x = ∆y = h, the stability criterion can be written as

∆t ≤ h2

2dα,

where d is the number of space dimensions: d = 1, 2, 3.

3.23.1. The Backward Euler scheme

The Backward Euler method,

[D−
t u = α(DxDxu+DyDyu)]nq,r,

results in
1− ξ−1 = −4Fx sin2 px − 4Fy sin2 py,

and
ξ = (1 + 4Fx sin2 px + 4Fy sin2 py)−1,

which is always in (0, 1]. The solution for a wave component becomes

un
q,r = A(1 + 4Fx sin2 px + 4Fy sin2 py)−nei(kxq∆x+kyr∆y) . (3.52)

3.23.2. The Crank-Nicolson scheme

With a Crank-Nicolson discretization,

[Dtu]n+ 1
2

q,r = 1
2[α(DxDxu+DyDyu)]n+1

q,r + 1
2[α(DxDxu+DyDyu)]nq,r,

we have, after some algebra,

ξ = 1− 2(Fx sin2 px + Fx sin2 py)
1 + 2(Fx sin2 px + Fx sin2 py) .

244

DRAFT

3. Diffusion Equations

The fraction on the right-hand side is always less than 1, so stability in the sense of non-growing
wave components is guaranteed for all physical and numerical parameters. However, the fraction
can become negative and result in non-physical oscillations. This phenomenon happens when

Fx sin2 px + Fx sin2 py >
1
2 .

A criterion against non-physical oscillations is therefore

Fx + Fy ≤
1
2 ,

which is the same limit as the stability criterion for the Forward Euler scheme.

The exact discrete solution is

un
q,r = A

(
1− 2(Fx sin2 px + Fx sin2 py)
1 + 2(Fx sin2 px + Fx sin2 py)

)n

ei(kxq∆x+kyr∆y) . (3.53)

3.24. Explanation of numerical artifacts

The behavior of the solution generated by Forward Euler discretization in time (and centered
differences in space) is summarized at the end of Section Section 3.6. Can we, from the analysis
above, explain the behavior?

We may start by looking at Figure Figure 3.3 where F = 0.51. The figure shows that the solution is
unstable and grows in time. The stability limit for such growth is F = 0.5 and since the F in this
simulation is slightly larger, growth is unavoidable.

Figure Figure 3.1 has unexpected features: we would expect the solution of the diffusion equation
to be smooth, but the graphs in Figure Figure 3.1 contain non-smooth noise. Turning to Figure
Figure 3.4, which has a quite similar initial condition, we see that the curves are indeed smooth.
The problem with the results in Figure Figure 3.1 is that the initial condition is discontinuous.
To represent it, we need a significant amplitude on the shortest waves in the mesh. However, for
F = 0.5, the shortest wave (p = π/2) gives the amplitude in the numerical solution as (1− 4F)n,
which oscillates between negative and positive values at subsequent time levels for F > 1

4 . Since the
shortest waves have visible amplitudes in the solution profile, the oscillations becomes visible. The
smooth initial condition in Figure Figure 3.4, on the other hand, leads to very small amplitudes
of the shortest waves. That these waves then oscillate in a non-physical way for F = 0.5 is not a
visible effect. The oscillations in time in the amplitude (1− 4F)n disappear for F ≤ 1

4 , and that is
why also the discontinuous initial condition always leads to smooth solutions in Figure Figure 3.2,
where F = 1

4 .

Turning the attention to the Backward Euler scheme and the experiments in Figure Figure 3.5, we
see that even the discontinuous initial condition gives smooth solutions for F = 0.5 (and in fact all
other F values). From the exact expression of the numerical amplitude, (1 + 4F sin2 p)−1, we realize
that this factor can never flip between positive and negative values, and no instabilities can occur.
The conclusion is that the Backward Euler scheme always produces smooth solutions. Also, the
Backward Euler scheme guarantees that the solution cannot grow in time (unless we add a source
term to the PDE, but that is meant to represent a physically relevant growth).

245

DRAFT

3. Diffusion Equations

Finally, we have some small, strange artifacts when simulating the development of the initial plug
profile with the Crank-Nicolson scheme, see Figure Figure 3.7, where F = 3. The Crank-Nicolson
scheme cannot give growing amplitudes, but it may give oscillating amplitudes in time. The critical
factor is 1− 2F sin2 p, which for the shortest waves (p = π/2) indicates a stability limit F = 0.5.
With the discontinuous initial condition, we have enough amplitude on the shortest waves so their
wrong behavior is visible, and this is what we see as small instabilities in Figure Figure 3.7. The
only remedy is to lower the F value.

3.25. Exercise: Explore symmetry in a 1D problem

This exercise simulates the exact solution (3.43). Suppose for simplicity that c = 0.

a)

Formulate an initial-boundary value problem that has (3.43) as solution in the domain [−L,L]. Use
the exact solution (3.43) as Dirichlet condition at the boundaries. Simulate the diffusion of the
Gaussian peak. Observe that the solution is symmetric around x = 0.

b)

Show from (3.43) that ux(c, t) = 0. Since the solution is symmetric around x = c = 0, we can solve
the numerical problem in half of the domain, using a symmetry boundary condition ux = 0 at x = 0.
Set up the initial-boundary value problem in this case. Simulate the diffusion problem in [0, L] and
compare with the solution in a).

� Solution

ut = αuxx,

ux(0, t) = 0,

u(L, t) = 1√
4παt

exp
(
− x2

4αt

)
.

3.26. Exercise: Investigate approximation errors from a ux = 0 boundary
condition

We consider the problem solved in Exercise Section 3.25 part b). The boundary condition ux(0, t) = 0
can be implemented in two ways: 1) by a standard symmetric finite difference [D2xu]ni = 0, or 2)
by a one-sided difference [D+u = 0]ni = 0. Investigate the effect of these two conditions on the
convergence rate in space.

� If you use a Forward Euler scheme, choose a discretization parameter

h = ∆t = ∆x2 and assume the error goes like E ∼ hr. The error in the scheme is O(∆t,∆x2)
so one should expect that the estimated r approaches 1. The question is if a one-sided difference

246

DRAFT

3. Diffusion Equations

approximation to ux(0, t) = 0 destroys this convergence rate.

3.27. Exercise: Experiment with open boundary conditions in 1D

We address diffusion of a Gaussian function as in Exercise Section 3.25, in the domain [0, L], but
now we shall explore different types of boundary conditions on x = L. In real-life problems we do
not know the exact solution on x = L and must use something simpler.

a)

Imagine that we want to solve the problem numerically on [0, L], with a symmetry boundary
condition ux = 0 at x = 0, but we do not know the exact solution and cannot of that reason
assign a correct Dirichlet condition at x = L. One idea is to simply set u(L, t) = 0 since this
will be an accurate approximation before the diffused pulse reaches x = L and even thereafter it
might be a satisfactory condition if the exact u has a small value. Let ue be the exact solution
and let u be the solution of ut = αuxx with an initial Gaussian pulse and the boundary conditions
ux(0, t) = u(L, t) = 0. Derive a diffusion problem for the error e = ue − u. Solve this problem
numerically using an exact Dirichlet condition at x = L. Animate the evolution of the error and
make a curve plot of the error measure

E(t) =

√√√√∫ L
0 e2dx∫ L
0 udx

.

Is this a suitable error measure for the present problem?

b)

Instead of using u(L, t) = 0 as approximate boundary condition for letting the diffused Gaussian
pulse move out of our finite domain, one may try ux(L, t) = 0 since the solution for large t is quite
flat. Argue that this condition gives a completely wrong asymptotic solution as t → 0. To do
this, integrate the diffusion equation from 0 to L, integrate uxx by parts (or use Gauss’ divergence
theorem in 1D) to arrive at the important property

d

dt

∫ L

0
u(x, t)dx = 0,

implying that
∫ L

0 udx must be constant in time, and therefore∫ L

0
u(x, t)dx =

∫ L

0
I(x)dx .

The integral of the initial pulse is 1.

c)

Another idea for an artificial boundary condition at x = L is to use a cooling law

−αux = q(u− uS), (3.54)

where q is an unknown heat transfer coefficient and uS is the surrounding temperature in the
medium outside of [0, L]. (Note that arguing that uS is approximately u(L, t) gives the ux = 0

247

DRAFT

3. Diffusion Equations

condition from the previous subexercise that is qualitatively wrong for large t.) Develop a diffusion
problem for the error in the solution using (3.54) as boundary condition. Assume one can take
uS = 0 “outside the domain” since ue → 0 as x → ∞. Find a function q = q(t) such that the
exact solution obeys the condition (3.54). Test some constant values of q and animate how the
corresponding error function behaves. Also compute E(t) curves as defined above.

3.28. Exercise: Simulate a diffused Gaussian peak in 2D/3D

a)

Generalize (3.43) to multi dimensions by assuming that one-dimensional solutions can be multiplied
to solve ut = α∇2u. Set c = 0 such that the peak of the Gaussian is at the origin.

b)

One can from the exact solution show that ux = 0 on x = 0, uy = 0 on y = 0, and uz = 0 on z = 0.
The approximately correct condition u = 0 can be set on the remaining boundaries (say x = L,
y = L, z = L), cf. Exercise Section 3.27. Simulate a 2D case and make an animation of the diffused
Gaussian peak.

c)

The formulation in b) makes use of symmetry of the solution such that we can solve the problem in the
first quadrant (2D) or octant (3D) only. To check that the symmetry assumption is correct, formulate
the problem without symmetry in a domain [−L,L] × [L,L] in 2D. Use u = 0 as approximately
correct boundary condition. Simulate the same case as in b), but in a four times as large domain.
Make an animation and compare it with the one in b).

3.29. Exercise: Examine stability of a diffusion model with a source term

Consider a diffusion equation with a linear u term:

ut = αuxx + βu .

a)

Derive in detail the Forward Euler, Backward Euler, and Crank-Nicolson schemes for this type of
diffusion model. Thereafter, formulate a θ-rule to summarize the three schemes.

b)

Assume a solution like (3.44) and find the relation between a, k, α, and β.

� Insert (3.44) in the PDE problem.

c)

Calculate the stability of the Forward Euler scheme. Design numerical experiments to confirm the
results.

248

DRAFT

3. Diffusion Equations

. Hint

Insert the discrete counterpart to (3.44) in the numerical scheme. Run experiments at the
stability limit and slightly above.

d)

Repeat c) for the Backward Euler scheme.

e)

Repeat c) for the Crank-Nicolson scheme.

f)

How does the extra term bu impact the accuracy of the three schemes?

� For analysis of the accuracy,

compare the numerical and exact amplification factors, in graphs and/or by Taylor series
expansion.

3.30. Diffusion with variable coefficient

Diffusion in heterogeneous media normally implies a non-constant diffusion coefficient α = α(x). A
1D diffusion model with such a variable diffusion coefficient reads

∂u

∂t
= ∂

∂x

(
α(x)∂u

∂x

)
+ f(x, t), x ∈ (0, L), t ∈ (0, T], (3.55)

u(x, 0) = I(x), x ∈ [0, L], (3.56)
u(0, t) = U0, t > 0, (3.57)
u(L, t) = UL, t > 0. (3.58)

A short form of the diffusion equation with variable coefficients is ut = (αux)x + f .

3.31. Discretization

We can discretize the diffusion equation ut = (αux)x + f by a θ-rule in time and centered differences
in space:

[Dtu]n+ 1
2

i = θ[Dx(αxDxu) + f]n+1
i + (1− θ)[Dx(αxDxu) + f]ni .

Written out, this becomes

249

DRAFT

3. Diffusion Equations

un+1
i − un

i

∆t = θ
1

∆x2 (αi+ 1
2
(un+1 ∗ ∗i+ 1− un+1 ∗ ∗i)− αi− 1

2
(un+1 ∗ ∗i− un+1 ∗ ∗i− 1))+

(1− θ) 1
∆x2 (αi+ 1

2
(un ∗ ∗i+ 1− un ∗ ∗i)− αi− 1

2
(un ∗ ∗i− un ∗ ∗i− 1))+

θfn+1
i + (1− θ)fn

i ,

where, e.g., an arithmetic mean can to be used for αi+ 1
2
:

αi+ 1
2

= 1
2(αi + αi+1) .

Implementation {#sec-diffu-varcoeff-impl}

Suitable code for solving the discrete equations is very similar to what we created for a constant
α. Since the Fourier number has no meaning for varying α, we introduce a related parameter
D = ∆t/∆x2.

def solver_theta(I, a, L, Nx, D, T, theta=0.5, u_L=1, u_R=0,
user_action=None):

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
dt = D*dx**2
Nt = int(round(T/float(dt)))
t = linspace(0, T, Nt+1) # mesh points in time

u = zeros(Nx+1) # solution array at t[n+1]
u_n = zeros(Nx+1) # solution at t[n]

Dl = 0.5*D*theta
Dr = 0.5*D*(1-theta)

diagonal = zeros(Nx+1)
lower = zeros(Nx)
upper = zeros(Nx)
b = zeros(Nx+1)

diagonal[1:-1] = 1 + Dl*(a[2:] + 2*a[1:-1] + a[:-2])
lower[:-1] = -Dl*(a[1:-1] + a[:-2])
upper[1:] = -Dl*(a[2:] + a[1:-1])
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],

250

DRAFT

3. Diffusion Equations

shape=(Nx+1, Nx+1),
format='csr')

for i in range(0,Nx+1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
b[1:-1] = u_n[1:-1] + Dr*(

(a[2:] + a[1:-1])*(u_n[2:] - u_n[1:-1]) -
(a[1:-1] + a[0:-2])*(u_n[1:-1] - u_n[:-2]))

b[0] = u_L(t[n+1])
b[-1] = u_R(t[n+1])
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n+1)

u_n, u = u, u_n

The code is found in the file diffu1D_vc.py.

3.32. Stationary solution

As t→∞, the solution of the variable-coefficient diffusion problem will approach a stationary limit
where ∂u/∂t = 0. The governing equation is then

d

dx

(
α
du

dx

)
= 0, (3.59)

with boundary conditions u(0) = U0 and u(L) = UL. It is possible to obtain an exact solution
of (3.59) for any α. Integrating twice and applying the boundary conditions to determine the
integration constants gives

u(x) = U0 + (UL − U0)
∫ x

0 (α(ξ))−1dξ∫ L
0 (α(ξ))−1dξ

. (3.60)

3.33. Piecewise constant medium

Consider a medium built of M layers. The layer boundaries are denoted b0, . . . , bM , where b0 = 0
and bM = L. If the layers potentially have different material properties, but these properties are

251

https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu1D_vc.py

DRAFT

3. Diffusion Equations

constant within each layer, we can express α as a piecewise constant function according to

α(x) =



α0, b0 ≤ x < b1,
...
αi, bi ≤ x < bi+1,
...
αM−1, bM−1 ≤ x ≤ bM .

(3.61)

The exact solution (3.60) in case of such a piecewise constant α function is easy to derive. Assume
that x is in the m-th layer: x ∈ [bm, bm+1]. In the integral

∫ x
0 (a(ξ))−1dξ we must integrate through

the first m− 1 layers and then add the contribution from the remaining part x− bm into the m-th
layer:

u(x) = U0 + (UL − U0)
∑m−1

j=0 (bj+1 − bj)/α(bj) + (x− bm)/α(bm)∑M−1
j=0 (bj+1 − bj)/α(bj)

(3.62)

Remark. It may sound strange to have a discontinuous α in a differential equation where one
is to differentiate, but a discontinuous α is compensated by a discontinuous ux such that αux is
continuous and therefore can be differentiated as (αux)x.

3.34. Implementation of diffusion in a piecewise constant medium

Programming with piecewise function definitions quickly becomes cumbersome as the most naive
approach is to test for which interval x lies, and then start evaluating a formula like (3.62). In
Python, vectorized expressions may help to speed up the computations. The convenience classes
PiecewiseConstant and IntegratedPiecewiseConstant in the Heaviside module were made to
simplify programming with functions like (3.61) and expressions like (3.62). These utilities not only
represent piecewise constant functions, but also smoothed versions of them where the discontinuities
can be smoothed out in a controlled fashion.

The PiecewiseConstant class is created by sending in the domain as a 2-tuple or 2-list and a data
object describing the boundaries b0, . . . , bM and the corresponding function values α0, . . . , αM−1.
More precisely, data is a nested list, where data[i][0] holds bi and data[i][1] holds the corre-
sponding value αi, for i = 0, . . . ,M − 1. Given bi and αi in arrays b and a, it is easy to fill out the
nested list data.

In our application, we want to represent α and 1/α as piecewise constant functions, in addition to
the u(x) function which involves the integrals of 1/α. A class creating the functions we need and a
method for evaluating u, can take the form

class SerialLayers:
"""
b: coordinates of boundaries of layers, b[0] is left boundary
and b[-1] is right boundary of the domain [0,L].
a: values of the functions in each layer (len(a) = len(b)-1).
U_0: u(x) value at left boundary x=0=b[0].
U_L: u(x) value at right boundary x=L=b[0].

252

https://github.com/devitocodes/devito_book/tree/main/src/diffu/Heaviside.py

DRAFT

3. Diffusion Equations

"""

def __init__(self, a, b, U_0, U_L, eps=0):
self.a, self.b = np.asarray(a), np.asarray(b)
self.eps = eps # smoothing parameter for smoothed a
self.U_0, self.U_L = U_0, U_L

a_data = [[bi, ai] for bi, ai in zip(self.b, self.a)]
domain = [b[0], b[-1]]
self.a_func = PiecewiseConstant(domain, a_data, eps)

inv_a_data = [[bi, 1./ai] for bi, ai in zip(self.b, self.a)]
self.inv_a_func = \

PiecewiseConstant(domain, inv_a_data, eps)
self.integral_of_inv_a_func = \

IntegratedPiecewiseConstant(domain, inv_a_data, eps)
self.inv_a_0L = self.integral_of_inv_a_func(b[-1])

def __call__(self, x):
solution = self.U_0 + (self.U_L-self.U_0)*\

self.integral_of_inv_a_func(x)/self.inv_a_0L
return solution

A visualization method is also convenient to have. Below we plot u(x) along with α(x) (which works
well as long as maxα(x) is of the same size as max u = max(U0, UL)).

class SerialLayers:
...

def plot(self):
x, y_a = self.a_func.plot()
x = np.asarray(x); y_a = np.asarray(y_a)
y_u = self.u_exact(x)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x, y_u, 'b')
plt.hold('on') # Matlab style
plt.plot(x, y_a, 'r')
ymin = -0.1
ymax = 1.2*max(y_u.max(), y_a.max())
plt.axis([x[0], x[-1], ymin, ymax])
plt.legend(['solution u', 'coefficient a'], loc='upper left')
if self.eps > 0:

plt.title('Smoothing eps: %s' % self.eps)
plt.savefig('tmp.pdf')
plt.savefig('tmp.png')
plt.show()

253

DRAFT

3. Diffusion Equations

Figure Figure 3.12 shows the case where

b = [0, 0.25, 0.5, 1] # material boundaries
a = [0.2, 0.4, 4] # material values
U_0 = 0.5; U_L = 5 # boundary conditions

Figure 3.12.: Solution of the stationary diffusion equation corresponding to a piecewise constant
diffusion coefficient.

By adding the eps parameter to the constructor of the SerialLayers class, we can experiment
with smoothed versions of α and see the (small) impact on u. Figure Figure 3.13 shows the result.

3.35. Axi-symmetric diffusion

Suppose we have a diffusion process taking place in a straight tube with radius R. We assume
axi-symmetry such that u is just a function of r and t, with r being the radial distance from the
center axis of the tube to a point. With such axi-symmetry it is advantageous to introduce cylindrical
coordinates r, θ, and z, where z is in the direction of the tube and (r, θ) are polar coordinates in a
cross section. Axi-symmetry means that all quantities are independent of θ. From the relations
x = cos θ, y = sin θ, and z = z, between Cartesian and cylindrical coordinates, one can (with some
effort) derive the diffusion equation in cylindrical coordinates, which with axi-symmetry takes the
form

∂u

∂t
= 1
r

∂

∂r

(
rα(r, z)∂u

∂r

)
+ ∂

∂z

(
α(r, z)∂u

∂z

)
+ f(r, z, t) .

Let us assume that u does not change along the tube axis so it suffices to compute variations in a
cross section. Then ∂u/∂z = 0 and we have a 1D diffusion equation in the radial coordinate r and
time t. In particular, we shall address the initial-boundary value problem

254

DRAFT

3. Diffusion Equations

Figure 3.13.: Solution of the stationary diffusion equation corresponding to a smoothed piecewise
constant diffusion coefficient.

∂u

∂t
= 1
r

∂

∂r

(
rα(r)∂u

∂r

)
+ f(t), r ∈ (0, R), t ∈ (0, T], (3.63)

∂u

∂r
(0, t) = 0, t ∈ (0, T], (3.64)

u(R, t) = 0, t ∈ (0, T], (3.65)

u(r, 0) = I(r), r ∈ [0, R]. (3.66)

The condition (3.64) is a necessary symmetry condition at r = 0, while (3.65) could be any Dirichlet
or Neumann condition (or Robin condition in case of cooling or heating).

The finite difference approximation will need the discretized version of the PDE for r = 0 (just as
we use the PDE at the boundary when implementing Neumann conditions). However, discretizing
the PDE at r = 0 poses a problem because of the 1/r factor. We therefore need to work out the
PDE for discretization at r = 0 with care. Let us, for the case of constant α, expand the spatial
derivative term to

α
∂2u

∂r2 + α
1
r

∂u

∂r
.

The last term faces a difficulty at r = 0, since it becomes a 0/0 expression caused by the symmetry
condition at r = 0. However, L’Hospital’s rule can be used:

lim
r→0

1
r

∂u

∂r
= ∂2u

∂r2 .

The PDE at r = 0 therefore becomes

∂u

∂t
= 2α∂

2u

∂r2 − f(t) . (3.67)

255

DRAFT

3. Diffusion Equations

For a variable coefficient α(r) the expanded spatial derivative term reads

α(r)∂
2u

∂r2 + 1
r

(α(r) + rα′(r))∂u
∂r

.

We are interested in this expression for r = 0. A necessary condition for u to be axi-symmetric is
that all input data, including α, must also be axi-symmetric, implying that α′(0) = 0 (the second
term vanishes anyway because of r = 0). The limit of interest is

lim
r→0

1
r
α(r)∂u

∂r
= α(0)∂

2u

∂r2 .

The PDE at r = 0 now looks like
∂u

∂t
= 2α(0)∂

2u

∂r2 − f(t), (3.68)

so there is no essential difference between the constant coefficient and variable coefficient cases.

The second-order derivative in (3.67) and (3.68) is discretized in the usual way.

2α ∂2

∂r2u(r0, tn) ≈ [2αDrDru]n0 = 2αu
n
1 − 2un ∗ ∗0 + un ∗ ∗−1

∆r2 .

The fictitious value un
−1 can be eliminated using the discrete symmetry condition

[D2ru = 0]n0 ⇒ un
−1 = un

1 ,

which then gives the modified approximation to the term with the second-order derivative of u in r
at r = 0:

4αu
n
1 − un

0
∆r2 .

The discretization of the term with the second-order derivative in r at any internal mesh point is
straightforward:

[1
r

∂

∂r

(
rα
∂u

∂r

)]n

i
≈ [r−1Dr(rαDru)]ni

= 1
ri

1
∆r2

(
ri+ 1

2
αi+ 1

2
(un

i+1 − un
i)− ri− 1

2
αi− 1

2
(un

i − un
i−1)

)
.

To complete the discretization, we need a scheme in time, but that can be done as before and does
not interfere with the discretization in space.

3.36. Spherically-symmetric diffusion

3.36.1. Discretization in spherical coordinates

Let us now pose the problem from Section Section 3.35 in spherical coordinates, where u only
depends on the radial coordinate r and time t. That is, we have spherical symmetry. For simplicity
we restrict the diffusion coefficient α to be a constant. The PDE reads

∂u

∂t
= α

rγ

∂

∂r

(
rγ ∂u

∂r

)
+ f(t),

256

DRAFT

3. Diffusion Equations

for r ∈ (0, R) and t ∈ (0, T]. The parameter γ is 2 for spherically-symmetric problems and 1 for
axi-symmetric problems. The boundary and initial conditions have the same mathematical form as
in (3.63)-(3.66).

Since the PDE in spherical coordinates has the same form as the PDE in Section Section 3.35, just
with the γ parameter being different, we can use the same discretization approach. At the origin
r = 0 we get problems with the term

γ

r

∂u

∂t
,

but L’Hospital’s rule shows that this term equals γ∂2u/∂r2, and the PDE at r = 0 becomes

∂u

∂t
= (γ + 1)α∂

2u

∂r2 − f(t) .

The associated discrete form is then

[Dtu = 1
2(γ + 1)αDrDru

t + f
t]n+ 1

2
i ,

for a Crank-Nicolson scheme.

3.36.2. Discretization in Cartesian coordinates

The spherically-symmetric spatial derivative can be transformed to the Cartesian counterpart by
introducing

v(r, t) = ru(r, t) .

Inserting u = v/r in
1
r2

∂

∂r

(
α(r)r2∂u

∂r

)
,

yields

r

(
dα

dr

∂v

∂r
+ α

∂2v

∂r2

)
− dα

dr
v .

The two terms in the parenthesis can be combined to

r
∂

∂r

(
α
∂v

∂r

)
.

The PDE for v takes the form

∂v

∂t
= ∂

∂r

(
α
∂v

∂r

)
− 1
r

dα

dr
v + rf(r, t), r ∈ (0, R), t ∈ (0, T] .

For α constant we immediately realize that we can reuse a solver in Cartesian coordinates to compute
v. With variable α, a “reaction” term v/r needs to be added to the Cartesian solver. The boundary
condition ∂u/∂r = 0 at r = 0, implied by symmetry, forces v(0, t) = 0, because

∂u

∂r
= 1
r2

(
r
∂v

∂r
− v

)
= 0, r = 0 .

257

DRAFT

3. Diffusion Equations

3.37. Diffusion in 2D

We now address diffusion in two space dimensions:

∂u

∂t
= α

(
∂2u

∂x2 + ∂2u

∂x2

)
+ f(x, y), (3.69)

in a domain
(x, y) ∈ (0, Lx)× (0, Ly), t ∈ (0, T],

with u = 0 on the boundary and u(x, y, 0) = I(x, y) as initial condition.

3.38. Discretization

For generality, it is natural to use a θ-rule for the time discretization. Standard, second-order
accurate finite differences are used for the spatial derivatives. We sample the PDE at a space-time
point (i, j, n+ 1

2) and apply the difference approximations:

[Dtu]n+ 1
2 = θ[α(DxDxu+DyDyu) + f]n+1+

(1− θ)[α(DxDxu+DyDyu) + f]n . (3.70)

Written out,

un+1 ∗ ∗i, j − un ∗ ∗i, j
∆t =

θ(α(
un+1 ∗ ∗i− 1, j − 2un+1 ∗ ∗i, j + un+1

i+1,j

∆x2 +
un+1 ∗ ∗i, j − 1− 2un+1 ∗ ∗i, j + un+1

i,j+1
∆y2) + fn+1

i,j)+

(1− θ)(α(
un ∗ ∗i− 1, j − 2un ∗ ∗i, j + un

i+1,j

∆x2 +
un ∗ ∗i, j − 1− 2un ∗ ∗i, j + un

i,j+1
∆y2) + fn

i,j)

(3.71)

We collect the unknowns on the left-hand side

un+1
i,j − θ

(
Fx(un+1 ∗ ∗i− 1, j − 2un+1 ∗ ∗i, j + un+1

i+1,j) + Fy(un+1 ∗ ∗i, j − 1− 2un+1 ∗ ∗i, j + un+1
i,j+1)

)
=

(1− θ)
(
Fx(un ∗ ∗i− 1, j − 2un ∗ ∗i, j + un

i+1,j) + Fy(un ∗ ∗i, j − 1− 2un ∗ ∗i, j + un
i,j+1)

)
+

θ∆tfn+1 ∗ ∗i, j + (1− θ)∆tfn ∗ ∗i, j + un
i,j ,

(3.72)
where

Fx = α∆t
∆x2 , Fy = α∆t

∆y2 ,

are the Fourier numbers in x and y direction, respectively.

258

DRAFT

3. Diffusion Equations

Figure 3.14.: 3x2 2D mesh.

259

DRAFT

3. Diffusion Equations

3.39. Numbering of mesh points versus equations and unknowns

The equations (3.72) are coupled at the new time level n+ 1. That is, we must solve a system of
(linear) algebraic equations, which we will write as Ac = b, where A is the coefficient matrix, c is
the vector of unknowns, and b is the right-hand side.

Let us examine the equations in Ac = b on a mesh with Nx = 3 and Ny = 2 cells in the respective
spatial directions. The spatial mesh is depicted in Figure Figure 3.14. The equations at the boundary
just implement the boundary condition u = 0:

un+1
0,0 = un+1

1,0 = un+1
2,0 = un+1

3,0 = un+1
0,1 =

un+1
3,1 = un+1

0,2 = un+1
1,2 = un+1

2,2 = un+1
3,2 = 0 .

We are left with two interior points, with i = 1, j = 1 and i = 2, j = 1. The corresponding equations
are

un+1
i,j − θ

(
Fx(un+1 ∗ ∗i− 1, j − 2un+1 ∗ ∗i, j + un+1

i+1,j) + Fy(un+1 ∗ ∗i, j − 1− 2un+1 ∗ ∗i, j + un+1
i,j+1)

)
=

(1− θ)
(
Fx(un ∗ ∗i− 1, j − 2un ∗ ∗i, j + un

i+1,j) + Fy(un ∗ ∗i, j − 1− 2un ∗ ∗i, j + un
i,j+1)

)
+

θ∆tfn+1 ∗ ∗i, j + (1− θ)∆tfn ∗ ∗i, j + un
i,j ,

There are in total 12 unknowns un+1
i,j for i = 0, 1, 2, 3 and j = 0, 1, 2. To solve the equations, we

need to form a matrix system Ac = b. In that system, the solution vector c can only have one index.
Thus, we need a numbering of the unknowns with one index, not two as used in the mesh. We
introduce a mapping m(i, j) from a mesh point with indices (i, j) to the corresponding unknown p
in the equation system:

p = m(i, j) = j(Nx + 1) + i .

When i and j run through their values, we see the following mapping to p:

(0, 0)→ 0, (0, 1)→ 1, (0, 2)→ 2, (0, 3)→ 3,
(1, 0)→ 4, (1, 1)→ 5, (1, 2)→ 6, (1, 3)→ 7,
(2, 0)→ 8, (2, 1)→ 9, (2, 2)→ 10, (2, 3)→ 11 .

That is, we number the points along the x axis, starting with y = 0, and then progress one “horizontal”
mesh line at a time. In Figure Figure 3.14 you can see that the (i, j) and the corresponding single
index (p) are listed for each mesh point.

We could equally well have numbered the equations in other ways, e.g., let the j index be the fastest
varying index: p = m(i, j) = i(Ny + 1) + j.

Let us form the coefficient matrix A, or more precisely, insert a matrix element (according Python’s
convention with zero as base index) for each of the nonzero elements in A (the indices run through

260

DRAFT

3. Diffusion Equations

the values of p, i.e., p = 0, . . . , 11):

(0, 0) 0 0 0 0 0 0 0 0 0 0 0
0 (1, 1) 0 0 0 0 0 0 0 0 0 0
0 0 (2, 2) 0 0 0 0 0 0 0 0 0
0 0 0 (3, 3) 0 0 0 0 0 0 0 0
0 0 0 0 (4, 4) 0 0 0 0 0 0 0
0 (5, 1) 0 0 (5, 4) (5, 5) (5, 6) 0 0 (5, 9) 0 0
0 0 (6, 2) 0 0 (6, 5) (6, 6) (6, 7) 0 0 (6, 10) 0
0 0 0 0 0 0 0 (7, 7) 0 0 0 0
0 0 0 0 0 0 0 0 (8, 8) 0 0 0
0 0 0 0 0 0 0 0 0 (9, 9) 0 0
0 0 0 0 0 0 0 0 0 0 (10, 10) 0
0 0 0 0 0 0 0 0 0 0 0 (11, 11)


Here is a more compact visualization of the coefficient matrix where we insert dots for zeros and
bullets for non-zero elements:

• · · · · · · · · · · ·
· • · · · · · · · · · ·
· · • · · · · · · · · ·
· · · • · · · · · · · ·
· · · · • · · · · · · ·
· • · · • • • · · • · ·
· · • · · • • • · · • ·
· · · · · · · • · · · ·
· · · · · · · · • · · ·
· · · · · · · · · • · ·
· · · · · · · · · · • ·
· · · · · · · · · · · •


It is clearly seen that most of the elements are zero. This is a general feature of coefficient matrices
arising from discretizing PDEs by finite difference methods. We say that the matrix is sparse.

Let Ap,q be the value of element (p, q) in the coefficient matrix A, where p and q now correspond
to the numbering of the unknowns in the equation system. We have Ap,q = 1 for p = q =
0, 1, 2, 3, 4, 7, 8, 9, 10, 11, corresponding to all the known boundary values. Let p be m(i, j), i.e., the
single index corresponding to mesh point (i, j). Then we have

Am(i,j),m(i,j) = Ap,p = 1 + θ(Fx + Fy), (3.73)
Ap,m(i−1,j) = Ap,p−1 = −θFx, (3.74)
Ap,m(i+1,j) = Ap,p+1 = −θFx, (3.75)

Ap,m(i,j−1) = Ap,p−(Nx+1) = −θFy, (3.76)
Ap,m(i,j+1) = Ap,p+(Nx+1) = −θFy, (3.77)

for the equations associated with the two interior mesh points. At these interior points, the single
index p takes on the specific values p = 5, 6, corresponding to the values (1, 1) and (1, 2) of the pair
(i, j).

The above values for Ap,q can be inserted in the matrix:

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 −θFy 0 0 −θFx 1 + 2θFx −θFx 0 0 −θFy 0 0
0 0 −θFy 0 0 −θFx 1 + 2θFx −θFx 0 0 −θFy 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



261

DRAFT

3. Diffusion Equations

The corresponding right-hand side vector in the equation system has the entries bp, where p numbers
the equations. We have

b0 = b1 = b2 = b3 = b4 = b7 = b8 = b9 = b10 = b11 = 0,

for the boundary values. For the equations associated with the interior points, we get for p = 5, 6,
corresponding to i = 1, 2 and j = 1:

bp = un
i,j + (1− θ)

(
Fx(un ∗ ∗i− 1, j − 2un ∗ ∗i, j + un

i+1,j) + Fy(un ∗ ∗i, j − 1− 2un ∗ ∗i, j + un
i,j+1)

)
+

θ∆tfn+1 ∗ ∗i, j + (1− θ)∆tfn ∗ ∗i, j .

Recall that p = m(i, j) = j(Nx + 1) + j in this expression.

We can, as an alternative, leave the boundary mesh points out of the matrix system. For a mesh
with Nx = 3 and Ny = 2 there are only two internal mesh points whose unknowns will enter the
matrix system. We must now number the unknowns at the interior points:

p = (j − 1)(Nx − 1) + i,

for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1.

We can continue with illustrating a bit larger mesh, Nx = 4 and Ny = 3, see Figure Figure 3.15.
The corresponding coefficient matrix with dots for zeros and bullets for non-zeroes looks as follows
(values at boundary points are included in the equation system):

• · · · · · · · · · · · · · · · · · · ·
· • · · · · · · · · · · · · · · · · · ·
· · • · · · · · · · · · · · · · · · · ·
· · · • · · · · · · · · · · · · · · · ·
· · · · • · · · · · · · · · · · · · · ·
· · · · · • · · · · · · · · · · · · · ·
· • · · · • • • · · · • · · · · · · · ·
· · • · · · • • • · · · • · · · · · · ·
· · · • · · · • • • · · · • · · · · · ·
· · · · · · · · · • · · · · · · · · · ·
· · · · · · · · · · • · · · · · · · · ·
· · · · · · • · · · • • • · · · • · · ·
· · · · · · · • · · · • • • · · · • · ·
· · · · · · · · • · · · • • • · · · • ·
· · · · · · · · · · · · · · • · · · · ·
· · · · · · · · · · · · · · · • · · · ·
· · · · · · · · · · · · · · · · • · · ·
· · · · · · · · · · · · · · · · · • · ·
· · · · · · · · · · · · · · · · · · • ·
· · · · · · · · · · · · · · · · · · · •



ñ The coefficient matrix is banded

Besides being sparse, we observe that the coefficient matrix is banded: it has five distinct
bands. We have the diagonal Ai,i, the subdiagonal Ai−1,j , the superdiagonal Ai,i+1, a lower
diagonal Ai,i−(Nx+1), and an upper diagonal Ai,i+(Nx+1). The other matrix entries are known
to be zero. With Nx + 1 = Ny + 1 = N , only a fraction 5N−2 of the matrix entries are nonzero,
so the matrix is clearly very sparse for relevant N values. The more we can compute with the
nonzeros only, the faster the solution methods will potentially be.

262

DRAFT

3. Diffusion Equations

Figure 3.15.: 4x3 2D mesh.

263

DRAFT

3. Diffusion Equations

3.40. Algorithm for setting up the coefficient matrix

We looked at a specific mesh in the previous section, formulated the equations, and saw what
the corresponding coefficient matrix and right-hand side are. Now our aim is to set up a general
algorithm, for any choice of Nx and Ny, that produces the coefficient matrix and the right-hand
side vector. We start with a zero matrix and vector, run through each mesh point, and fill in the
values depending on whether the mesh point is an interior point or on the boundary.

• for i = 0, . . . , Nx

• for j = 0, . . . , Ny

– p = j(Nx + 1) + i
– if point (i, j) is on the boundary:

∗ Ap,p = 1, bp = 0
– else:

∗ fill Ap,m(i−1,j), Ap,m(i+1,j), Ap,m(i,j), Ap,m(i,j−1), Ap,m(i,j+1), and bp

To ease the test on whether (i, j) is on the boundary or not, we can split the loops a bit, starting
with the boundary line j = 0, then treat the interior lines 1 ≤ j < Ny, and finally treat the boundary
line j = Ny:

• for i = 0, . . . , Nx

• boundary j = 0: p = j(Nx + 1) + i, Ap,p = 1
• for j = 0, . . . , Ny

• boundary i = 0: p = j(Nx + 1) + i, Ap,p = 1
• for i = 1, . . . , Nx − 1

– interior point p = j(Nx + 1) + i
– fill Ap,m(i−1,j), Ap,m(i+1,j), Ap,m(i,j), Ap,m(i,j−1), Ap,m(i,j+1), and bp

• boundary i = Nx: p = j(Nx + 1) + i, Ap,p = 1
• for i = 0, . . . , Nx

• boundary j = Ny: p = j(Nx + 1) + i, Ap,p = 1

The right-hand side is set up as follows.

• for i = 0, . . . , Nx

• boundary j = 0: p = j(Nx + 1) + i, bp = 0
• for j = 0, . . . , Ny

• boundary i = 0: p = j(Nx + 1) + i, bp = 0
• for i = 1, . . . , Nx − 1

– interior point p = j(Nx + 1) + i
– fill bp

• boundary i = Nx: p = j(Nx + 1) + i, bp = 0
• for i = 0, . . . , Nx

• boundary j = Ny: p = j(Nx + 1) + i, bp = 0

264

DRAFT

3. Diffusion Equations

3.41. Implementation with a dense coefficient matrix

The goal now is to map the algorithms in the previous section to Python code. One should, for
computational efficiency reasons, take advantage of the fact that the coefficient matrix is sparse
and/or banded, i.e., take advantage of all the zeros. However, we first demonstrate how to fill an
N ×N dense square matrix, where N is the number of unknowns, here N = (Nx + 1)(Ny + 1). The
dense matrix is much easier to understand than the sparse matrix case.

import numpy as np

def solver_dense(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5, user_action=None):
"""
Solve u_t = a*(u_xx + u_yy) + f, u(x,y,0)=I(x,y), with u=0
on the boundary, on [0,Lx]x[0,Ly]x[0,T], with time step dt,
using the theta-scheme.
"""
x = np.linspace(0, Lx, Nx+1) # mesh points in x dir
y = np.linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]

dt = float(dt) # avoid integer division
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # mesh points in time

Fx = a*dt/dx**2
Fy = a*dt/dy**2

The un+1 ∗ ∗i, j and un ∗ ∗i, j mesh functions are represented by their spatial values at the mesh
points:

u = np.zeros((Nx+1, Ny+1)) # unknown u at new time level
u_n = np.zeros((Nx+1, Ny+1)) # u at the previous time level

It is a good habit (for extensions) to introduce index sets for all mesh points:

Ix = range(0, Nx+1)
It = range(0, Ny+1)
It = range(0, Nt+1)

The initial condition is easy to fill in:

for i in Ix:
for j in It:

u_n[i,j] = I(x[i], y[j])

265

DRAFT

3. Diffusion Equations

The memory for the coefficient matrix and right-hand side vector is allocated by

N = (Nx+1)*(Ny+1) # no of unknowns
A = np.zeros((N, N))
b = np.zeros(N)

The filling of A goes like this:

m = lambda i, j: j*(Nx+1) + i

j = 0
for i in Ix:

p = m(i,j); A[p, p] = 1

for j in It[1:-1]:
i = 0; p = m(i,j); A[p, p] = 1 # Boundary
for i in Ix[1:-1]: # Interior points

p = m(i,j)
A[p, m(i,j-1)] = - theta*Fy
A[p, m(i-1,j)] = - theta*Fx
A[p, p] = 1 + 2*theta*(Fx+Fy)
A[p, m(i+1,j)] = - theta*Fx
A[p, m(i,j+1)] = - theta*Fy

i = Nx; p = m(i,j); A[p, p] = 1 # Boundary
j = Ny
for i in Ix:

p = m(i,j); A[p, p] = 1

Since A is independent of time, it can be filled once and for all before the time loop. The right-hand
side vector must be filled at each time level inside the time loop:

import scipy.linalg

for n in It[0:-1]:
j = 0
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary
for j in It[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
for i in Ix[1:-1]: # Interior points

p = m(i,j)
b[p] = u_n[i,j] + \

(1-theta)*(
Fx*(u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt)

266

DRAFT

3. Diffusion Equations

i = Nx; p = m(i,j); b[p] = 0 # Boundary
j = Ny
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

c = scipy.linalg.solve(A, b)

for i in Ix:
for j in It:

u[i,j] = c[m(i,j)]

u_n, u = u, u_n

We use solve from scipy.linalg and not from numpy.linalg. The difference is stated below.

ñ scipy.linalg versus numpy.linalg

Quote from the SciPy documentation:
scipy.linalg contains all the functions in numpy.linalg plus some other more advanced
ones not contained in numpy.linalg.
Another advantage of using scipy.linalg over numpy.linalg is that it is always compiled
with BLAS/LAPACK support, while for NumPy this is optional. Therefore, the SciPy version
might be faster depending on how NumPy was installed.
Therefore, unless you don’t want to add SciPy as a dependency to your NumPy program, use
scipy.linalg instead of numpy.linalg.

The code shown above is available in the solver_dense function in the file diffu2D_u0.py, differing
only in the boundary conditions, which in the code can be an arbitrary function along each side of
the domain.

We do not bother to look at vectorized versions of filling A since a dense matrix is just used of
pedagogical reasons for the very first implementation. Vectorization will be treated when A has a
sparse matrix representation, as in Section Section 3.44.

ñ How to debug the computation of A and b

A good starting point for debugging the filling of A and b is to choose a very coarse mesh, say
Nx = Ny = 2, where there is just one internal mesh point, compute the equations by hand,
and print out A and b for comparison in the code. If wrong elements in A or b occur, print out
each assignment to elements in A and b inside the loops and compare with what you expect.

To let the user store, analyze, or visualize the solution at each time level, we include a callback
function, named user_action, to be called before the time loop and in each pass in that loop. The
function has the signature

user_action(u, x, xv, y, yv, t, n)

267

https://docs.scipy.org/doc/scipy/tutorial/linalg.html
https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu2D_u0.py

DRAFT

3. Diffusion Equations

where u is a two-dimensional array holding the solution at time level n and time t[n]. The x and y
coordinates of the mesh points are given by the arrays x and y, respectively. The arrays xv and yv
are vectorized representations of the mesh points such that vectorized function evaluations can be
invoked. The xv and yv arrays are defined by

xv = x[:,np.newaxis]
yv = y[np.newaxis,:]

One can then evaluate, e.g., f(x, y, t) at all internal mesh points at time level n by first evaluating
f at all points,

f_a = f(xv, yv, t[n])

and then use slices to extract a view of the values at the internal mesh points: f_a[1:-1,1:-1].
The next section features an example on writing a user_action callback function.

3.42. Verification: exact numerical solution

A good test example to start with is one that preserves the solution u = 0, i.e., f = 0 and I(x, y) = 0.
This trivial solution can uncover some bugs.

The first real test example is based on having an exact solution of the discrete equations. This
solution is linear in time and quadratic in space:

u(x, y, t) = 5tx(Lx − x)y(y − Ly) .

Inserting this manufactured solution in the PDE shows that the source term f must be

f(x, y, t) = 5x(Lx − x)y(y − Ly) + 10αt(x(Lx − x) + y(y − Ly)) .

We can use the user_action function to compare the numerical solution with the exact solution at
each time level. A suitable helper function for checking the solution goes like this:

def quadratic(theta, Nx, Ny):

def u_exact(x, y, t):
return 5*t*x*(Lx-x)*y*(Ly-y)

def I(x, y):
return u_exact(x, y, 0)

def f(x, y, t):
return 5*x*(Lx-x)*y*(Ly-y) + 10*a*t*(y*(Ly-y)+x*(Lx-x))

Lx = 0.75
Ly = 1.5
a = 3.5
dt = 0.5
T = 2

268

DRAFT

3. Diffusion Equations

def assert_no_error(u, x, xv, y, yv, t, n):
"""Assert zero error at all mesh points."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-12
msg = 'diff=%g, step %d, time=%g' % (diff, n, t[n])
print msg
assert diff < tol, msg

solver_dense(
I, a, f, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)

A true test function for checking the quadratic solution for several different meshes and θ values
can take the form

def test_quadratic():
for theta in [1, 0.5, 0]:

for Nx in range(2, 6, 2):
for Ny in range(2, 6, 2):

print 'testing for %dx%d mesh' % (Nx, Ny)
quadratic(theta, Nx, Ny)

3.43. Verification: convergence rates

For 2D verification with convergence rate computations, the expressions and computations just
build naturally on what we saw for 1D diffusion. Truncation error analysis and other forms of error
analysis point to a numerical error formula like

E = Ct∆tp + Cx∆x2 + Cy∆y2,

where p, Ct, Cx, and Cy are constants. Often, the analysis of a Crank-Nicolson method can show
that p = 2, while the Forward and Backward Euler schemes have p = 1.

When checking the error formula empirically, we need to reduce it to a form E = Chr with a single
discretization parameter h and some rate r to be estimated. For the Backward Euler method, where
p = 1, we can introduce a single discretization parameter according to

h = ∆x2 = ∆y2, h = K−1∆t,

where K is a constant. The error formula then becomes

E = CtKh+ Cxh+ Cyh = C̃h, C̃ = CtK + Cx + Cy .

The simplest choice is obviously K = 1. With the Forward Euler method, however, stability requires
∆t = hK ≤ h/(4α), so K ≤ 1/(4α).

269

DRAFT

3. Diffusion Equations

For the Crank-Nicolson method, p = 2, and we can simply choose

h = ∆x = ∆y = ∆t,

since there is no restriction on ∆t in terms of ∆x and ∆y.

A frequently used error measure is the ℓ2 norm of the error mesh point values. Section Section 2.10.1
and the formula (2.21) shows the error measure for a 1D time-dependent problem. The extension to
the current 2D problem reads

E =

∆t∆x∆y
Nt∑

n=0

Nx∑
i=0

Ny∑
j=0

(ue(xi, yj , tn)− un
i,j)2

 1
2

.

One attractive manufactured solution is

ue = e−pt sin(kxx) sin(kyy), kx = π

Lx
, ky = π

Ly
,

where p can be arbitrary. The required source term is

f = (α(k2
x + k2

y)− p)ue .

The function convergence_rates in diffu2D_u0.py implements a convergence rate test. Two
potential difficulties are important to be aware of:

1. The error formula is assumed to be correct when h→ 0, so for coarse meshes the estimated
rate r may be somewhat away from the expected value. Fine meshes may lead to prohibitively
long execution times.

2. Choosing p = α(k2
x + k2

y) in the manufactured solution above seems attractive (f = 0), but
leads to a slower approach to the asymptotic range where the error formula is valid (i.e., r
fluctuates and needs finer meshes to stabilize).

3.44. Implementation with a sparse coefficient matrix

We used a sparse matrix implementation in Section Section 3.9 for a 1D problem with a tridiagonal
matrix. The present matrix, arising from a 2D problem, has five diagonals, but we can use the same
sparse matrix data structure scipy.sparse.diags.

3.44.1. Understanding the diagonals

Let us look closer at the diagonals in the example with a 4×3 mesh as depicted in Figure Figure 3.15
and its associated matrix visualized by dots for zeros and bullets for nonzeros. From the example

270

https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu2D_u0.py

DRAFT

3. Diffusion Equations

mesh, we may generalize to an Nx ×Ny mesh.

0 = m(0, 0) • · · · · · · · · · · · · · · · · · · ·
1 = m(1, 0) · • · · · · · · · · · · · · · · · · · ·
2 = m(2, 0) · · • · · · · · · · · · · · · · · · · ·
3 = m(3, 0) · · · • · · · · · · · · · · · · · · · ·
Nx = m(Nx, 0) · · · · • · · · · · · · · · · · · · · ·
Nx + 1 = m(0, 1) · · · · · • · · · · · · · · · · · · · ·
(Nx + 1) + 1 = m(1, 1) · • · · · • • • · · · • · · · · · · · ·
(Nx + 1) + 2 = m(2, 1) · · • · · · • • • · · · • · · · · · · ·
(Nx + 1) + 3 = m(3, 1) · · · • · · · • • • · · · • · · · · · ·
(Nx + 1) + Nx = m(Nx, 1) · · · · · · · · · • · · · · · · · · · ·
2(Nx + 1) = m(0, 2) · · · · · · · · · · • · · · · · · · · ·
2(Nx + 1) + 1 = m(1, 2) · · · · · · • · · · • • • · · · • · · ·
2(Nx + 1) + 2 = m(2, 2) · · · · · · · • · · · • • • · · · • · ·
2(Nx + 1) + 3 = m(3, 2) · · · · · · · · • · · · • • • · · · • ·
2(Nx + 1) + Nx = m(Nx, 2) · · · · · · · · · · · · · · • · · · · ·
Ny(Nx + 1) = m(0, Ny) · · · · · · · · · · · · · · · • · · · ·
Ny(Nx + 1) + 1 = m(1, Ny) · · · · · · · · · · · · · · · · • · · ·
Ny(Nx + 1) + 2 = m(2, Ny) · · · · · · · · · · · · · · · · · • · ·
Ny(Nx + 1) + 3 = m(3, Ny) · · · · · · · · · · · · · · · · · · • ·
Ny(Nx + 1) + Nx = m(Nx, Ny) · · · · · · · · · · · · · · · · · · · •

The main diagonal has N = (Nx + 1)(Ny + 1) elements, while the sub- and super-diagonals have
N − 1 elements. By looking at the matrix above, we realize that the lower diagonal starts in row
Nx + 1 and goes to row N , so its length is N − (Nx + 1). Similarly, the upper diagonal starts at row
0 and lasts to row N − (Nx + 1), so it has the same length. Based on this information, we declare
the diagonals by

main = np.zeros(N) # diagonal
lower = np.zeros(N-1) # subdiagonal
upper = np.zeros(N-1) # superdiagonal
lower2 = np.zeros(N-(Nx+1)) # lower diagonal
upper2 = np.zeros(N-(Nx+1)) # upper diagonal
b = np.zeros(N) # right-hand side

3.44.2. Filling the diagonals

We run through all mesh points and fill in elements on the various diagonals. The line of mesh points
corresponding to j = 0 are all on the boundary, and only the main diagonal gets a contribution:

m = lambda i, j: j*(Nx+1) + i
j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line

Then we run through all interior j = const lines of mesh points. The first and the last point on
each line, i = 0 and i = Nx, correspond to boundary points:

for j in It[1:-1]: # Interior mesh lines j=1,...,Ny-1
i = 0; main[m(i,j)] = 1
i = Nx; main[m(i,j)] = 1 # Boundary

For the interior mesh points i = 1, . . . , Nx − 1 on a mesh line y = const we can start with the main
diagonal. The entries to be filled go from i = 1 to i = Nx− 1 so the relevant slice in the main vector
is m(1,j):m(Nx,j):

271

DRAFT

3. Diffusion Equations

main[m(1,j):m(Nx,j)] = 1 + 2*theta*(Fx+Fy)

The upper array for the superdiagonal has its index 0 corresponding to row 0 in the matrix, and
the array entries to be set go from m(1, j) to m(Nx − 1, j):

upper[m(1,j):m(Nx,j)] = - theta*Fx

The subdiagonal (lower array), however, has its index 0 corresponding to row 1, so there is an
offset of 1 in indices compared to the matrix. The first nonzero occurs (interior point) at a mesh
line j = const corresponding to matrix row m(1, j), and the corresponding array index in lower is
then m(1, j). To fill the entries from m(1, j) to m(Nx − 1, j) we set the following slice in lower:

lower_offset = 1
lower[m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx

For the upper diagonal, its index 0 corresponds to matrix row 0, so there is no offset and we can set
the entries correspondingly to upper:

upper2[m(1,j):m(Nx,j)] = - theta*Fy

The lower2 diagonal, however, has its first index 0 corresponding to row Nx + 1, so here we need to
subtract the offset Nx + 1:

lower2_offset = Nx+1
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy

We can now summarize the above code lines for setting the entries in the sparse matrix representation
of the coefficient matrix:

lower_offset = 1
lower2_offset = Nx+1
m = lambda i, j: j*(Nx+1) + i

j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line
for j in It[1:-1]: # Interior mesh lines j=1,...,Ny-1

i = 0; main[m(i,j)] = 1 # Boundary
i = Nx; main[m(i,j)] = 1 # Boundary
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy
lower[m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx
main[m(1,j):m(Nx,j)] = 1 + 2*theta*(Fx+Fy)
upper[m(1,j):m(Nx,j)] = - theta*Fx
upper2[m(1,j):m(Nx,j)] = - theta*Fy

j = Ny; main[m(0,j):m(Nx+1,j)] = 1 # Boundary line

The next task is to create the sparse matrix from these diagonals:

272

DRAFT

3. Diffusion Equations

import scipy.sparse

A = scipy.sparse.diags(
diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,

-lower2_offset, lower2_offset],
shape=(N, N), format='csr')

3.44.3. Filling the right-hand side; scalar version

Setting the entries in the right-hand side is easier, since there are no offsets in the array to take
into account. The right-hand side is in fact similar to the one previously shown, when we used a
dense matrix representation (the right-hand side vector is, of course, independent of what type of
representation we use for the coefficient matrix). The complete time loop goes as follows.

import scipy.sparse.linalg

for n in It[0:-1]:
j = 0
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary
for j in It[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
for i in Ix[1:-1]:

p = m(i,j) # Interior
b[p] = u_n[i,j] + \

(1-theta)*(
Fx*(u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt)

i = Nx; p = m(i,j); b[p] = 0 # Boundary
j = Ny
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

c = scipy.sparse.linalg.spsolve(A, b)

for i in Ix:
for j in It:

u[i,j] = c[m(i,j)]

u_n, u = u, u_n

273

DRAFT

3. Diffusion Equations

3.44.4. Filling the right-hand side; vectorized version

Since we use a sparse matrix and try to speed up the computations, we should examine the loops
and see if some can be easily removed by vectorization. In the filling of A we have already used
vectorized expressions at each j = const line of mesh points. We can very easily do the same in the
code above and remove the need for loops over the i index:

for n in It[0:-1]:

f_a_np1 = f(xv, yv, t[n+1])
f_a_n = f(xv, yv, t[n])

j = 0; b[m(0,j):m(Nx+1,j)] = 0 # Boundary
for j in It[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
i = Nx; p = m(i,j); b[p] = 0 # Boundary
imin = Ix[1]
imax = Ix[-1] # for slice, max i index is Ix[-1]-1
b[m(imin,j):m(imax,j)] = u_n[imin:imax,j] + \

(1-theta)*(Fx*(
u_n[imin+1:imax+1,j] -

2*u_n[imin:imax,j] + \
u_n[imin-1:imax-1,j]) +

Fy*(
u_n[imin:imax,j+1] -

2*u_n[imin:imax,j] +
u_n[imin:imax,j-1])) + \

theta*dt*f_a_np1[imin:imax,j] + \
(1-theta)*dt*f_a_n[imin:imax,j]

j = Ny; b[m(0,j):m(Nx+1,j)] = 0 # Boundary

c = scipy.sparse.linalg.spsolve(A, b)

u[:,:] = c.reshape(Ny+1,Nx+1).T

u_n, u = u, u_n

The most tricky part of this code snippet is the loading of values from the one-dimensional array
c into the two-dimensional array u. With our numbering of unknowns from left to right along
“horizontal” mesh lines, the correct reordering of the one-dimensional array c as a two-dimensional
array requires first a reshaping to an (Ny+1,Nx+1) two-dimensional array and then taking the
transpose. The result is an (Nx+1,Ny+1) array compatible with u both in size and appearance of
the function values.

The spsolve function in scipy.sparse.linalg is an efficient version of Gaussian elimination suited
for matrices described by diagonals. The algorithm is known as sparse Gaussian elimination, and
spsolve calls up a well-tested C code called SuperLU.

274

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

DRAFT

3. Diffusion Equations

The complete code utilizing spsolve is found in the solver_sparse function in the file
diffu2D_u0.py.

3.44.5. Verification

We can easily extend the function quadratic from Section Section 3.42 to include a test of the
solver_sparse function as well.

def quadratic(theta, Nx, Ny):
...
t, cpu = solver_sparse(

I, a, f, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)

3.45. The Jacobi iterative method

So far we have created a matrix and right-hand side of a linear system Ac = b and solved the system
for c by calling an exact algorithm based on Gaussian elimination. A much simpler implementation,
which requires no memory for the coefficient matrix A, arises if we solve the system by iterative
methods. These methods are only approximate, and the core algorithm is repeated many times
until the solution is considered to be converged.

3.45.1. Numerical scheme and linear system

To illustrate the idea of the Jacobi method, we simplify the numerical scheme to the Backward
Euler case, θ = 1, so there are fewer terms to write:

un+1
i,j −

(
Fx(un+1

i−1,j − 2un+1
i,j + un+1

i+1,j) + Fy(un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1)

)
=

un
i,j + ∆tfn+1

i,j

(3.78)

The idea of the Jacobi iterative method is to introduce an iteration, here with index r, where we
in each iteration treat un+1

i,j as unknown, but use values from the previous iteration for the other
unknowns un+1

i±1,j±1.

3.45.2. Iterations

Let un+1,r
i,j be the approximation to un+1

i,j in iteration r, for all relevant i and j indices. We first
solve with respect to un+1

i,j to get the equation to solve:

un+1
i,j = (1 + 2Fx + 2Fy)−1

(
Fx(un+1

i−1,j + un+1
i+1,j) + Fy(un+1

i,j−1 + un+1
i,j+1)

)
+

un
i,j + ∆tfn+1

i,j

(3.79)

275

https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu2D_u0.py

DRAFT

3. Diffusion Equations

The iteration is introduced by using iteration index r, for computed values, on the right-hand side
and r + 1 (unknown in this iteration) on the left-hand side:

un+1,r+1
i,j = (1 + 2Fx + 2Fy)−1

(
Fx(un+1,r

i−1,j + un+1,r
i+1,j) + Fy(un+1,r

i,j−1 + un+1,r
i,j+1)

)
+ un

i,j + ∆tfn+1
i,j

(3.80)

3.45.3. Initial guess

We start the iteration with the computed values at the previous time level:

un+1,0 ∗ ∗i, j = un ∗ ∗i, j, i = 0, . . . , Nx, j = 0, . . . , Ny . (3.81)

3.45.4. Relaxation

A common technique in iterative methods is to introduce a relaxation, which means that the new
approximation is a weighted mean of the approximation as suggested by the algorithm and the
previous approximation. Naming the quantity on the left-hand side of (3.80) as un+1,∗

i,j , a new
approximation based on relaxation reads

un+1,r+1 = ωun+1,∗ ∗ ∗i, j + (1− ω)un+1,r ∗ ∗i, j . (3.82)

Under-relaxation means ω < 1, while over-relaxation has ω > 1.

3.45.5. Stopping criteria

The iteration can be stopped when the change from one iteration to the next is sufficiently small
(≤ ϵ), using either an infinity norm,

max
i,j

∣∣∣un+1,r+1 ∗ ∗i, j − un+1,r ∗ ∗i, j
∣∣∣ ≤ ϵ,

or an L2 norm, ∆x∆y
∑
i,j

(un+1,r+1 ∗ ∗i, j − un+1,r ∗ ∗i, j)2

 1
2

≤ ϵ .

Another widely used criterion measures how well the equations are solved by looking at the residual
(essentially b−Acr+1 if cr+1 is the approximation to the solution in iteration r + 1). The residual,
defined in terms of the finite difference stencil, is

Ri,j = un+1,r+1
i,j − (Fx(un+1,r+1

i−1,j − 2un+1,r+1
i,j + un+1,r+1

i+1,j)+
Fy(un+1,r+1

i,j−1 − 2un+1,r+1
i,j + un+1,r+1

i,j+1))−
un

i,j −∆tfn+1
i,j

(3.83)

276

DRAFT

3. Diffusion Equations

One can then iterate until the norm of the mesh function Ri,j is less than some tolerance:
∆x∆y

∑
i,j

R2
i,j

 1
2

≤ ϵ .

Code-friendly notation To make the mathematics as close as possible to what we will write in a
computer program, we may introduce some new notation: ui,j is a short notation for un+1,r+1 ∗ ∗i, j,
u− ∗∗i, j is a short notation for un+1,r ∗∗i, j, and u(s) ∗∗i, j denotes un+1−s ∗∗i, j. That is, u∗∗i, j is
the unknown, u−

i,j is its most recently computed approximation, and s counts time levels backwards
in time. The Jacobi method (3.80)) takes the following form with the new notation:

u∗
i,j = (1 + 2Fx + 2Fy)−1((Fx(u−

i−1,j + u−
i+1,j) + Fy(u−

i,j−1 + u−
i,j+1))+

u
(1)
i,j + ∆tfn+1

i,j)
(3.84)

3.45.6. Generalization of the scheme

We can also quite easily introduce the θ rule for discretization in time and write up the Jacobi
iteration in that case as well:

u∗
i,j = (1 + 2θ(Fx + Fy))−1(θ(Fx(u−

i−1,j + u−
i+1,j) + Fy(u−

i,j−1 + u−
i,j+1))+

u
(1)
i,j + θ∆tfn+1

i,j + (1− θ)∆tfn
i,j+

(1− θ)(Fx(u(1)
i−1,j − 2u(1)

i,j + u
(1)
i+1,j) + Fy(u(1)

i,j−1 − 2u(1)
i,j + u

(1)
i,j+1))) .

(3.85)

The final update of u applies relaxation:

ui,j = ωu∗ ∗ ∗i, j + (1− ω)u− ∗ ∗i, j .

Implementation of the Jacobi method {#sec-diffu-2D-Jacobi-impl}

The Jacobi method needs no coefficient matrix and right-hand side vector, but it needs an array for
u in the previous iteration. We call this array u_, using the notation at the end of the previous
section (at the same time level). The unknown itself is called u, while u_n is the computed solution
one time level back in time. With a θ rule in time, the time loop can be coded like this:

for n in It[0:-1]:
u_[:,:] = u_n # Start value
converged = False
r = 0
while not converged:

if version == 'scalar':
j = 0
for i in Ix:

u[i,j] = U_0y(t[n+1]) # Boundary
for j in It[1:-1]:

i = 0; u[i,j] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,j] = U_Lx(t[n+1]) # Boundary

277

DRAFT

3. Diffusion Equations

for i in Ix[1:-1]:
u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(

Fx*(u_[i+1,j] + u_[i-1,j]) +
Fy*(u_[i,j+1] + u_[i,j-1])) + \

u_n[i,j] + \
(1-theta)*(Fx*(
u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +

Fy*(
u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt))
u[i,j] = omega*u_new + (1-omega)*u_[i,j]

j = Ny
for i in Ix:

u[i,j] = U_Ly(t[n+1]) # Boundary

elif version == 'vectorized':
j = 0; u[:,j] = U_0y(t[n+1]) # Boundary
i = 0; u[i,:] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,:] = U_Lx(t[n+1]) # Boundary
j = Ny; u[:,j] = U_Ly(t[n+1]) # Boundary
f_a_np1 = f(xv, yv, t[n+1])
f_a_n = f(xv, yv, t[n])
u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(Fx*(

u_[2:,1:-1] + u_[:-2,1:-1]) +
Fy*(

u_[1:-1,2:] + u_[1:-1,:-2])) +\
u_n[1:-1,1:-1] + \

(1-theta)*(Fx*(
u_n[2:,1:-1] - 2*u_n[1:-1,1:-1] + u_n[:-2,1:-1]) +\

Fy*(
u_n[1:-1,2:] - 2*u_n[1:-1,1:-1] + u_n[1:-1,:-2]))\
+ theta*dt*f_a_np1[1:-1,1:-1] + \
(1-theta)*dt*f_a_n[1:-1,1:-1])

u[1:-1,1:-1] = omega*u_new + (1-omega)*u_[1:-1,1:-1]
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u_[:,:] = u

u_n, u = u, u_n

The vectorized version should be quite straightforward to understand once one has an understanding
of how a standard 2D finite stencil is vectorized.

The first natural verification is to use the test problem in the function quadratic from Section
Section 3.42. This problem is known to have no approximation error, but any iterative method will
produce an approximate solution with unknown error. For a tolerance 10−k in the iterative method,

278

DRAFT

3. Diffusion Equations

we can, e.g., use a slightly larger tolerance 10−(k−1) for the difference between the exact and the
computed solution.

def quadratic(theta, Nx, Ny):
...
def assert_small_error(u, x, xv, y, yv, t, n):

"""Assert small error for iterative methods."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-4
msg = 'diff=%g, step %d, time=%g' % (diff, n, t[n])
assert diff < tol, msg

for version in 'scalar', 'vectorized':
for theta in 1, 0.5:

print 'testing Jacobi, %s version, theta=%g' % \
(version, theta)

t, cpu = solver_Jacobi(
I=I, a=a, f=f, Lx=Lx, Ly=Ly, Nx=Nx, Ny=Ny,
dt=dt, T=T, theta=theta,
U_0x=0, U_0y=0, U_Lx=0, U_Ly=0,
user_action=assert_small_error,
version=version, iteration='Jacobi',
omega=1.0, max_iter=100, tol=1E-5)

Even for a very coarse 4× 4 mesh, the Jacobi method requires 26 iterations to reach a tolerance of
10−5, which is quite many iterations, given that there are only 25 unknowns.

3.46. Test problem: diffusion of a sine hill

It can be shown that
ue = Ae−απ2(L−2

x +L−2
y)t sin

(
π

Lx
x

)
sin
(
π

Ly
y

)
, (3.86)

is a solution of the 2D homogeneous diffusion equation ut = α(uxx+uyy) in a rectangle [0, Lx]×[0, Ly],
for any value of the amplitude A. This solution vanishes at the boundaries, and the initial condition
is the product of two sines. We may choose A = 1 for simplicity.

It is difficult to know if our solver based on the Jacobi method works properly since we are faced
with two sources of errors: one from the discretization, E∆, and one from the iterative Jacobi
method, Ei. The total error in the computed u can be represented as

Eu = E∆ + Ei .

One error measure is to look at the maximum value, which is obtained for the midpoint x = Lx/2
and y = Lx/2. This midpoint is represented in the discrete u if Nx and Ny are even numbers.
We can then compute Eu as Eu = |max ue −max u|, when we know an exact solution ue of the
problem.

279

DRAFT

3. Diffusion Equations

What about E∆? If we use the maximum value as a measure of the error, we have in fact analytical
insight into the approximation error in this particular problem. According to Section Section 3.23,
the exact solution (3.86) of the PDE problem is also an exact solution of the discrete equations,
except that the damping factor in time is different. More precisely, (3.52) and (3.53) are solutions
of the discrete problem for θ = 1 (Backward Euler) and θ = 1

2 (Crank-Nicolson), respectively. The
factors raised to the power n is the numerical amplitude, and the errors in these factors become

E∆ = e−αk2t −
(

1− 2(Fx sin2 px + Fx sin2 py)
1 + 2(Fx sin2 px + Fx sin2 py)

)n

, θ = 1
2 ,

E∆ = e−αk2t − (1 + 4Fx sin2 px + 4Fy sin2 py)−n, θ = 1 .

We are now in a position to compute Ei numerically. That is, we can compute the error due to
iterative solution of the linear system and see if it corresponds to the convergence tolerance used in
the method. Note that the convergence is based on measuring the difference in two consecutive
approximations, which is not exactly the error due to the iteration, but it is a kind of measure, and
it should have about the same size as Ei.

The function demo_classic_iterative in diffu2D_u0.py implements the idea above (also for the
methods in Section Section 3.48). The value of Ei is in particular printed at each time level. By
changing the tolerance in the convergence criterion of the Jacobi method, we can see that Ei is of the
same order of magnitude as the prescribed tolerance in the Jacobi method. For example: E∆ ∼ 10−2

with Nx = Ny = 10 and θ = 1
2 , as long as max u has some significant size (max u > 0.02). An

appropriate value of the tolerance is then 10−3, such that the error in the Jacobi method does not
become bigger than the discretization error. In that case, Ei is around 5 · 10−3. The corresponding
number of Jacobi iterations (with ω = 1) varies from 31 to 12 during the time simulation (for
max u > 0.02). Changing the tolerance to 10−5 causes many more iterations (61 to 42) without
giving any contribution to the overall accuracy, because the total error is dominated by E∆.

Also, with an Nx = Ny = 20, the spatial accuracy increases and many more iterations are needed
(143 to 45), but the dominating error is from the time discretization. However, with such a finer
spatial mesh, a higher tolerance in the convergence criterion 10−4 is needed to keep Ei ∼ 10−3.
More experiments show the disadvantage of the very simple Jacobi iteration method: the number of
iterations increases with the number of unknowns, keeping the tolerance fixed, but the tolerance
should also be lowered to avoid the iteration error to dominate the total error. A small adjustment
of the Jacobi method, as described in Section Section 3.48, provides a better method.

3.47. The relaxed Jacobi method and its relation to the Forward Euler
method

We shall now show that solving the Poisson equation −α∇2u = f by the Jacobi iterative method is
in fact equivalent to using a Forward Euler scheme on ut = α∇2u+ f and letting t→∞.

A Forward Euler discretization of the 2D diffusion equation,

[D+
t u = α(DxDxu+DyDyu) + f]ni,j ,

280

https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu2D_u0.py

DRAFT

3. Diffusion Equations

can be written out as

un+1
i,j = un

i,j + ∆t
αh2

(
un

i−1,j + un
i+1,j + un

i,j−1 + un
i,j+1 − 4un

i,j + h2fi,j

)
,

where h = ∆x = ∆y has been introduced for simplicity. The scheme can be reordered as

un+1
i,j = (1− ω)un

i,j + 1
4ω
(
un

i−1,j + un
i+1,j + un

i,j−1 + un
i,j+1 − 4un

i,j + h2fi,j

)
,

with
ω = 4 ∆t

αh2 ,

but this latter form is nothing but the relaxed Jacobi method applied to

[DxDxu+DyDyu = −f]ni,j .

From the equivalence above we know a couple of things about the Jacobi method for solving
−∇2u = f :

1. The method is unstable if ω > 1 (since the Forward Euler method is then unstable).
2. The convergence is really slow as the iteration index increases (coming from the fact that the

Forward Euler scheme requires many small time steps to reach the stationary solution).

These observations are quite disappointing: if we already have a time-dependent diffusion problem
and want to take larger time steps by an implicit time discretization method, we will with the Jacobi
method end up with something close to a slow Forward Euler simulation of the original problem at
each time level. Nevertheless, the are two reasons for why the Jacobi method remains a fundamental
building block for solving linear systems arising from PDEs: 1) a couple of iterations remove large
parts of the error and this is effectively used in the very efficient class of multigrid methods; and 2)
the idea of the Jacobi method can be developed into more efficient methods, especially the SOR
method, which is treated next.

3.48. The Gauss-Seidel and SOR methods

If we update the mesh points according to the Jacobi method (3.79) for a Backward Euler discretiza-
tion with a loop over i = 1, . . . , Nx − 1 and j = 1, . . . , Ny − 1, we realize that when un+1,r+1 ∗ ∗i, j
is computed, un+1,r+1 ∗ ∗i− 1, j and un+1,r+1

i,j−1 are already computed, so these new values can be
used rather than un+1,r ∗ ∗i− 1, j and un+1,r ∗ ∗i, j − 1 (respectively) in the formula for un+1,r+1

i,j .
This idea gives rise to the Gauss-Seidel iteration method, which mathematically is just a small
adjustment of (3.79):

un+1,r+1
i,j = (1 + 2Fx + 2Fy)−1((

Fx(un+1,r+1
i−1,j + un+1,r

i+1,j) + Fy(un+1,r+1
i,j−1 + un+1,r

i,j+1)) + un
i,j + ∆tfn+1

i,j) .
(3.87)

Observe that the way we access the mesh points in the formula (3.87) is important: points with i− 1
must be computed before points with i, and points with j − 1 must be computed before points with
j. Any sequence of mesh points can be used in the Gauss-Seidel method, but the particular math

281

DRAFT

3. Diffusion Equations

formula must distinguish between already visited points in the current iteration and the points not
yet visited.

The idea of relaxation (3.82) can equally well be applied to the Gauss-Seidel method. Actually, the
Gauss-Seidel method with an arbitrary 0 < ω ≤ 2 has its own name: the Successive Over-Relaxation
method, abbreviated as SOR.

The SOR method for a θ rule discretization, with the shortened u and u− notation, can be written

u∗
i,j = (1 + 2θ(Fx + Fy))−1(θ(Fx(ui−1,j + u−

i+1,j) + Fy(ui,j−1 + u−
i,j+1))+

u
(1)
i,j + θ∆tfn+1

i,j + (1− θ)∆tfn
i,j+

(1− θ)(Fx(u(1)
i−1,j − 2u(1)

i,j + u
(1)
i+1,j) + Fy(u(1)

i,j−1 − 2u(1)
i,j + u

(1)
i,j+1))),

ui,j = ωu∗
i,j + (1− ω)u−

i,j (3.88)

The sequence of mesh points in (3.88) is i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1 (but whether i runs
faster or slower than j does not matter).

3.49. Scalar implementation of the SOR method

Since the Jacobi and Gauss-Seidel methods with relaxation are so similar, we can easily make a
common code for the two:

for n in It[0:-1]:
u_[:,:] = u_n # Start value
converged = False
r = 0
while not converged:

if version == 'scalar':
if iteration == 'Jacobi':

u__ = u_
elif iteration == 'SOR':

u__ = u
j = 0
for i in Ix:

u[i,j] = U_0y(t[n+1]) # Boundary
for j in It[1:-1]:

i = 0; u[i,j] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,j] = U_Lx(t[n+1]) # Boundary
for i in Ix[1:-1]:

u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[i+1,j] + u__[i-1,j]) +
Fy*(u_[i,j+1] + u__[i,j-1])) + \

u_n[i,j] + (1-theta)*(
Fx*(

u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +

282

DRAFT

3. Diffusion Equations

Fy*(
u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt))
u[i,j] = omega*u_new + (1-omega)*u_[i,j]

j = Ny
for i in Ix:

u[i,j] = U_Ly(t[n+1]) # boundary
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u_[:,:] = u

u_n, u = u, u_n # Get ready for next iteration

The idea here is to introduce u__ to be used for already computed values (u) in the Gauss-Seidel/SOR
version of the implementation, or just values from the previous iteration (u_) in case of the Jacobi
method.

3.50. Vectorized implementation of the SOR method

Vectorizing the Gauss-Seidel iteration step turns out to be non-trivial. The problem is that vectorized
operations typically imply operations on arrays where the sequence in which we visit the elements
does not matter. In particular, this principle makes vectorized code trivial to parallelize. However,
in the Gauss-Seidel algorithm, the sequence in which we visit the elements in the arrays does matter,
and it is well known that the basic method as explained above cannot be parallelized. Therefore,
also vectorization will require new thinking.

The strategy for vectorizing (and parallelizing) the Gauss-Seidel method is to use a special numbering
of the mesh points called red-black numbering: every other point is red or black as in a checkerboard
pattern. This numbering requires Nx and Ny to be even numbers. Here is an example of a 6× 6
mesh:

r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r

The idea now is to first update all the red points. Each formula for updating a red point involves
only the black neighbors. Thereafter, we update all the black points, and at each black point, only
the recently computed red points are involved.

The scalar implementation of the red-black numbered Gauss-Seidel method is really compact, since
we can update values directly in u (this guarantees that we use the most recently computed values).
Here is the relevant code for the Backward Euler scheme in time and without a source term:

283

DRAFT

3. Diffusion Equations

for sweep in 'red', 'black':
for j in range(1, Ny, 1):

if sweep == 'red':
start = 1 if j % 2 == 1 else 2

elif sweep == 'black':
start = 2 if j % 2 == 1 else 1

for i in range(start, Nx, 2):
u[i,j] = 1.0/(1.0 + 2*(Fx + Fy))*(

Fx*(u[i+1,j] + u[i-1,j]) +
Fy*(u[i,j+1] + u[i,j-1]) + u_n[i,j])

The vectorized version must be based on slices. Looking at a typical red-black pattern, e.g.,

r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r

we want to update the internal points (marking boundary points with x):

x x x x x x x
x r b r b r x
x b r b r b x
x r b r b r x
x b r b r b x
x r b r b r x
x x x x x x x

It is impossible to make one slice that picks out all the internal red points. Instead, we need two
slices. The first involves points marked with R:

x x x x x x x
x R b R b R x
x b r b r b x
x R b R b R x
x b r b r b x
x R b R b R x
x x x x x x x

This slice is specified as 1::2 for i and 1::2 for j, or with slice objects:

i = slice(1, None, 2); j = slice(1, None, 2)

The second slice involves the red points with R:

284

DRAFT

3. Diffusion Equations

x x x x x x x
x r b r b r x
x b R b R b x
x r b r b r x
x b R b R b x
x r b r b r x
x x x x x x x

The slices are

i = slice(2, None, 2); j = slice(2, None, 2)

For the black points, the first slice involves the B points:

x x x x x x x
x r B r B r x
x b r b r b x
x r B r B r x
x b r b r b x
x r B r B r x
x x x x x x x

with slice objects

i = slice(2, None, 2); j = slice(1, None, 2)

The second set of black points is shown here:

x x x x x x x
x r b r b r x
x B r B r B x
x r b r b r x
x B r B r B x
x r b r b r x
x x x x x x x

with slice objects

i = slice(1, None, 2); j = slice(2, None, 2)

That is, we need four sets of slices. The simplest way of implementing the algorithm is to make a
function with variables for the slices representing i, i− 1, i+ 1, j, j − 1, and j + 1, here called ic
(“i center”), im1 (“i minus 1”, ip1 (“i plus 1”), jc, jm1, and jp1, respectively.

285

DRAFT

3. Diffusion Equations

def update(u_, u_n, ic, im1, ip1, jc, jm1, jp1):
return \

1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[ip1,jc] + u_[im1,jc]) +
Fy*(u_[ic,jp1] + u_[ic,jm1])) +\

u_n[ic,jc] + (1-theta)*(
Fx*(u_n[ip1,jc] - 2*u_n[ic,jc] + u_n[im1,jc]) +\
Fy*(u_n[ic,jp1] - 2*u_n[ic,jc] + u_n[ic,jm1]))+\
theta*dt*f_a_np1[ic,jc] + \
(1-theta)*dt*f_a_n[ic,jc])

The formula returned from update is to be compared with (3.88).

The relaxed Jacobi iteration can be implemented by

ic = jc = slice(1,-1)
im1 = jm1 = slice(0,-2)
ip1 = jp1 = slice(2,None)
u_new[ic,jc] = update(

u_, u_n, ic, im1, ip1, jc, jm1, jp1)
u[ic,jc] = omega*u_new[ic,jc] + (1-omega)*u_[ic,jc]

The Gauss-Seidel (or SOR) updates need four different steps. The ic and jc slices are specified
above. For each of these, we must specify the corresponding im1, ip1, jm1, and jp1 slices. The
code below contains the details.

ic = slice(1,-1,2)
im1 = slice(0,-2,2)
ip1 = slice(2,None,2)
jc = slice(1,-1,2)
jm1 = slice(0,-2,2)
jp1 = slice(2,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(2,-1,2)
im1 = slice(1,-2,2)
ip1 = slice(3,None,2)
jc = slice(2,-1,2)
jm1 = slice(1,-2,2)
jp1 = slice(3,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(2,-1,2)
im1 = slice(1,-2,2)
ip1 = slice(3,None,2)

286

DRAFT

3. Diffusion Equations

jc = slice(1,-1,2)
jm1 = slice(0,-2,2)
jp1 = slice(2,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(1,-1,2)
im1 = slice(0,-2,2)
ip1 = slice(2,None,2)
jc = slice(2,-1,2)
jm1 = slice(1,-2,2)
jp1 = slice(3,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

c = slice(1,-1)
u[c,c] = omega*u_new[c,c] + (1-omega)*u_[c,c]

The function solver_classic_iterative in diffu2D_u0.py contains a unified implementation
of the relaxed Jacobi and SOR methods in scalar and vectorized versions using the techniques
explained above.

3.51. Direct versus iterative methods

3.51.1. Direct methods

There are two classes of methods for solving linear systems: direct methods and iterative methods.
Direct methods are based on variants of the Gaussian elimination procedure and will produce an
exact solution (in exact arithmetics) in an a priori known number of steps. Iterative methods, on
the other hand, produce an approximate solution, and the amount of work for reaching a given
accuracy is usually not known.

The most common direct method today is to use the LU factorization procedure to factor the
coefficient matrix A as the product of a lower-triangular matrix L (with unit diagonal terms) and
an upper-triangular matrix U : A = LU . As soon as we have L and U , a system of equations
LUc = b is easy to solve because of the triangular nature of L and U . We first solve Ly = b for
y (forward substitution), and thereafter we find c from solving Uc = y (backward substitution).
When A is a dense N ×N matrix, the LU factorization costs 1

3N
3 arithmetic operations, while the

forward and backward substitution steps each require of the order N2 arithmetic operations. That
is, factorization dominates the costs, while the substitution steps are cheap.

Symmetric, positive definite coefficient matrices often arise when discretizing PDEs. In this case,
the LU factorization becomes A = LLT , and the associated algorithm is known as Cholesky
factorization. Most linear algebra software offers highly optimized implementations of LU and
Cholesky factorization as well as forward and backward substitution (scipy.linalg is the relevant
Python package).

287

https://github.com/devitocodes/devito_book/tree/main/src/diffu/diffu2D_u0.py

DRAFT

3. Diffusion Equations

Finite difference discretizations lead to sparse coefficient matrices. An extreme case arose in Section
Section 3.8 where A was tridiagonal. For a tridiagonal matrix, the amount of arithmetic operations
in the LU and Cholesky factorization algorithms is just of the order N , not N3. Tridiagonal matrices
are special cases of banded matrices, where the matrices contain just a set of diagonal bands. Finite
difference methods on regularly numbered rectangular and box-shaped meshes give rise to such
banded matrices, with 5 bands in 2D and 7 in 3D for diffusion problems. Gaussian elimination only
needs to work within the bands, leading to much more efficient algorithms.

If Ai,j = 0 for j > i + p and j < i − p, p is the half-bandwidth of the matrix. We have in
our 2D problem p = Nx + 2, while in 3D, p = (Nx + 1)(Ny + 1) + 2. The cost of Gaussian
elimination is then O(Np2), so with p≪ N , we see that banded matrices are much more efficient to
compute with. By reordering the unknowns in clever ways, one can reduce the work of Gaussian
elimination further. Fortunately, the Python programmer has access to such algorithms through the
scipy.sparse.linalg package.

Although a direct method is an exact algorithm, rounding errors may in practice accumulate and
pollute the solution. The effect grows with the size of the linear system, so both for accuracy and
efficiency, iterative methods are better suited than direct methods for solving really large linear
systems.

3.51.2. Iterative methods

The Jacobi and SOR iterative methods belong to a class of iterative methods where the idea is to
solve Au = b by splitting A into two parts, A = M −N , such that solving systems Mu = c is easy
and efficient. With the splitting, we get a system

Mu = Nu+ b,

which suggests an iterative method

Mur+1 = Nur + b, r = 0, 1, 2, . . . ,

where ur+1 is a new approximation to u in the r + 1-th iteration. To initiate the iteration, we need
a start vector u0.

The Jacobi and SOR methods are based on splitting A into a lower tridiagonal part L, the diagonal
D, and an upper tridiagonal part U , such that A = L+D + U . The Jacobi method corresponds to
M = D and N = −L− U . The Gauss-Seidel method employs M = L+D and N = −U , while the
SOR method corresponds to

M = 1
ω
D + L, N = 1− ω

ω
D − U .

The relaxed Jacobi method has similar expressions:

M = 1
ω
D, N = 1− ω

ω
D − L− U .

With the matrix forms of the Jacobi and SOR methods as written above, we could in an implemen-
tation alternatively fill the matrix A with entries and call general implementations of the Jacobi or
SOR methods that work on a system Au = b. However, this is almost never done since forming the
matrix A requires quite some code and storing A in the computer’s memory is unnecessary. It is

288

DRAFT

3. Diffusion Equations

much easier to just apply the Jacobi and SOR ideas to the finite difference stencils directly in an
implementation, as we have shown in detail.

Nevertheless, the matrix formulation of the Jacobi and SOR methods have been important for
analyzing their convergence behavior. One can show that the error ur−u fulfills ur−u = Gr(u0−u),
where G = M−1N and Gk is a matrix exponential. For the method to converge, limr→∞ ||Gr|| = 0
is a necessary and sufficient condition. This implies that the spectral radius of G must be less than
one. Since G is directly related to the finite difference scheme for the underlying PDE problem,
one can in principle compute the spectral radius. For a given PDE problem, however, this is not a
practical strategy, since it is very difficult to develop useful formulas. Analysis of model problems,
usually related to the Poisson equation, reveals some trends of interest: the convergence rate of the
Jacobi method goes like h2, while that of SOR with an optimal ω goes like h, where h is the spatial
spacing: h = ∆x = ∆y. That is, the efficiency of the Jacobi method quickly deteriorates with the
increasing mesh resolution, and SOR is much to be preferred (even if the optimal ω remains an
open question). We refer to Chapter 4 of (Saad 2003) for more information on the convergence
theory. One important result is that if A is symmetric and positive definite, then SOR will converge
for any 0 < ω < 2.

The optimal ω parameter can be theoretically established for a Poisson problem as

ωo = 2
1 +

√
1− ϱ2 , ϱ = cos(π/Nx) + (∆x/∆y)2 cos(π/Ny)

1 + (∆x/∆y)2 .

This formula can be used as a guide also in other problems.

The Jacobi and the SOR methods have their great advantage of being trivial to implement, so they
are obviously popular of this reason. However, the slow convergence of these methods limits the
popularity to fairly small linear systems (i.e., coarse meshes). As soon as the matrix size grows, one
is better off with more sophisticated iterative methods like the preconditioned Conjugate gradient
method, which we now turn to.

Finally, we mention that there is a variant of the SOR method, called the Symmetric Successive
Over-relaxation method, known as SSOR, where one runs a standard SOR sweep through the mesh
points and then a new sweep while visiting the points in reverse order.

3.52. The Conjugate gradient method

There is no simple intuitive derivation of the Conjugate gradient method, so we refer to the many
excellent expositions in the literature for the idea of the method and how the algorithm is derived.
In particular, we recommend the books (Barrett et al. 1994; Axelsson 1996; Saad 2003; Grief and
Ascher 2011). A brief overview is provided in the Wikipedia article. Here, we just state the pros
and cons of the method from a user’s perspective and how we utilize it in code.

The original Conjugate gradient method is limited to linear systems Au = b, where A is a symmetric
and positive definite matrix. There are, however, extensions of the method to non-symmetric
matrices.

A major advantage of all conjugate gradient methods is that the matrix A is only used in matrix-
vector products, so we do not need form and store A if we can provide code for computing a
matrix-vector product Au. Another important feature is that the algorithm is very easy to vectorize

289

https://en.wikipedia.org/wiki/Conjugate_gradient_method

DRAFT

3. Diffusion Equations

and parallelize. The primary downside of the method is that it converges slowly unless one has
an effective preconditioner for the system. That is, instead of solving Au = b, we try to solve
M−1Au = M−1b in the hope that the method works better for this preconditioned system. The
matrix M is the preconditioner or preconditioning matrix. Now we need to perform matrix-vector
products y = M−1Au, which is done in two steps: first the matrix-vector product v = Au is carried
out and then the system My = v must be solved. Therefore, M must be cheap to compute and
systems My = v must be cheap to solve.

A perfect preconditioner is M = A, but in each iteration in the Conjugate gradient method one
then has so solve a system with A as coefficient matrix! A key idea is to let M be some kind of
cheap approximation to A. The simplest preconditioner is to set M = D, where D is the diagonal of
A. This choice means running one Jacobi iteration as preconditioner. Exercise Section 3.70 shows
that the Jacobi and SOR methods can also be viewed as preconditioners.

Constructing good preconditioners is a scientific field on its own. Here we shall treat the topic just
very briefly. For a user having access to the scipy.sparse.linalg library, there are Conjugate
gradient methods and preconditioners readily available:

• For positive definite, symmetric systems: cg (the Conjugate gradient method)
• For symmetric systems: minres (Minimum residual method)
• For non-symmetric systems:
• gmres (GMRES: Generalized minimum residual method)
• bicg (BiConjugate gradient method)
• bicgstab (Stabilized BiConjugate gradient method)
• cgs (Conjugate gradient squared method)
• qmr (Quasi-minimal residual iteration)
• Preconditioner: spilu (Sparse, incomplete LU factorization)

The ILU preconditioner is an attractive all-round type of preconditioner that is suitable for most
problems on serial computers. A more efficient preconditioner is the multigrid method, and algebraic
multigrid is also an all-round choice as preconditioner. The Python package PyAMG offers efficient
implementations of the algebraic multigrid method, to be used both as a preconditioner and as a
stand-alone iterative method.

The matrix arising from implicit time discretization methods applied to the diffusion equation is
symmetric and positive definite. Thus, we can use the Conjugate gradient method (cg), typically
in combination with an ILU preconditioner. The code is very similar to the one we created when
solving the linear system by sparse Gaussian elimination, the main difference is that we now allow
for calling up the Conjugate gradient function as an alternative solver.

def solver_sparse(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5,
U_0x=0, U_0y=0, U_Lx=0, U_Ly=0, user_action=None,
method='direct', CG_prec='ILU', CG_tol=1E-5):
"""
Full solver for the model problem using the theta-rule
difference approximation in time. Sparse matrix with
dedicated Gaussian elimination algorithm (method='direct')
or ILU preconditioned Conjugate Gradients (method='CG' with

290

https://github.com/pyamg/pyamg

DRAFT

3. Diffusion Equations

tolerance CG_tol and preconditioner CG_prec ('ILU' or None)).
"""

...

A = scipy.sparse.diags(
diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,

-lower2_offset, lower2_offset],
shape=(N, N), format='csc')

if method == 'CG':
if CG_prec == 'ILU':

A_ilu = scipy.sparse.linalg.spilu(A) # SuperLU defaults
M = scipy.sparse.linalg.LinearOperator(

shape=(N, N), matvec=A_ilu.solve)
else:

M = None
CG_iter = [] # No of CG iterations at time level n

for n in It[0:-1]:

if method == 'direct':
c = scipy.sparse.linalg.spsolve(A, b)

elif method == 'CG':
x0 = u_n.T.reshape(N) # Start vector is u_n
CG_iter.append(0)

def CG_callback(c_k):
"""Trick to count the no of iterations in CG."""
CG_iter[-1] += 1

c, info = scipy.sparse.linalg.cg(
A, b, x0=x0, tol=CG_tol, maxiter=N, M=M,
callback=CG_callback)

u_n, u = u, u_n

The number of iterations in the Conjugate gradient method is of interest, but is unfortunately not
available from the cg function. Therefore, we perform a trick: in each iteration a user function
CG_callback is called where we accumulate the number of iterations in a list CG_iter.

3.53. What is the recommended method for solving linear systems?

There is no clear answer to this question. If you have enough memory and computing time available,
direct methods such as spsolve are to be preferred since they are easy to use and finds almost an

291

DRAFT

3. Diffusion Equations

exact solution. However, in larger 2D and in 3D problems, direct methods usually run too slowly or
require too much memory, so one is forced to use iterative methods. The fastest and most reliable
methods are in the Conjugate Gradient family, but these require suitable preconditioners. ILU is an
all-round preconditioner, but it is not suited for parallel computing. The Jacobi and SOR iterative
methods are easy to implement, and popular for that reason, but run slowly. Jacobi iteration is not
an option in real problems, but SOR may be.

3.54. Random walk

Models leading to diffusion equations, see Section Section 3.66, are usually based on reasoning
with averaged physical quantities such as concentration, temperature, and velocity. The underlying
physical processes involve complicated microscopic movement of atoms and molecules, but an
average of a large number of molecules is performed in a small volume before the modeling starts,
and the averaged quantity inside this volume is assigned as a point value at the centroid of the
volume. This means that concentration, temperature, and velocity at a space-time point represent
averages around the point in a small time interval and small spatial volume.

Random walk is a principally different kind of modeling procedure compared to the reasoning behind
partial differential equations. The idea in random walk is to have a large number of “particles”
that undergo random movements. Averaging can then be used afterwards to compute macroscopic
quantities like concentration. The”particles” and their random movement represent a very simplified
microscopic behavior of molecules, much simpler and computationally much more efficient than
direct molecular simulation, yet the random walk model has been very powerful to describe a wide
range of phenomena, including heat conduction, quantum mechanics, polymer chains, population
genetics, neuroscience, hazard games, and pricing of financial instruments.

It can be shown that random walk, when averaged, produces models that are mathematically
equivalent to diffusion equations. This is the primary reason why we treat random walk in this
chapter: two very different algorithms (finite difference stencils and random walk) solve the same
type of problems. The simplicity of the random walk algorithm makes it particularly attractive for
solving diffusion equations on massively parallel computers. The exposition here is as simple as
possible, and good thorough derivation of the models is provided by Hjorth-Jensen (Hjorth-Jensen
2016).

3.55. Random walk in 1D

Imagine that we have some particles that perform random moves, either to the right or to the left.
We may flip a coin to decide the movement of each particle, say head implies movement to the right
and tail means movement to the left. Each move is one unit length. Physicists use the term random
walk for this type of movement. The movement is also known as drunkard’s walk. You may try this
yourself: flip the coin and make one step to the left or right, and repeat the process.

We introduce the symbol N for the number of steps in a random walk. Figure Figure 3.16 shows
four different random walks with N = 200.

292

https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk

DRAFT

3. Diffusion Equations

Figure 3.16.: Ensemble of 4 random walks, each with 200 steps.

293

DRAFT

3. Diffusion Equations

3.56. Statistical considerations

Let Sk be the stochastic variable representing a step to the left or to the right in step number k.
We have that Sk = −1 with probability p and Sk = 1 with probability q = 1− p. The variable Sk is
known as a Bernoulli variable. The expectation of Sk is

E[Sk] = p · (−1) + q · 1 = 1− 2p,

and the variance is

Var[Sk] = E[S2
k]− E[Sk]2 = 1− (1− 2p)2 = 4p(1− p) .

The position after k steps is another stochastic variable

X̄k =
k−1∑
i=0

Si .

The expected position is

E[X̄k] = E[
k−1∑
i=0

Si] =
k−1∑
i=0

E[Si] = k(1− 2p) .

All the Sk variables are independent. The variance therefore becomes

Var[X̄k] = Var[
k−1∑
i=0

Si] =
k−1∑
i=0

Var[Si] = k4p(1− p) .

We see that Var[X̄k] is proportional with the number of steps k. For the very important case
p = q = 1

2 , E[X̄k] = 0 and Var[X̄k] = k.

How can we estimate E[X̄k] = 0 and Var[X̄k] = N? We must have many random walks of the type
in Figure Figure 3.16. For a given k, say k = 100, we find all the values of X̄k, name them x̄0,k,
x̄1,k, x̄2,k, and so on. The empirical estimate of E[X̄k] is the average,

E[X̄k] ≈ 1
W

W −1∑
j=0

x̄j,k,

while an empirical estimate of Var[X̄k] is

Var[X̄k] ≈ 1
W

W −1∑
j=0

(x̄j,k)2 −

 1
W

W −1∑
j=0

x̄j,k

2

.

That is, we take the statistics for a given K across the ensemble of random walks (“vertically” in
Figure Figure 3.16). The key quantities to record are ∑i x̄i,k and ∑i x̄

2
i,k.

294

https://en.wikipedia.org/wiki/Bernoulli_distribution

DRAFT

3. Diffusion Equations

3.57. Playing around with some code

3.57.1. Scalar code

Python has a random module for drawing random numbers, and this module has a function
uniform(a, b) for drawing a uniformly distributed random number in the interval [a, b). If an
event happens with probability p, we can simulate this on the computer by drawing a random
number r in [0, 1), because then r ≤ p with probability p and r > p with probability 1− p:

import random
r = random.uniform(0, 1)
if r <= p:
else:

A random walk with N steps, starting at x0, where we move to the left with probability p and to
the right with probability 1− p can now be implemented by

import random, numpy as np

def random_walk1D(x0, N, p):
"""1D random walk with 1 particle."""
position = np.zeros(N)
position[0] = x0
current_pos = x0
for k in range(N-1):

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k+1] = current_pos

return position

3.57.2. Vectorized code

Since N is supposed to be large and we want to repeat the process for many particles, we should
speed up the code as much as possible. Vectorization is the obvious technique here: we draw all the
random numbers at once with aid of numpy, and then we formulate vector operations to get rid
of the loop over the steps (k). The numpy.random module has vectorized versions of the functions
in Python’s built-in random module. For example, numpy.random.uniform(a, b, N) returns N
random numbers uniformly distributed between a (included) and b (not included).

We can then make an array of all the steps in a random walk: if the random number is less than or
equal to p, the step is −1, otherwise the step is 1:

295

DRAFT

3. Diffusion Equations

r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)

The value of position[k] is the sum of all steps up to step k. Such sums are often needed in
vectorized algorithms and therefore available by the numpy.cumsum function:

>>> import numpy as np
>>> np.cumsum(np.array([1,3,4,6]))
array([1, 4, 8, 14])

The resulting array in this demo has elements 1, 1 + 3 = 4, 1 + 3 + 4 = 8, and 1 + 3 + 4 + 6 = 14.

We can now vectorize the random_walk1D function:

def random_walk1D_vec(x0, N, p):
"""Vectorized version of random_walk1D."""
position = np.zeros(N + 1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

This code runs about 10 times faster than the scalar version. With a parallel numpy library, the
code can also automatically take advantage of hardware for parallel computing because each of the
four array operations can be trivially parallelized.

3.57.3. Fixing the random sequence

During software development with random numbers it is advantageous to always generate the same
sequence of random numbers, as this may help debugging processes. To fix the sequence, we set a
seed of the random number generator to some chosen integer, e.g.,

np.random.seed(10)

Calls to random_walk1D_vec give positions of the particle as depicted in Figure Figure 3.17. The
particle starts at the origin and moves with p = 1

2 . Since the seed is the same, the plot to the left is
just a magnification of the first 1,000 steps in the plot to the right.

296

DRAFT

3. Diffusion Equations

Figure 3.17.: 1,000 (left) and 50,000 (right) steps of a random walk.

3.57.4. Verification

When we have a scalar and a vectorized code, it is always a good idea to develop a unit test for
checking that they produce the same result. A problem in the present context is that the two
versions apply two different random number generators. For a test to be meaningful, we need to fix
the seed and use the same generator. This means that the scalar version must either use np.random
or have this as an option. An option is the most flexible choice:

import random

def random_walk1D(x0, N, p, random=random):
...
r = random.uniform(0, 1)

Using random=np.random, the r variable gets computed by np.random.uniform, and the sequence
of random numbers will be the same as in the vectorized version that employs the same generator
(given that the seed is also the same). A proper test function may be to check that the positions in
the walk are the same in the scalar and vectorized implementations:

def test_random_walk1D():
x0 = 2
N = 4
p = 0.6
np.random.seed(10)
scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walk1D_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

Note that we employ == for arrays with real numbers, which is normally an inadequate test due
to rounding errors, but in the present case, all arithmetics consists of adding or subtracting one,
so these operations are expected to have no rounding errors. Comparing two numpy arrays with

297

DRAFT

3. Diffusion Equations

== results in a boolean array, so we need to call the all() method to ensure that all elements are
True, i.e., that all elements in the two arrays match each other pairwise.

3.58. Equivalence with diffusion

The original random walk algorithm can be said to work with dimensionless coordinates x̄i = −N+ i,
i = 0, 1, . . . , 2N + 1 (i ∈ [−N,N]), and t̄n = n, n = 0, 1, . . . , N . A mesh with spacings ∆x and ∆t
with dimensions can be introduced by

xi = X0 + x̄i∆x, tn = t̄n∆t .

If we implement the algorithm with dimensionless coordinates, we can just use this rescaling to
obtain the movement in a coordinate system without unit spacings.

Let Pn+1
i be the probability of finding the particle at mesh point x̄i at time t̄n+1. We can reach

mesh point (i, n+ 1) in two ways: either coming in from the left from (i− 1, n) or from the right
(i+ 1, n). Each has probability 1

2 (if we assume p = q = 1
2). The fundamental equation for Pn+1

i is

Pn+1 ∗ ∗i = 1
2P

n ∗ ∗i− 1 + 1
2P

n
i+1 . (3.89)

(This equation is easiest to understand if one looks at the random walk as a Markov process and
applies the transition probabilities, but this is beyond scope of the present text.)

Subtracting Pn
i from (3.89) results in

Pn+1
i − Pn ∗ ∗i = 1

2(Pn ∗ ∗i− 1− 2Pn ∗ ∗i+ 1
2P

n ∗ ∗i+ 1) .

Readers who have seen the Forward Euler discretization of a 1D diffusion equation recognize this
scheme as very close to such a discretization. We have

∂

∂t
P (xi, tn) = Pn+1

i − Pn
i

∆t +O(∆t),

or in dimensionless coordinates
∂

∂t̄
P (x̄i, t̄n) ≈ Pn+1

i − Pn
i .

Similarly, we have

∂2

∂x2P (xi, tn) =
Pn

i−1 − 2Pn ∗ ∗i+ 1
2P

n ∗ ∗i+ 1
∆x2 +O(∆x2),

∂2

∂x2P (x̄i, t̄n) ≈ Pn
i−1 − 2Pn ∗ ∗i+ 1

2P
n ∗ ∗i+ 1 .

Equation (3.89) is therefore equivalent with the dimensionless diffusion equation

∂P

∂t̄
= 1

2
∂2P

∂x̄2 , (3.90)

298

DRAFT

3. Diffusion Equations

or the diffusion equation
∂P

∂t
= D

∂2P

∂x2 , (3.91)

with diffusion coefficient
D = ∆x2

2∆t .

This derivation shows the tight link between random walk and diffusion. If we keep track of where
the particle is, and repeat the process many times, or run the algorithms for lots of particles, the
histogram of the positions will approximate the solution of the diffusion equation for the local
probability Pn

i .

Suppose all the random walks start at the origin. Then the initial condition for the probability
distribution is the Dirac delta function δ(x). The solution of (3.90) can be shown to be

P̄ (x̄, t̄) = 1√
4παt

e− x2
4αt , (3.92)

where α = 1
2 .

3.59. Implementation of multiple walks

Our next task is to implement an ensemble of walks (for statistics, see Section Section 3.56) and
also provide data from the walks such that we can compute the probabilities of the positions as
introduced in the previous section. An appropriate representation of probabilities Pn

i are histograms
(with i along the x axis) for a few selected values of n.

To estimate the expectation and variance of the random walks, Section Section 3.56 points to
recording ∑j xj,k and ∑j x

2
j,k, where xj,k is the position at time/step level k in random walk number

j. The histogram of positions needs the individual values xi,k for all i values and some selected k
values.

We introduce position[k] to hold ∑j xj,k, position2[k] to hold ∑j(xj,k)2, and pos_hist[i,k]
to hold xi,k. A selection of k values can be specified by saying how many, num_times, and let them
be equally spaced through time:

pos_hist_times = [(N//num_times)*i for i in range(num_times)]

This is one of the few situations where we want integer division (//) or real division rounded to an
integer.

3.59.1. Scalar version

Our scalar implementation of running num_walks random walks may go like this:

299

DRAFT

3. Diffusion Equations

import random

import matplotlib.pyplot as plt
import numpy as np

random.seed(10)
np.random.seed(10)

def random_walk1D(x0, N, p, random=random):
"""1D random walk with 1 particle and N moves."""

position = np.zeros(N + 1)
position[0] = x0
current_pos = x0
for k in range(N):

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k + 1] = current_pos

return position

def random_walk1D_vec(x0, N, p):
"""Vectorized version of random_walk1D."""
position = np.zeros(N + 1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

def test_random_walk1D():
x0 = 2
N = 4
p = 0.6
np.random.seed(10)
scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walk1D_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

def demo_random_walk1D(N=50000):
np.random.seed(10)
pos = random_walk1D_vec(x0=0, N=N, p=0.5)
plt.figure()
plt.plot(pos)

300

DRAFT

3. Diffusion Equations

plt.savefig("tmp1.pdf")
plt.savefig("tmp1.png")
plt.figure()
plt.plot(pos * pos)
plt.savefig("tmp2.pdf")
plt.savefig("tmp2.png")
plt.show()

def demo_fig_random_walk1D(N=200):
"""Make ensamble of positions (to illustrate E[] operator)."""
np.random.seed(10)
num_plots = 4
for n in range(num_plots):

plt.subplot(num_plots, 1, n + 1)
pos = random_walk1D_vec(x0=0, N=N, p=0.5)
plt.plot(pos)
plt.axis([0, N, -15, 20])

plt.savefig("tmp.pdf")
plt.savefig("tmp.png")
plt.show()

def demo_random_walk1D_timing():
import time

x0 = 0
N = 10000000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos = random_walk1D(x0, N, p, random=np.random)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos = random_walk1D_vec(x0, N, p)
t2 = time.perf_counter()
cpu_vec = t2 - t1
print("CPU vectorized: %.1f" % cpu_vec)
print("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

def random_walks1D(x0, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from x0 with N steps."""
position = np.zeros(N + 1) # Accumulated positions
position[0] = x0 * num_walks
position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks

301

DRAFT

3. Diffusion Equations

pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = x0
for k in range(N):

if k in pos_hist_times:
pos_hist[n, num_times_counter] = current_pos
num_times_counter += 1

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k + 1] += current_pos
position2[k + 1] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

3.59.2. Vectorized version

We have already vectorized a single random walk. The additional challenge here is to vector-
ize the computation of the data for the histogram, pos_hist, but given the selected steps in
pos_hist_times, we can find the corresponding positions by indexing with the list pos_hist_times:
position[post_hist_times], which are to be inserted in pos_hist[n,:].

def random_walks1D_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walk = np.zeros(N + 1) # Positions of current walk
walk[0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n, :] = walk[pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

302

DRAFT

3. Diffusion Equations

3.59.3. Improved vectorized version

Looking at the vectorized version above, we still have one potentially long Python loop over n.
Normally, num_walks will be much larger than N. The vectorization of the loop over N certainly
speeds up the program, but if we think of vectorization as also a way to parallelize the code, all the
independent walks (the n loop) can be executed in parallel. Therefore, we should include this loop
as well in the vectorized expressions, at the expense of using more memory.

We introduce the array walks to hold the N + 1 steps of all the walks: each row represents the
steps in one walk.

walks = np.zeros((num_walks, N+1)) # Positions of each walk
walks[:,0] = x0

Since all the steps are independent, we can just make one long vector of enough random numbers
(N*num_walks), translate these numbers to ±1, then we reshape the array such that the steps of
each walk are stored in the rows.

r = np.random.uniform(0, 1, size=N*num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)

The next step is to sum up the steps in each walk. We need the np.cumsum function for this, with
the argument axis=1 for indicating a sum across the columns:

>>> a = np.arrange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.cumsum(a, axis=1)
array([[0, 1, 3],

[3, 7, 12]])

Now walks can be computed by

walks[:,1:] = x0 + np.cumsum(steps, axis=1)

The position vector is the sum of all the walks. That is, we want to sum all the rows, obtained
by

position = np.sum(walks, axis=0)

A corresponding expression computes the squares of the positions. Finally, we need to compute
pos_hist, but that is a matter of grabbing some of the walks (according to pos_hist_times):

303

DRAFT

3. Diffusion Equations

pos_hist[:,:] = walks[:,pos_hist_times]

The complete vectorized algorithm without any loop can now be summarized:

def random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1)) # Positions of each walk
walks[:, 0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)
walks[:, 1:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:, :] = walks[:, pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

What is the gain of the vectorized implementations? One important gain is that each vectorized
operation can be automatically parallelized if one applies a parallel numpy library like Numba. On a
single CPU, however, the speed up of the vectorized operations is also significant. With N = 1, 000
and 50,000 repeated walks, the two vectorized versions run about 25 and 18 times faster than the
scalar version, with random_walks1D_vec1 being fastest.

3.59.4. Remark on vectorized code and parallelization

Our first attempt on vectorization removed the loop over the N steps in a single walk. However, the
number of walks is usually much larger than N , because of the need for accurate statistics. Therefore,
we should rather remove the loop over all walks. It turns out, from our efficiency experiments, that
the function random_walks1D_vec2 (with no loops) is slower than random_walks1D_vec1. This is
a bit surprising and may be explained by less efficiency in the statements involving very large arrays,
containing all steps for all walks at once.

From a parallelization and improved vectorization point of view, it would be more natural to switch
the sequence of the loops in the serial code such that the shortest loop is the outer loop:

def random_walks1D2(x0, N, p, num_walks=1, num_times=1, ...):
...
current_pos = x0 + np.zeros(num_walks)
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:

304

http://numba.pydata.org

DRAFT

3. Diffusion Equations

num_times_counter += 1
store_hist = True

else:
store_hist = False

for n in range(num_walks):
r = random.uniform(0, 1)

if r <= p:
current_pos[n] -= 1

else:
current_pos[n] += 1

position [k+1] += current_pos[n]
position2[k+1] += current_pos[n]**2
if store_hist:

pos_hist[n,num_times_counter] = current_pos[n]
return position, position2, pos_hist, np.array(pos_hist_times)

The vectorized version of this code, where we just vectorize the loop over n, becomes

def random_walks1D2_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D2."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

current_pos = np.zeros(num_walks)
current_pos[0] = x0
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:

num_times_counter += 1
store_hist = True # Store histogram data for this k

else:
store_hist = False

r = np.random.uniform(0, 1, size=num_walks)
steps = np.where(r <= p, -1, 1)
current_pos += steps
position[k + 1] = np.sum(current_pos)
position2[k + 1] = np.sum(current_pos**2)
if store_hist:

pos_hist[:, num_times_counter] = current_pos
return position, position2, pos_hist, np.array(pos_hist_times)

This function runs significantly faster than the random_walks1D_vec1 function above, typically

305

DRAFT

3. Diffusion Equations

1.7 times faster. The code is also more appropriate in a parallel computing context since each
vectorized statement can work with data of size num_walks over the compute units, repeated N
times (compared with data of size N, repeated num_walks times, in random_walks1D_vec1).

The scalar code with switched loops, random_walks1D2 runs a bit slower than the original
code in random_walks1D, so with the longest loop as the inner loop, the vectorized function
random_walks1D2_vec1 is almost 60 times faster than the scalar counterpart, while the code
random_walks1D_vec2 without loops is only around 18 times faster. Taking into account the very
large arrays required by the latter function, we end up with random_walks1D2_vec1 as the preferred
implementation.

3.59.5. Test function

During program development, it is highly recommended to carry out computations by hand for,
e.g., N=4 and num_walks=3. Normally, this is done by executing the program with these parameters
and checking with pen and paper that the computations make sense. The next step is to use this
test for correctness in a formal test function.

First, we need to check that the simulation of multiple random walks reproduces the results of
random_walk1D, random_walk1D_vec1, and random_walk1D_vec2 for the first walk, if the seed is
the same. Second, we run three random walks (N=4) with the scalar and the two vectorized versions
and check that the returned arrays are identical.

For this type of test to be successful, we must be sure that exactly the same set of random numbers
are used in the three versions, a fact that requires the same random number generator and the same
seed, of course, but also the same sequence of computations. This is not obviously the case with
the three random_walk1D* functions we have presented. The critical issue in random_walk1D_vec1
is that the first random numbers are used for the first walk, the second set of random numbers
is used for the second walk and so on, to be compatible with how the random numbers are used
in the function random_walk1D. For the function random_walk1D_vec2 the situation is a bit more
complicated since we generate all the random numbers at once. However, the critical step now is
the reshaping of the array returned from np.where: we must reshape as (num_walks, N) to ensure
that the first N random numbers are used for the first walk, the next N numbers are used for the
second walk, and so on.

We arrive at the test function below.

def test_random_walks1D():
x0 = 0
N = 4
p = 0.5

num_walks = 1
np.random.seed(10)
computed = random_walks1D(x0, N, p, num_walks, random=np.random)
np.random.seed(10)
expected = random_walk1D(x0, N, p, random=np.random)
assert (computed[0] == expected).all()

306

DRAFT

3. Diffusion Equations

np.random.seed(10)
computed = random_walks1D_vec1(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()
np.random.seed(10)
computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()

num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walks1D(x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorized1_computed = random_walks1D_vec1(x0, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed = random_walks1D_vec2(x0, N, p, num_walks, num_times)
return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]
for s, v, r in zip(serial_computed, vectorized1_computed, return_values):

msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed, vectorized2_computed, return_values):
msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

Such test functions are indispensable for further development of the code as we can at any time test
whether the basic computations remain correct or not. This is particularly important in stochastic
simulations since without test functions and fixed seeds, we always experience variations from run
to run, and it can be very difficult to spot bugs through averaged statistical quantities.

3.60. Demonstration of multiple walks

Assuming now that the code works, we can just scale up the number of steps in each walk and the
number of walks. The latter influences the accuracy of the statistical estimates. Figure Figure 3.18
shows the impact of the number of walks on the expectation, which should approach zero. Figure
Figure 3.19 displays the corresponding estimate of the variance of the position, which should grow
linearly with the number of steps. It does, seemingly very accurately, but notice that the scale on
the y axis is so much larger than for the expectation, so irregularities due to the stochastic nature of
the process become so much less visible in the variance plots. The probability of finding a particle
at a certain position at time (or step) 800 is shown in Figure Figure 3.20. The dashed red line is the
theoretical distribution (3.92) arising from solving the diffusion equation (3.90) instead. As always,
we realize that one needs significantly more statistical samples to estimate a histogram accurately
than the expectation or variance.

307

DRAFT

3. Diffusion Equations

Figure 3.18.: Estimated expected value for 1000 steps, using 100 walks (upper left), 10,000 (upper
right), 100,000 (lower left), and 1,000,000 (lower right).

308

DRAFT

3. Diffusion Equations

Figure 3.19.: Estimated variance over 1000 steps, using 100 walks (upper left), 10,000 (upper right),
100,000 (lower left), and 1,000,000 (lower right).

309

DRAFT

3. Diffusion Equations

Figure 3.20.: Estimated probability distribution at step 800, using 100 walks (upper left), 10,000
(upper right), 100,000 (lower left), and 1,000,000 (lower right).

310

DRAFT

3. Diffusion Equations

3.61. Empty figure cache

311

DRAFT

3. Diffusion Equations

3.62. Random walk as a stochastic equation

The (dimensionless) position in a random walk, X̄k, can be expressed as a stochastic difference
equation:

X̄k = X̄k−1 + s, x0 = 0, (3.93)

where s is a Bernoulli variable, taking on the two values s = −1 and s = 1 with equal probability:

P(s = 1) = 1
2 , P(s = −1) = 1

2 .

The s variable in a step is independent of the s variable in other steps.

The difference equation expresses essentially the sum of independent Bernoulli variables. Because
of the central limit theorem, Xk, will then be normally distributed with expectation kE[s] and
kVar[s]. The expectation and variance of a Bernoulli variable with values r = 0 and r = 1 are p and
p(1 − p), respectively. The variable s = 2r − 1 then has expectation 2E[r] − 1 = 2p − 1 = 0 and
variance 22Var[r] = 4p(1− p) = 1. The position Xk is normally distributed with zero expectation
and variance k, as we found in Section Section 3.56.

The central limit theorem tells that as long as k is not small, the distribution of Xk remains the same
if we replace the Bernoulli variable s by any other stochastic variable with the same expectation
and variance. In particular, we may let s be a standardized Gaussian variable (zero mean, unit
variance).

Dividing (3.93) by ∆t gives
X̄k − X̄k−1

∆t = 1
∆ts .

In the limit ∆t→ 0, s/∆t approaches a white noise stochastic process. With X̄(t) as the continuous
process in the limit ∆t→ 0 (Xk → X(tk)), we formally get the stochastic differential equation

dX̄ = dW,

where W (t) is a Wiener process. Then X is also a Wiener process. It follows from the stochastic
ODE dX = dW that the probability distribution of X is given by the Fokker-Planck equation (3.90).
In other words, the key results for random walk we found earlier can alternatively be derived via a
stochastic ordinary differential equation and its related Fokker-Planck equation.

3.63. Random walk in 2D

The most obvious generalization of 1D random walk to two spatial dimensions is to allow movements
to the north, east, south, and west, with equal probability 1

4 .

def random_walk2D(x0, N, p, random=random):
"""2D random walk with 1 particle and N moves: N, E, W, S."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)

312

https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Fokker-Planck_equation

DRAFT

3. Diffusion Equations

for k in range(N):
r = random.uniform(0, 1)
if r <= 0.25:

current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:

current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:

current_pos += np.array([0, -1]) # Move south
else:

current_pos += np.array([-1, 0]) # Move west
position[k + 1, :] = current_pos

return position

The left plot in Figure Figure 3.21 provides an example on 200 steps with this kind of walk. We may
refer to this walk as a walk on a rectangular mesh as we move from any spatial mesh point (i, j) to
one of its four neighbors in the rectangular directions: (i+ 1, j), (i− 1, j), (i, j + 1), or (i, j − 1).

Figure 3.21.: Random walks in 2D with 200 steps: rectangular mesh (left) and diagonal mesh (right).

3.64. Random walk in any number of space dimensions

From a programming point of view, especially when implementing a random walk in any number
of dimensions, it is more natural to consider a walk in the diagonal directions NW, NE, SW, and
SE. On a two-dimensional spatial mesh it means that we go from (i, j) to either (i + 1, j + 1),
(i− 1, j + 1), (i+ 1, j − 1), or (i− 1, j − 1). We can with such a diagonal mesh (see right plot in
Figure Figure 3.21) draw a Bernoulli variable for the step in each spatial direction and trivially
write code that works in any number of spatial directions:

import random

import matplotlib.pyplot as plt
import numpy as np

313

DRAFT

3. Diffusion Equations

random.seed(10)
np.random.seed(10)

def random_walk1D(x0, N, p, random=random):
"""1D random walk with 1 particle and N moves."""

position = np.zeros(N + 1)
position[0] = x0
current_pos = x0
for k in range(N):

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k + 1] = current_pos

return position

def random_walk1D_vec(x0, N, p):
"""Vectorized version of random_walk1D."""
position = np.zeros(N + 1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

def test_random_walk1D():
x0 = 2
N = 4
p = 0.6
np.random.seed(10)
scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walk1D_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

def demo_random_walk1D(N=50000):
np.random.seed(10)
pos = random_walk1D_vec(x0=0, N=N, p=0.5)
plt.figure()
plt.plot(pos)
plt.savefig("tmp1.pdf")
plt.savefig("tmp1.png")
plt.figure()
plt.plot(pos * pos)
plt.savefig("tmp2.pdf")

314

DRAFT

3. Diffusion Equations

plt.savefig("tmp2.png")
plt.show()

def demo_fig_random_walk1D(N=200):
"""Make ensamble of positions (to illustrate E[] operator)."""
np.random.seed(10)
num_plots = 4
for n in range(num_plots):

plt.subplot(num_plots, 1, n + 1)
pos = random_walk1D_vec(x0=0, N=N, p=0.5)
plt.plot(pos)
plt.axis([0, N, -15, 20])

plt.savefig("tmp.pdf")
plt.savefig("tmp.png")
plt.show()

def demo_random_walk1D_timing():
import time

x0 = 0
N = 10000000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos = random_walk1D(x0, N, p, random=np.random)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos = random_walk1D_vec(x0, N, p)
t2 = time.perf_counter()
cpu_vec = t2 - t1
print("CPU vectorized: %.1f" % cpu_vec)
print("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

def random_walks1D(x0, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from x0 with N steps."""
position = np.zeros(N + 1) # Accumulated positions
position[0] = x0 * num_walks
position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0

315

DRAFT

3. Diffusion Equations

current_pos = x0
for k in range(N):

if k in pos_hist_times:
pos_hist[n, num_times_counter] = current_pos
num_times_counter += 1

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k + 1] += current_pos
position2[k + 1] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

def random_walks1D_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walk = np.zeros(N + 1) # Positions of current walk
walk[0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n, :] = walk[pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

def random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1)) # Positions of each walk
walks[:, 0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)
walks[:, 1:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:, :] = walks[:, pos_hist_times]

316

DRAFT

3. Diffusion Equations

return position, position2, pos_hist, np.array(pos_hist_times)

def test_random_walks1D():
x0 = 0
N = 4
p = 0.5

num_walks = 1
np.random.seed(10)
computed = random_walks1D(x0, N, p, num_walks, random=np.random)
np.random.seed(10)
expected = random_walk1D(x0, N, p, random=np.random)
assert (computed[0] == expected).all()

np.random.seed(10)
computed = random_walks1D_vec1(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()
np.random.seed(10)
computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()

num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walks1D(x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorized1_computed = random_walks1D_vec1(x0, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed = random_walks1D_vec2(x0, N, p, num_walks, num_times)
return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]
for s, v, r in zip(serial_computed, vectorized1_computed, return_values):

msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed, vectorized2_computed, return_values):
msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

def demo_random_walks1D(N=1000, num_walks=10000, EX_minmax=None):
import time

t0 = time.perf_counter()
pos, pos2, hist, hist_times = random_walks1D_vec1(

x0=0,

317

DRAFT

3. Diffusion Equations

N=N,
p=0.5,
num_walks=num_walks,
num_times=10,

)
t1 = time.perf_counter()
print("histogram times:", hist_times)
print("random walk: %.1fs" % (t1 - t0))
E_X = pos / float(num_walks)
Var_X = pos2 / float(num_walks) - E_X**2
if N <= 50:

print(pos)

plt.figure()
plt.plot(E_X)
if EX_minmax is not None:

plt.axis([0, N, EX_minmax[0], EX_minmax[1]])
plt.title("Expected position (%d walks)" % num_walks)
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.figure()
plt.plot(Var_X)
plt.title("Variance of position (%d walks)" % num_walks)
plt.savefig("tmp2.png")
plt.savefig("tmp2.pdf")

plt.figure()
a = 0.5
exact = (

lambda x, t: 1.0 / np.sqrt(4 * np.pi * t * a) * np.exp(-(x**2) / (4.0 * t * a))
)
hist_time_index = -2
n, bins, patches = plt.hist(hist[:, hist_time_index], bins=30, normed=True)
x = np.linspace(bins[0], bins[-1], 301)
t = hist_times[hist_time_index]
plt.plot(x, exact(x, t), "r--")
plt.title("Histogram of positions (%d walks)" % num_walks)
plt.savefig("tmp3.png")
plt.savefig("tmp3.pdf")
plt.show()

def demo_fig_random_walks1D():
"""Make figures with statistics and dependence on no of walks."""
import os
import shutil

N = 1000

318

DRAFT

3. Diffusion Equations

num_walks = [100, 10000, 100000, 1000000]
for n in num_walks:

np.random.seed(10) # Use same seq. for all experiments
if n == 100:

demo_random_walks1D(N=N, num_walks=n, EX_minmax=None)
else:

demo_random_walks1D(N=N, num_walks=n, EX_minmax=[-0.1, 0.5])
d = "tmp_%d" % n
if os.path.isdir(d):

shutil.rmtree(d)
os.mkdir(d)
for p in 1, 2, 3:

os.rename("tmp%d.png" % p, os.path.join(d, "tmp%d.png" % p))
os.rename("tmp%d.pdf" % p, os.path.join(d, "tmp%d.pdf" % p))

plots = ["EX", "VarX", "HistX"]
for j, plot in enumerate(plots):

for ext in "png", "pdf":
files = [

os.path.join("tmp_%d" % n, "tmp%d.%s" % (j + 1, ext)) for n in num_walks
]
ncols = 3 if len(num_walks) == 3 else 2
output = "rw1D_%s_%s.%s" % (plot, "_".join([str(n) for n in num_walks]), ext)
cmd = "montage %s -tile %dx1 -geometry +0+0 %s" % (

" ".join(files),
ncols,
output,

)
print(cmd)
os.system(cmd)

def demo_random_walks1D_timing():
import time

x0 = 0
N = 1000
num_walks = 50000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D(

x0, N, p, num_walks, num_times=4, random=np.random
)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)

319

DRAFT

3. Diffusion Equations

pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec1(
x0, N, p, num_walks, num_times=4

)
t2 = time.perf_counter()
cpu_vec1 = t2 - t1
print("CPU vectorized1: %.1f" % cpu_vec1)
print("CPU scalar/vectorized1: %.1f" % (cpu_scalar / cpu_vec1))
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec2(

x0, N, p, num_walks, num_times=4
)
t3 = time.perf_counter()
cpu_vec2 = t3 - t2
print("CPU vectorized2: %.1f" % cpu_vec2)
print("CPU scalar/vectorized2: %.1f" % (cpu_scalar / cpu_vec2))

def random_walk2D(x0, N, p, random=random):
"""2D random walk with 1 particle and N moves: N, E, W, S."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

r = random.uniform(0, 1)
if r <= 0.25:

current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:

current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:

current_pos += np.array([0, -1]) # Move south
else:

current_pos += np.array([-1, 0]) # Move west
position[k + 1, :] = current_pos

return position

def demo_random_walk2D():
x0 = (0, 0)
N = 200
p = 0.5
np.random.seed(10)
pos = random_walk2D(x0, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 1])
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()

def random_walkdD(x0, N, p, random=random):

320

DRAFT

3. Diffusion Equations

"""Any-D (diagonal) random walk with 1 particle and N moves."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

for i in range(d):
r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position[k + 1, :] = current_pos

return position

def random_walkdD_vec(x0, N, p):
"""Vectorized version of random_walkdD."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0] = np.array(x0, dtype=float)
r = np.random.uniform(0, 1, size=N * d)
steps = np.where(r <= p, -1, 1).reshape(N, d)
position[1:, :] = x0 + np.cumsum(steps, axis=0)
return position

def demo_random_walkdD():
x0 = (0, 0)
N = 200
p = 0.5
np.random.seed(10)
pos = random_walkdD(x0, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 1])
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()

def demo_random_walkdD_timing():
import time

x0 = (0, 0)
N = 4000000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos = random_walkdD(x0, N, p, random=np.random)
t1 = time.perf_counter()

321

DRAFT

3. Diffusion Equations

cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos = random_walkdD_vec(x0, N, p)
t2 = time.perf_counter()
cpu_vec = t2 - t1
print("CPU vectorized: %.1f" % cpu_vec)
print("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

def demo_fig_random_walkdD():
x0 = (0, 0)
N = 5000
p = 0.5
n = 2 # nxn subplots
f, axarr = plt.subplots(n, n, sharex=True, sharey=True)
for i in range(n):

for j in range(n):
seed = 3 * i + 8 * j
np.random.seed(seed)
pos = random_walkdD(x0, N, p, random=np.random)
axarr[i, j].plot(pos[:, 0], pos[:, 1])

plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()

def test_ramdom_walkdD():
x0 = (0, 0)
N = 7
p = 0.5
np.random.seed(10)
scalar_computed = random_walkdD(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walkdD_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

def random_walksdD(x0, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from x0 with N steps."""
d = len(x0)
position = np.zeros((N + 1, d)) # Accumulated positions
position2 = np.zeros((N + 1, d)) # Accumulated positions**2
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = np.array(x0, dtype=float)
for k in range(N):

322

DRAFT

3. Diffusion Equations

if k in pos_hist_times:
pos_hist[n, num_times_counter, :] = current_pos
num_times_counter += 1

for i in range(d):
r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position[k + 1, :] += current_pos
position2[k + 1, :] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

def random_walksdD_vec(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
d = len(x0)
position = np.zeros((N + 1, d)) # Accumulated positions
position2 = np.zeros((N + 1, d)) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1, d)) # Positions of each walk
walks[:, 0, :] = x0
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks * d)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N, d)
walks[:, 1:, :] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:, :, :] = walks[:, pos_hist_times, :]
return position, position2, pos_hist, np.array(pos_hist_times)

def test_random_walksdD():
x0 = (0, 0)
N = 4
p = 0.5

num_walks = 1
np.random.seed(10)
computed = random_walksdD(x0, N, p, num_walks, random=np.random)
np.random.seed(10)
expected = random_walkdD(x0, N, p, random=np.random)
assert (computed[0] == expected).all()

np.random.seed(10)
computed = random_walksdD_vec(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walkdD_vec(x0, N, p)

323

DRAFT

3. Diffusion Equations

assert (computed[0] == expected).all()

num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walksdD(x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorized_computed = random_walksdD_vec(x0, N, p, num_walks, num_times)
return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]
for s, v, r in zip(serial_computed, vectorized_computed, return_values):

msg = "%s: %s\n%s (serial)\nvs\n%s\n%s (vectorized)" % (r, s.shape, s, v.shape, v)
assert (s == v).all(), msg

def demo_random_walksdD():
x0 = (0, 0)
N = 1000
num_walks = 1000
p = 0.5
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walksdD(

x0, N, p, num_walks, num_times=4, random=np.random
)
print(pos_hist_times)
plt.figure()
plt.plot(pos[:, 0], pos[:, 1])
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walksdD_vec(

x0, N, p, num_walks, num_times=4
)
plt.figure()
plt.plot(pos[:, 0], pos[:, 1])

plt.show()

def demo_random_walksdD_timing():
import time

x0 = (0, 0, 0)
N = 1000
num_walks = 10000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walksdD(

x0, N, p, num_walks, num_times=4, random=np.random
)

324

DRAFT

3. Diffusion Equations

t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walksdD_vec(

x0, N, p, num_walks, num_times=4
)
t2 = time.perf_counter()
cpu_vec = t2 - t1
print("CPU vectorized: %.1f" % cpu_vec)
print("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

def random_walks1D2(x0, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from x0 with N steps."""
position = np.zeros(N + 1) # Accumulated positions
position[0] = x0 * num_walks
position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

current_pos = x0 + np.zeros(num_walks)
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:

num_times_counter += 1
store_hist = True # Store histogram data for this k

else:
store_hist = False

for n in range(num_walks):
r = random.uniform(0, 1)
if r <= p:

current_pos[n] -= 1
else:

current_pos[n] += 1
position[k + 1] += current_pos[n]
position2[k + 1] += current_pos[n] ** 2
if store_hist:

pos_hist[n, num_times_counter] = current_pos[n]
return position, position2, pos_hist, np.array(pos_hist_times)

def random_walks1D2_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D2."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2

325

DRAFT

3. Diffusion Equations

pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

current_pos = np.zeros(num_walks)
current_pos[0] = x0
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:

num_times_counter += 1
store_hist = True # Store histogram data for this k

else:
store_hist = False

r = np.random.uniform(0, 1, size=num_walks)
steps = np.where(r <= p, -1, 1)
current_pos += steps
position[k + 1] = np.sum(current_pos)
position2[k + 1] = np.sum(current_pos**2)
if store_hist:

pos_hist[:, num_times_counter] = current_pos
return position, position2, pos_hist, np.array(pos_hist_times)

def test_random_walks1D2():
x0 = 0
N = 4
p = 0.5
num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walks1D2(x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorized_computed = random_walks1D2_vec1(x0, N, p, num_walks, num_times)
return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]
for s, v, r in zip(serial_computed, vectorized_computed, return_values):

msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

def demo_random_walks1D2_timing():
"""Timing of random 1D walks with reversed loops."""
import time

x0 = 0
N = 1000
num_walks = 50000
p = 0.5

326

DRAFT

3. Diffusion Equations

t0 = time.perf_counter()
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D2(

x0, N, p, num_walks, num_times=4, random=np.random
)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D2_vec1(

x0, N, p, num_walks, num_times=4
)
t2 = time.perf_counter()
cpu_vec1 = t2 - t1
print("CPU vectorized1: %.1f" % cpu_vec1)
print("CPU scalar/vectorized1: %.1f" % (cpu_scalar / cpu_vec1))
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec2(

x0, N, p, num_walks, num_times=4
)
t3 = time.perf_counter()
cpu_vec2 = t3 - t2
print("CPU vectorized2: %.1f" % cpu_vec2)
print("CPU scalar/vectorized2: %.1f" % (cpu_scalar / cpu_vec2))

if __name__ == "__main__":
demo_random_walks1D2_timing()
print("----")
demo_random_walks1D_timing()

A vectorized version is desired. We follow the ideas from Section Section 3.57.1, but each step is now
a vector in d spatial dimensions. We therefore need to draw And random numbers in r, compute
steps in the various directions through np.where(r <=p, -1, 1) (each step being −1 or 1), and
then we can reshape this array to an N × d array of step vectors. Doing an np.cumsum summation
along axis 0 will add the vectors, as this demo shows:

>>> a = np.arrange(6).reshape(3,2)
>>> a
array([[0, 1],

[2, 3],
[4, 5]])

>>> np.cumsum(a, axis=0)
array([[0, 1],

[2, 4],
[6, 9]])

With such summation of step vectors, we get all the positions to be filled in the position array:

327

DRAFT

3. Diffusion Equations

import random

import matplotlib.pyplot as plt
import numpy as np

random.seed(10)
np.random.seed(10)

def random_walk1D(x0, N, p, random=random):
"""1D random walk with 1 particle and N moves."""

position = np.zeros(N + 1)
position[0] = x0
current_pos = x0
for k in range(N):

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k + 1] = current_pos

return position

def random_walk1D_vec(x0, N, p):
"""Vectorized version of random_walk1D."""
position = np.zeros(N + 1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

def test_random_walk1D():
x0 = 2
N = 4
p = 0.6
np.random.seed(10)
scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walk1D_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

def demo_random_walk1D(N=50000):
np.random.seed(10)
pos = random_walk1D_vec(x0=0, N=N, p=0.5)
plt.figure()
plt.plot(pos)

328

DRAFT

3. Diffusion Equations

plt.savefig("tmp1.pdf")
plt.savefig("tmp1.png")
plt.figure()
plt.plot(pos * pos)
plt.savefig("tmp2.pdf")
plt.savefig("tmp2.png")
plt.show()

def demo_fig_random_walk1D(N=200):
"""Make ensamble of positions (to illustrate E[] operator)."""
np.random.seed(10)
num_plots = 4
for n in range(num_plots):

plt.subplot(num_plots, 1, n + 1)
pos = random_walk1D_vec(x0=0, N=N, p=0.5)
plt.plot(pos)
plt.axis([0, N, -15, 20])

plt.savefig("tmp.pdf")
plt.savefig("tmp.png")
plt.show()

def demo_random_walk1D_timing():
import time

x0 = 0
N = 10000000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos = random_walk1D(x0, N, p, random=np.random)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos = random_walk1D_vec(x0, N, p)
t2 = time.perf_counter()
cpu_vec = t2 - t1
print("CPU vectorized: %.1f" % cpu_vec)
print("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

def random_walks1D(x0, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from x0 with N steps."""
position = np.zeros(N + 1) # Accumulated positions
position[0] = x0 * num_walks
position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks

329

DRAFT

3. Diffusion Equations

pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = x0
for k in range(N):

if k in pos_hist_times:
pos_hist[n, num_times_counter] = current_pos
num_times_counter += 1

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k + 1] += current_pos
position2[k + 1] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

def random_walks1D_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walk = np.zeros(N + 1) # Positions of current walk
walk[0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n, :] = walk[pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

def random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1)) # Positions of each walk
walks[:, 0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks)

330

DRAFT

3. Diffusion Equations

steps = np.where(r <= p, -1, 1).reshape(num_walks, N)
walks[:, 1:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:, :] = walks[:, pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

def test_random_walks1D():
x0 = 0
N = 4
p = 0.5

num_walks = 1
np.random.seed(10)
computed = random_walks1D(x0, N, p, num_walks, random=np.random)
np.random.seed(10)
expected = random_walk1D(x0, N, p, random=np.random)
assert (computed[0] == expected).all()

np.random.seed(10)
computed = random_walks1D_vec1(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()
np.random.seed(10)
computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()

num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walks1D(x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorized1_computed = random_walks1D_vec1(x0, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed = random_walks1D_vec2(x0, N, p, num_walks, num_times)
return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]
for s, v, r in zip(serial_computed, vectorized1_computed, return_values):

msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed, vectorized2_computed, return_values):
msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

def demo_random_walks1D(N=1000, num_walks=10000, EX_minmax=None):

331

DRAFT

3. Diffusion Equations

import time

t0 = time.perf_counter()
pos, pos2, hist, hist_times = random_walks1D_vec1(

x0=0,
N=N,
p=0.5,
num_walks=num_walks,
num_times=10,

)
t1 = time.perf_counter()
print("histogram times:", hist_times)
print("random walk: %.1fs" % (t1 - t0))
E_X = pos / float(num_walks)
Var_X = pos2 / float(num_walks) - E_X**2
if N <= 50:

print(pos)

plt.figure()
plt.plot(E_X)
if EX_minmax is not None:

plt.axis([0, N, EX_minmax[0], EX_minmax[1]])
plt.title("Expected position (%d walks)" % num_walks)
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.figure()
plt.plot(Var_X)
plt.title("Variance of position (%d walks)" % num_walks)
plt.savefig("tmp2.png")
plt.savefig("tmp2.pdf")

plt.figure()
a = 0.5
exact = (

lambda x, t: 1.0 / np.sqrt(4 * np.pi * t * a) * np.exp(-(x**2) / (4.0 * t * a))
)
hist_time_index = -2
n, bins, patches = plt.hist(hist[:, hist_time_index], bins=30, normed=True)
x = np.linspace(bins[0], bins[-1], 301)
t = hist_times[hist_time_index]
plt.plot(x, exact(x, t), "r--")
plt.title("Histogram of positions (%d walks)" % num_walks)
plt.savefig("tmp3.png")
plt.savefig("tmp3.pdf")
plt.show()

def demo_fig_random_walks1D():

332

DRAFT

3. Diffusion Equations

"""Make figures with statistics and dependence on no of walks."""
import os
import shutil

N = 1000
num_walks = [100, 10000, 100000, 1000000]
for n in num_walks:

np.random.seed(10) # Use same seq. for all experiments
if n == 100:

demo_random_walks1D(N=N, num_walks=n, EX_minmax=None)
else:

demo_random_walks1D(N=N, num_walks=n, EX_minmax=[-0.1, 0.5])
d = "tmp_%d" % n
if os.path.isdir(d):

shutil.rmtree(d)
os.mkdir(d)
for p in 1, 2, 3:

os.rename("tmp%d.png" % p, os.path.join(d, "tmp%d.png" % p))
os.rename("tmp%d.pdf" % p, os.path.join(d, "tmp%d.pdf" % p))

plots = ["EX", "VarX", "HistX"]
for j, plot in enumerate(plots):

for ext in "png", "pdf":
files = [

os.path.join("tmp_%d" % n, "tmp%d.%s" % (j + 1, ext)) for n in num_walks
]
ncols = 3 if len(num_walks) == 3 else 2
output = "rw1D_%s_%s.%s" % (plot, "_".join([str(n) for n in num_walks]), ext)
cmd = "montage %s -tile %dx1 -geometry +0+0 %s" % (

" ".join(files),
ncols,
output,

)
print(cmd)
os.system(cmd)

def demo_random_walks1D_timing():
import time

x0 = 0
N = 1000
num_walks = 50000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D(

x0, N, p, num_walks, num_times=4, random=np.random

333

DRAFT

3. Diffusion Equations

)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec1(

x0, N, p, num_walks, num_times=4
)
t2 = time.perf_counter()
cpu_vec1 = t2 - t1
print("CPU vectorized1: %.1f" % cpu_vec1)
print("CPU scalar/vectorized1: %.1f" % (cpu_scalar / cpu_vec1))
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec2(

x0, N, p, num_walks, num_times=4
)
t3 = time.perf_counter()
cpu_vec2 = t3 - t2
print("CPU vectorized2: %.1f" % cpu_vec2)
print("CPU scalar/vectorized2: %.1f" % (cpu_scalar / cpu_vec2))

def random_walk2D(x0, N, p, random=random):
"""2D random walk with 1 particle and N moves: N, E, W, S."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

r = random.uniform(0, 1)
if r <= 0.25:

current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:

current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:

current_pos += np.array([0, -1]) # Move south
else:

current_pos += np.array([-1, 0]) # Move west
position[k + 1, :] = current_pos

return position

def demo_random_walk2D():
x0 = (0, 0)
N = 200
p = 0.5
np.random.seed(10)
pos = random_walk2D(x0, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 1])

334

DRAFT

3. Diffusion Equations

plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()

def random_walkdD(x0, N, p, random=random):
"""Any-D (diagonal) random walk with 1 particle and N moves."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

for i in range(d):
r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position[k + 1, :] = current_pos

return position

def random_walkdD_vec(x0, N, p):
"""Vectorized version of random_walkdD."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0] = np.array(x0, dtype=float)
r = np.random.uniform(0, 1, size=N * d)
steps = np.where(r <= p, -1, 1).reshape(N, d)
position[1:, :] = x0 + np.cumsum(steps, axis=0)
return position

3.65. Multiple random walks in any number of space dimensions

As we did in 1D, we extend one single walk to a number of walks (num_walks in the code).

3.65.1. Scalar code

As always, we start with implementing the scalar case:

import random

import matplotlib.pyplot as plt
import numpy as np

random.seed(10)

335

DRAFT

3. Diffusion Equations

Figure 3.22.: Four random walks with 5000 steps in 2D.

336

DRAFT

3. Diffusion Equations

np.random.seed(10)

def random_walk1D(x0, N, p, random=random):
"""1D random walk with 1 particle and N moves."""

position = np.zeros(N + 1)
position[0] = x0
current_pos = x0
for k in range(N):

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k + 1] = current_pos

return position

def random_walk1D_vec(x0, N, p):
"""Vectorized version of random_walk1D."""
position = np.zeros(N + 1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

def test_random_walk1D():
x0 = 2
N = 4
p = 0.6
np.random.seed(10)
scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walk1D_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

def demo_random_walk1D(N=50000):
np.random.seed(10)
pos = random_walk1D_vec(x0=0, N=N, p=0.5)
plt.figure()
plt.plot(pos)
plt.savefig("tmp1.pdf")
plt.savefig("tmp1.png")
plt.figure()
plt.plot(pos * pos)
plt.savefig("tmp2.pdf")
plt.savefig("tmp2.png")

337

DRAFT

3. Diffusion Equations

plt.show()

def demo_fig_random_walk1D(N=200):
"""Make ensamble of positions (to illustrate E[] operator)."""
np.random.seed(10)
num_plots = 4
for n in range(num_plots):

plt.subplot(num_plots, 1, n + 1)
pos = random_walk1D_vec(x0=0, N=N, p=0.5)
plt.plot(pos)
plt.axis([0, N, -15, 20])

plt.savefig("tmp.pdf")
plt.savefig("tmp.png")
plt.show()

def demo_random_walk1D_timing():
import time

x0 = 0
N = 10000000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos = random_walk1D(x0, N, p, random=np.random)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos = random_walk1D_vec(x0, N, p)
t2 = time.perf_counter()
cpu_vec = t2 - t1
print("CPU vectorized: %.1f" % cpu_vec)
print("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

def random_walks1D(x0, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from x0 with N steps."""
position = np.zeros(N + 1) # Accumulated positions
position[0] = x0 * num_walks
position2 = np.zeros(N + 1) # Accumulated positions**2
position2[0] = x0**2 * num_walks
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = x0

338

DRAFT

3. Diffusion Equations

for k in range(N):
if k in pos_hist_times:

pos_hist[n, num_times_counter] = current_pos
num_times_counter += 1

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k + 1] += current_pos
position2[k + 1] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

def random_walks1D_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walk = np.zeros(N + 1) # Positions of current walk
walk[0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n, :] = walk[pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

def random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
position = np.zeros(N + 1) # Accumulated positions
position2 = np.zeros(N + 1) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1)) # Positions of each walk
walks[:, 0] = x0
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)
walks[:, 1:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:, :] = walks[:, pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

339

DRAFT

3. Diffusion Equations

def test_random_walks1D():
x0 = 0
N = 4
p = 0.5

num_walks = 1
np.random.seed(10)
computed = random_walks1D(x0, N, p, num_walks, random=np.random)
np.random.seed(10)
expected = random_walk1D(x0, N, p, random=np.random)
assert (computed[0] == expected).all()

np.random.seed(10)
computed = random_walks1D_vec1(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()
np.random.seed(10)
computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()

num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walks1D(x0, N, p, num_walks, num_times, random=np.random)
np.random.seed(10)
vectorized1_computed = random_walks1D_vec1(x0, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed = random_walks1D_vec2(x0, N, p, num_walks, num_times)
return_values = ["pos", "pos2", "pos_hist", "pos_hist_times"]
for s, v, r in zip(serial_computed, vectorized1_computed, return_values):

msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed, vectorized2_computed, return_values):
msg = "%s: %s (serial) vs %s (vectorized)" % (r, s, v)
assert (s == v).all(), msg

def demo_random_walks1D(N=1000, num_walks=10000, EX_minmax=None):
import time

t0 = time.perf_counter()
pos, pos2, hist, hist_times = random_walks1D_vec1(

x0=0,
N=N,
p=0.5,

340

DRAFT

3. Diffusion Equations

num_walks=num_walks,
num_times=10,

)
t1 = time.perf_counter()
print("histogram times:", hist_times)
print("random walk: %.1fs" % (t1 - t0))
E_X = pos / float(num_walks)
Var_X = pos2 / float(num_walks) - E_X**2
if N <= 50:

print(pos)

plt.figure()
plt.plot(E_X)
if EX_minmax is not None:

plt.axis([0, N, EX_minmax[0], EX_minmax[1]])
plt.title("Expected position (%d walks)" % num_walks)
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.figure()
plt.plot(Var_X)
plt.title("Variance of position (%d walks)" % num_walks)
plt.savefig("tmp2.png")
plt.savefig("tmp2.pdf")

plt.figure()
a = 0.5
exact = (

lambda x, t: 1.0 / np.sqrt(4 * np.pi * t * a) * np.exp(-(x**2) / (4.0 * t * a))
)
hist_time_index = -2
n, bins, patches = plt.hist(hist[:, hist_time_index], bins=30, normed=True)
x = np.linspace(bins[0], bins[-1], 301)
t = hist_times[hist_time_index]
plt.plot(x, exact(x, t), "r--")
plt.title("Histogram of positions (%d walks)" % num_walks)
plt.savefig("tmp3.png")
plt.savefig("tmp3.pdf")
plt.show()

def demo_fig_random_walks1D():
"""Make figures with statistics and dependence on no of walks."""
import os
import shutil

N = 1000
num_walks = [100, 10000, 100000, 1000000]
for n in num_walks:

341

DRAFT

3. Diffusion Equations

np.random.seed(10) # Use same seq. for all experiments
if n == 100:

demo_random_walks1D(N=N, num_walks=n, EX_minmax=None)
else:

demo_random_walks1D(N=N, num_walks=n, EX_minmax=[-0.1, 0.5])
d = "tmp_%d" % n
if os.path.isdir(d):

shutil.rmtree(d)
os.mkdir(d)
for p in 1, 2, 3:

os.rename("tmp%d.png" % p, os.path.join(d, "tmp%d.png" % p))
os.rename("tmp%d.pdf" % p, os.path.join(d, "tmp%d.pdf" % p))

plots = ["EX", "VarX", "HistX"]
for j, plot in enumerate(plots):

for ext in "png", "pdf":
files = [

os.path.join("tmp_%d" % n, "tmp%d.%s" % (j + 1, ext)) for n in num_walks
]
ncols = 3 if len(num_walks) == 3 else 2
output = "rw1D_%s_%s.%s" % (plot, "_".join([str(n) for n in num_walks]), ext)
cmd = "montage %s -tile %dx1 -geometry +0+0 %s" % (

" ".join(files),
ncols,
output,

)
print(cmd)
os.system(cmd)

def demo_random_walks1D_timing():
import time

x0 = 0
N = 1000
num_walks = 50000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D(

x0, N, p, num_walks, num_times=4, random=np.random
)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec1(

x0, N, p, num_walks, num_times=4

342

DRAFT

3. Diffusion Equations

)
t2 = time.perf_counter()
cpu_vec1 = t2 - t1
print("CPU vectorized1: %.1f" % cpu_vec1)
print("CPU scalar/vectorized1: %.1f" % (cpu_scalar / cpu_vec1))
np.random.seed(10)
pos, pos2, pos_hist, pos_hist_times = random_walks1D_vec2(

x0, N, p, num_walks, num_times=4
)
t3 = time.perf_counter()
cpu_vec2 = t3 - t2
print("CPU vectorized2: %.1f" % cpu_vec2)
print("CPU scalar/vectorized2: %.1f" % (cpu_scalar / cpu_vec2))

def random_walk2D(x0, N, p, random=random):
"""2D random walk with 1 particle and N moves: N, E, W, S."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

r = random.uniform(0, 1)
if r <= 0.25:

current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:

current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:

current_pos += np.array([0, -1]) # Move south
else:

current_pos += np.array([-1, 0]) # Move west
position[k + 1, :] = current_pos

return position

def demo_random_walk2D():
x0 = (0, 0)
N = 200
p = 0.5
np.random.seed(10)
pos = random_walk2D(x0, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 1])
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()

def random_walkdD(x0, N, p, random=random):
"""Any-D (diagonal) random walk with 1 particle and N moves."""
d = len(x0)

343

DRAFT

3. Diffusion Equations

position = np.zeros((N + 1, d))
position[0, :] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

for i in range(d):
r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position[k + 1, :] = current_pos

return position

def random_walkdD_vec(x0, N, p):
"""Vectorized version of random_walkdD."""
d = len(x0)
position = np.zeros((N + 1, d))
position[0] = np.array(x0, dtype=float)
r = np.random.uniform(0, 1, size=N * d)
steps = np.where(r <= p, -1, 1).reshape(N, d)
position[1:, :] = x0 + np.cumsum(steps, axis=0)
return position

def demo_random_walkdD():
x0 = (0, 0)
N = 200
p = 0.5
np.random.seed(10)
pos = random_walkdD(x0, N, p, random=np.random)
plt.plot(pos[:, 0], pos[:, 1])
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()

def demo_random_walkdD_timing():
import time

x0 = (0, 0)
N = 4000000
p = 0.5

t0 = time.perf_counter()
np.random.seed(10)
pos = random_walkdD(x0, N, p, random=np.random)
t1 = time.perf_counter()
cpu_scalar = t1 - t0
print("CPU scalar: %.1f" % cpu_scalar)

344

DRAFT

3. Diffusion Equations

np.random.seed(10)
pos = random_walkdD_vec(x0, N, p)
t2 = time.perf_counter()
cpu_vec = t2 - t1
print("CPU vectorized: %.1f" % cpu_vec)
print("CPU scalar/vectorized: %.1f" % (cpu_scalar / cpu_vec))

def demo_fig_random_walkdD():
x0 = (0, 0)
N = 5000
p = 0.5
n = 2 # nxn subplots
f, axarr = plt.subplots(n, n, sharex=True, sharey=True)
for i in range(n):

for j in range(n):
seed = 3 * i + 8 * j
np.random.seed(seed)
pos = random_walkdD(x0, N, p, random=np.random)
axarr[i, j].plot(pos[:, 0], pos[:, 1])

plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()

def test_ramdom_walkdD():
x0 = (0, 0)
N = 7
p = 0.5
np.random.seed(10)
scalar_computed = random_walkdD(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walkdD_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

def random_walksdD(x0, N, p, num_walks=1, num_times=1, random=random):
"""Simulate num_walks random walks from x0 with N steps."""
d = len(x0)
position = np.zeros((N + 1, d)) # Accumulated positions
position2 = np.zeros((N + 1, d)) # Accumulated positions**2
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = np.array(x0, dtype=float)
for k in range(N):

if k in pos_hist_times:
pos_hist[n, num_times_counter, :] = current_pos

345

DRAFT

3. Diffusion Equations

num_times_counter += 1
for i in range(d):

r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position[k + 1, :] += current_pos
position2[k + 1, :] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

3.65.2. Vectorized code

Significant speed-ups can be obtained by vectorization. We get rid of the loops in the previous
function and arrive at the following vectorized code.

def random_walksdD_vec(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
d = len(x0)
position = np.zeros((N + 1, d)) # Accumulated positions
position2 = np.zeros((N + 1, d)) # Accumulated positions**2
walks = np.zeros((num_walks, N + 1, d)) # Positions of each walk
walks[:, 0, :] = x0
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N // num_times) * i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N * num_walks * d)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N, d)
walks[:, 1:, :] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:, :, :] = walks[:, pos_hist_times, :]
return position, position2, pos_hist, np.array(pos_hist_times)

3.66. Applications

3.66.1. Diffusion of a substance

The first process to be considered is a substance that gets transported through a fluid at rest by
pure diffusion. We consider an arbitrary volume V of this fluid, containing the substance with
concentration function c(x, t). Physically, we can think of a very small volume with centroid x at
time t and assign the ratio of the volume of the substance and the total volume to c(x, t). This
means that the mass of the substance in a small volume ∆V is approximately ϱc∆V , where ϱ is the
density of the substance. Consequently, the total mass of the substance inside the volume V is the
sum of all ϱc∆V , which becomes the volume integral

∫
V ϱcdV .

346

DRAFT

3. Diffusion Equations

Let us reason how the mass of the substance changes and thereby derive a PDE governing the
concentration c. Suppose the substance flows out of V with a flux q. If ∆S is a small part of the
boundary ∂V of V , the volume of the substance flowing out through dS in a small time interval ∆t
is ϱq ·n∆t∆S, where n is an outward unit normal to the boundary ∂V , see Figure Figure 3.23. We
realize that only the normal component of q is able to transport mass in and out of V . The total
outflow of the mass of the substance in a small time interval ∆t becomes the surface integral∫

∂V

ϱq · n∆t dS .

Assuming conservation of mass, this outflow of mass must be balanced by a loss of mass inside the
volume. The increase of mass inside the volume, during a small time interval ∆t, is∫

V

ϱ(c(x, t+ ∆t)− c(x, t))dV,

assuming ϱ is constant, which is reasonable. The outflow of mass balances the loss of mass in V ,
which is the increase with a minus sign. Setting the two contributions equal to each other ensures
balance of mass inside V . Dividing by ∆t gives∫

V

ϱ
c(x, t+ ∆t)− c(x, t)

∆t dV = −
∫

∂V

ϱq · n dS .

Note the minus sign on the right-hand side: the left-hand side expresses loss of mass, while the
integral on the right-hand side is the gain of mass.

Now, letting ∆t→ 0, we have
c(x, t+ ∆t)− c(x, t)

∆t → ∂c

∂t
,

so ∫
V

ϱ
∂c

∂t
dV +

∫
∂V

ϱq · n dS = 0 . (3.94)

To arrive at a PDE, we express the surface integral as a volume integral using Gauss’ divergence
theorem: ∫

V

(ϱ∂c
∂t

+∇ · (ϱq))dV = 0 .

Since ϱ is constant, we can divide by this quantity. If the integral is to vanish for an arbitrary volume
V , the integrand must vanish too, and we get the mass conservation PDE for the substance:

∂c

∂t
+∇ · q = 0 . (3.95)

A fundamental problem is that this is a scalar PDE for four unknowns: c and the three components
of q. We therefore need additional equations. Here, Fick’s law comes at rescue: it models how the
flux q of the substance is related to the concentration c. Diffusion is recognized by mass flowing
from regions with high concentration to regions of low concentration. This principle suggests that q
is proportional to the negative gradient of c:

q = −α∇c, (3.96)
where α is an empirically determined constant. The relation (3.96) is known as Fick’s law. Inserting
(3.96) in (3.95) gives a scalar PDE for the concentration c:

∂c

∂t
= α∇2c . (3.97)

347

DRAFT

3. Diffusion Equations

Figure 3.23.: An arbitrary volume of a fluid.

3.66.2. Heat conduction

Heat conduction is a well-known diffusion process. The governing PDE is in this case based on the
first law of thermodynamics: the increase in energy of a system is equal to the work done on the
system, plus the supplied heat. Here, we shall consider media at rest and neglect work done on the
system. The principle then reduces to a balance between increase in internal energy and supplied
heat flow by conduction.

Let e(x, t) be the internal energy per unit mass. The increase of the internal energy in a small
volume ∆V in a small time interval ∆t is then

ϱ(e(x, t+ ∆t)− e(x, t))∆V,

where ϱ is the density of the material subject to heat conduction. In an arbitrary volume V , as
depicted in Figure Figure 3.23, the corresponding increase in internal energy becomes the volume
integral ∫

V

ϱ(e(x, t+ ∆t)− e(x, t))dV .

This increase in internal energy is balanced by heat supplied by conduction. Let q be the heat flow
per time unit. Through the surface ∂V of V the following amount of heat flows out of V during a
time interval ∆t: ∫

∂V

q · n∆t dS .

The simplified version of the first law of thermodynamics then states that∫
V

ϱ(e(x, t+ ∆t)− e(x, t))dV = −
∫

∂V

q · n∆t dS .

348

DRAFT

3. Diffusion Equations

The minus sign on the right-hand side ensures that the integral there models net inflow of heat
(since n is an outward unit normal, q · n models outflow). Dividing by ∆t and notifying that

lim
∆t→0

e(x, t+ ∆t)− e(x, t)
∆t = ∂e

∂t
,

we get (in the limit ∆t→ 0) ∫
V

ϱ
∂e

∂t
dV +

∫
∂V

q · n∆t dS = 0 .

This is the integral equation for heat conduction, but we aim at a PDE. The next step is therefore to
transform the surface integral to a volume integral via Gauss’ divergence theorem. The result is∫

V

(
ϱ
∂e

∂t
+∇ · q

)
dV = 0 .

If this equality is to hold for all volumes V , the integrand must vanish, and we have the PDE

ϱ
∂e

∂t
= −∇ · q . (3.98)

Sometimes the supplied heat can come from the medium itself. This is the case, for instance, when
radioactive rock generates heat. Let us add this effect. If f(x, t) is the supplied heat per unit volume
per unit time, the heat supplied in a small volume is f∆t∆V , and inside an arbitrary volume V the
supplied generated heat becomes ∫

V

f∆tdV .

Adding this to the integral statement of the (simplified) first law of thermodynamics, and continuing
the derivation, leads to the PDE

ϱ
∂e

∂t
= −∇ · q + f . (3.99)

There are four unknown scalar fields: e and q. Moreover, the temperature T , which is our primary
quantity to compute, does not enter the model yet. We need an additional equation, called the
equation of state, relating e, V = 1/ϱ =, and T : e = e(V, T). By the chain rule we have

∂e

∂t
= ∂e

∂T

∣∣∣∣
V

∂T

∂t
+ ∂e

∂V

∣∣∣∣
T

∂V

∂t
.

The first coefficient ∂e/∂T is called specific heat capacity at constant volume, denoted by cv:

cv = ∂e

∂T

∣∣∣∣
V
.

The specific heat capacity will in general vary with T , but taking it as a constant is a good
approximation in many applications.

The term ∂e/∂V models effects due to compressibility and volume expansion. These effects are
often small and can be neglected. We shall do so here. Using ∂e/∂t = cv∂T/∂t in the PDE gives

ϱcv
∂T

∂t
= −∇ · q + f .

349

DRAFT

3. Diffusion Equations

We still have four unknown scalar fields (T and q). To close the system, we need a relation between
the heat flux q and the temperature T called Fourier’s law:

q = −k∇T,

which simply states that heat flows from hot to cold areas, along the path of greatest variation. In
a solid medium, k depends on the material of the medium, and in multi-material media one must
regard k as spatially dependent. In a fluid, it is common to assume that k is constant. The value of
k reflects how easy heat is conducted through the medium, and k is named the coefficient of heat
conduction.

We now have one scalar PDE for the unknown temperature field T (x, t):

ϱcv
∂T

∂t
= ∇ · (k∇T) + f . (3.100)

3.66.3. Porous media flow

The requirement of mass balance for flow of a single, incompressible fluid through a deformable
(elastic) porous medium leads to the equation

S
∂p

∂t
+∇ · (q − α∂u

∂t
) = 0,

where p is the fluid pressure, q is the fluid velocity, u is the displacement (deformation) of the
medium, S is the storage coefficient of the medium (related to the compressibility of the fluid and
the material in the medium), and α is another coefficient. In many circumstances, the last term
with u can be neglected, an assumption that decouples the equation above from a model for the
deformation of the medium. The famous Darcy’s law relates q to p:

q = −K
µ

(∇p− ϱg),

where K is the permeability of the medium, µ is the dynamic viscosity of the fluid, ϱ is the density of
the fluid, and g is the acceleration of gravity, here taken as g = −gk. Combining the two equations
results in the diffusion model

S
∂p

∂t
= µ−1∇(K∇p) + ϱg

µ

∂K

∂z
. (3.101)

Boundary conditions consist of specifying p or q · n (i.e., normal velocity) at each point of the
boundary.

3.66.4. Potential fluid flow

Let v be the velocity of a fluid. The condition ∇× v = 0 is relevant for many flows, especially in
geophysics when viscous effects are negligible. From vector calculus it is known that ∇× v = 0
implies that v can be derived from a scalar potential field ϕ: v = ∇ϕ. If the fluid is incompressible,
∇ · v = 0, it follows that ∇ · ∇ϕ = 0, or

∇2ϕ = 0 .

350

DRAFT

3. Diffusion Equations

This Laplace equation is sufficient for determining ϕ and thereby describe the fluid motion. This
type of flow is known as potential flow. One very important application where potential flow is a
good model is water waves. As boundary condition we must prescribe v · n = ∂ϕ/∂n. This gives
rise to what is known as a pure Neumann problem and will cause numerical difficulties because ϕ
and ϕ plus any constant are two solutions of the problem. The simplest remedy is to fix the value
of ϕ at a point.

3.66.5. Streamlines for 2D fluid flow

The streamlines in a two-dimensional stationary fluid flow are lines tangential to the flow. The
stream function ψ is often introduced in two-dimensional flow such that its contour lines, ψ = const,
gives the streamlines. The relation between ψ and the velocity field v = (u, v) is

u = ∂ψ

∂y
, v = −∂ψ

∂x
.

It follows that ∇v = ψyx − ψxy = 0, so the stream function can only be used for incompressible
flows. Since

∇× v =
(
∂v

∂y
− ∂u

∂x

)
k ≡ ωk,

we can derive the relation
∇2ψ = −ω,

which is a governing equation for the stream function ψ(x, y) if the vorticity ω is known.

3.66.6. The potential of an electric field

Under the assumption of time independence, Maxwell’s equations for the electric field E become

∇ ·E = ρ

ϵ0
,

∇×E = 0,

where ρ is the electric charge density and ϵ0 is the electric permittivity of free space (i.e., vacuum).
Since ∇×E = 0, E can be derived from a potential φ, E = −∇φ. The electric field potential is
therefore governed by the Poisson equation

∇2φ = − ρ
ϵ0
.

If the medium is heterogeneous, ρ will depend on the spatial location r. Also, ϵ0 must be exchanged
with an electric permittivity function ϵ(r).

Each point of the boundary must be accompanied by, either a Dirichlet condition φ(r) = φD(r), or
a Neumann condition ∂φ(r)

∂n = φN (r).

[sl: is this what you were thinking of?]

351

https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/Stream_function

DRAFT

3. Diffusion Equations

3.66.7. Development of flow between two flat plates

Diffusion equations may also arise as simplified versions of other mathematical models, especially in
fluid flow. Consider a fluid flowing between two flat, parallel plates. The velocity is uni-directional,
say along the z axis, and depends only on the distance x from the plates; u = u(x, t)k. The flow is
governed by the Navier-Stokes equations,

ϱ
∂u

∂t
+ ϱu · ∇u = −∇p+ µ∇2u + ϱf ,

∇ · u = 0,

where p is the pressure field, unknown along with the velocity u, ϱ is the fluid density, µ the dynamic
viscosity, and f is some external body force. The geometric restrictions of flow between two flat
plates puts restrictions on the velocity, u = u(x, t)i, and the z component of the Navier-Stokes
equations collapses to a diffusion equation:

ϱ
∂u

∂t
= −∂p

∂z
+ µ

∂2u

∂z2 + ϱfz,

if fz is the component of f in the z direction.

The boundary conditions are derived from the fact that the fluid sticks to the plates, which means
u = 0 at the plates. Say the location of the plates are z = 0 and z = L. We then have

u(0, t) = u(L, t) = 0 .

One can easily show that ∂p/∂z must be a constant or just a function of time t. We set ∂p/∂z = −β(t).
The body force could be a component of gravity, if desired, set as fz = γg. Switching from z to x
as independent variable gives a very standard one-dimensional diffusion equation:

ϱ
∂u

∂t
= µ

∂2u

∂x2 + β(t) + ϱγg, x ∈ [0, L], t ∈ (0, T] .

The boundary conditions are
u(0, t) = u(L, t) = 0,

while some initial condition
u(x, 0) = I(x)

must also be prescribed.

The flow is driven by either the pressure gradient β or gravity, or a combination of both. One may
also consider one moving plate that drives the fluid. If the plate at x = L moves with velocity UL(t),
we have the adjusted boundary condition

u(L, t) = UL(t) .

Flow in a straight tube {#sec-diffu-app-pipeflow}

Now we consider viscous fluid flow in a straight tube with radius R and rigid walls. The governing
equations are the Navier-Stokes equations, but as in Section Section 3.66.7, it is natural to assume
that the velocity is directed along the tube, and that it is axi-symmetric. These assumptions reduced

352

DRAFT

3. Diffusion Equations

the velocity field to u = u(r, x, t)i, if the x axis is directed along the tube. From the equation
of continuity, ∇ · u = 0, we see that u must be independent of x. Inserting u = u(r, t)i in the
Navier-Stokes equations, expressed in axi-symmetric cylindrical coordinates, results in

ϱ
∂u

∂t
= µ

1
r

∂

∂r

(
r
∂u

∂r

)
+ β(t) + ϱγg, r ∈ [0, R], t ∈ (0, T] . (3.102)

Here, β(t) = −∂p/∂x is the pressure gradient along the tube. The associated boundary condition is
u(R, t) = 0.

3.66.8. Tribology: thin film fluid flow

Thin fluid films are extremely important inside machinery to reduce friction between gliding surfaces.
The mathematical model for the fluid motion takes the form of a diffusion problem and is quickly
derived here. We consider two solid surfaces whose distance is described by a gap function h(x, y).
The space between these surfaces is filled with a fluid with dynamic viscosity µ. The fluid may
move partially because of pressure gradients and partially because the surfaces move. Let Ui + V j
be the relative velocity of the two surfaces and p the pressure in the fluid. The mathematical model
builds on two principles: 1) conservation of mass, 2) assumption of locally quasi-static flow between
flat plates.

The conservation of mass equation reads ∇ ·u, where u is the local fluid velocity. For thin films the
detailed variation between the surfaces is not of interest, so ∇ · u = 0 is integrated (average) in
the direction perpendicular to the surfaces. This gives rise to the alternative mass conservation
equation

∇ · q = 0, q =
h(x,y)∫

0

udz,

where z is the coordinate perpendicular to the surfaces, and q is then the volume flux in the fluid
gap.

Locally, we may assume that we have steady flow between two flat surfaces, with a pressure gradient
and where the lower surface is at rest and the upper moves with velocity Ui+V j. The corresponding
mathematical problem is actually the limit problem in Section Section 3.66.7 as t→∞. The limit
problem can be solved analytically, and the local volume flux becomes

q(x, y, z) =
h∫

0

u(x, y, z)dz = − h3

12µ∇p+ 1
2Uhi + 1

2V hj .

The idea is to use this expression locally also when the surfaces are not flat, but slowly varying,
and if U , V , or p varies in time, provided the time variation is sufficiently slow. This is a common
quasi-static approximation, much used in mathematical modeling.

Inserting the expression for q via p, U , and V in the equation ∇q = 0 gives a diffusion PDE for p:

∇ ·
(
h3

12µ∇p
)

= 1
2
∂

∂x
(hU) + 1

2
∂

∂x
(hV) .

The boundary conditions must involve p or q at the boundary.

353

DRAFT

3. Diffusion Equations

3.66.9. Propagation of electrical signals in the brain

One can make a model of how electrical signals are propagated along the neuronal fibers that receive
synaptic inputs in the brain. The signal propagation is one-dimensional and can, in the simplest
cases, be governed by the Cable equation:

cm
∂V

∂t
= 1
rl

∂2V

∂x2 −
1
rm
V label

where V (x, t) is the voltage to be determined, cm is capacitance of the neuronal fiber, while rl

and rm are measures of the resistance. The boundary conditions are often taken as V = 0 at a
short circuit or open end, ∂V/∂x = 0 at a sealed end, or ∂V/∂x ∝ V where there is an injection of
current.

3.67. 2D Diffusion with Devito

Extending the diffusion solver to two dimensions illustrates Devito’s dimension-agnostic approach.
The same symbolic patterns apply, and the .laplace attribute automatically generates the correct
2D stencil.

3.67.1. The 2D Diffusion Equation

The two-dimensional diffusion equation on [0, Lx]× [0, Ly] is:

∂u

∂t
= α

(
∂2u

∂x2 + ∂2u

∂y2

)
= α∇2u (3.103)

where ∇2u = uxx + uyy is the Laplacian.

3.67.2. Devito’s Dimension-Agnostic Laplacian

The .laplace attribute works identically in 1D, 2D, and 3D:

from devito import Grid, TimeFunction

2D grid
grid = Grid(shape=(Nx + 1, Ny + 1), extent=(Lx, Ly))

2D temperature field
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

The Laplacian automatically includes both u_xx and u_yy
laplacian = u.laplace # Returns u_xx + u_yy

354

http://en.wikipedia.org/wiki/Cable_equation

DRAFT

3. Diffusion Equations

3.67.3. Stability Condition in 2D

The Forward Euler stability condition in 2D is more restrictive:

F = α ·∆t ·
(1

∆x2 + 1
∆y2

)
≤ 1

2

For equal grid spacing ∆x = ∆y = h:

∆t ≤ h2

4α

This means F ≤ 0.25 with equal spacing, compared to F ≤ 0.5 in 1D.

3.67.4. The 2D Solver

The src.diffu module provides solve_diffusion_2d:

from src.diffu import solve_diffusion_2d
import numpy as np

Initial condition: 2D sinusoidal mode
def I(X, Y):

return np.sin(np.pi * X) * np.sin(np.pi * Y)

result = solve_diffusion_2d(
Lx=1.0, Ly=1.0, # Domain size
a=1.0, # Diffusion coefficient
Nx=50, Ny=50, # Grid points
T=0.1, # Final time
F=0.25, # Fourier number (2D stability limit)
I=I, # Initial temperature

)

Result is a 2D array
print(result.u.shape) # (51, 51)

3.67.5. 2D Boundary Conditions

Dirichlet conditions must be applied on all four boundaries:

from devito import Eq

t_dim = grid.stepping_dim
x_dim, y_dim = grid.dimensions

Boundary conditions (u = 0 on all boundaries)
bc_x0 = Eq(u[t_dim + 1, 0, y_dim], 0) # Left

355

DRAFT

3. Diffusion Equations

bc_xN = Eq(u[t_dim + 1, Nx, y_dim], 0) # Right
bc_y0 = Eq(u[t_dim + 1, x_dim, 0], 0) # Bottom
bc_yN = Eq(u[t_dim + 1, x_dim, Ny], 0) # Top

3.67.6. Exact Solution for Verification

The exact solution for the initial condition I(x, y) = sin(πx/Lx) sin(πy/Ly) is:

u(x, y, t) = e−ακt sin
(
πx

Lx

)
sin
(
πy

Ly

)

where the decay rate is:

κ = π2
(

1
L2

x

+ 1
L2

y

)

This can be used for verification:

from src.diffu import convergence_test_diffusion_2d

grid_sizes, errors, rate = convergence_test_diffusion_2d(
grid_sizes=[10, 20, 40, 80],
T=0.05,
F=0.25,

)

print(f"Observed convergence rate: {rate:.2f}") # Should be ~2.0

3.67.7. Visualizing 2D Solutions

For 2D problems, contour plots and surface plots are useful:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

result = solve_diffusion_2d(Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=0.1, F=0.25)

X, Y = np.meshgrid(result.x, result.y, indexing='ij')

fig = plt.figure(figsize=(12, 5))

Surface plot
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot_surface(X, Y, result.u, cmap='hot')
ax1.set_xlabel('x')
ax1.set_ylabel('y')

356

DRAFT

3. Diffusion Equations

ax1.set_zlabel('Temperature')
ax1.set_title(f't = {result.t:.3f}')

Contour plot
ax2 = fig.add_subplot(122)
c = ax2.contourf(X, Y, result.u, levels=20, cmap='hot')
plt.colorbar(c, ax=ax2)
ax2.set_xlabel('x')
ax2.set_ylabel('y')
ax2.set_title('Temperature distribution')
ax2.set_aspect('equal')

3.67.8. Heat Diffusion from a Point Source

A classic problem is the diffusion of heat from a localized hot spot:

from src.diffu import gaussian_2d_initial_condition

Gaussian "hot spot" in the center
result = solve_diffusion_2d(

Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=0.2, F=0.25,
I=lambda X, Y: gaussian_2d_initial_condition(X, Y, 1.0, 1.0, sigma=0.1),
save_history=True,

)

The Gaussian spreads out and decays over time, eventually approaching zero as heat is lost through
the boundaries.

3.67.9. Animation of 2D Diffusion

from matplotlib.animation import FuncAnimation

result = solve_diffusion_2d(
Lx=1.0, Ly=1.0, Nx=50, Ny=50, T=0.5, F=0.25,
save_history=True,

)

fig, ax = plt.subplots()
X, Y = np.meshgrid(result.x, result.y, indexing='ij')

vmax = result.u_history[0].max()
im = ax.contourf(X, Y, result.u_history[0], levels=20,

cmap='hot', vmin=0, vmax=vmax)

357

DRAFT

3. Diffusion Equations

def update(frame):
ax.clear()
ax.contourf(X, Y, result.u_history[frame], levels=20,

cmap='hot', vmin=0, vmax=vmax)
ax.set_title(f't = {result.t_history[frame]:.3f}')
ax.set_aspect('equal')
return []

anim = FuncAnimation(fig, update, frames=len(result.t_history),
interval=50)

3.67.10. From 2D to 3D

The pattern extends naturally to three dimensions:

3D grid
grid = Grid(shape=(Nx+1, Ny+1, Nz+1), extent=(Lx, Ly, Lz))

3D temperature field
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

The PDE is unchanged - .laplace now includes u_zz
pde = u.dt - a * u.laplace

The stability condition in 3D becomes:

F ≤ 1
6 ≈ 0.167

for equal grid spacing in all directions.

3.67.11. Computational Efficiency

2D and 3D diffusion simulations can become computationally expensive as the number of grid points
grows. Devito helps through:

• Automatic parallelization: Set OMP_NUM_THREADS for OpenMP
• Cache optimization: Loop tiling is applied automatically
• GPU support: Use platform='nvidiaX' for CUDA execution

The explicit Forward Euler scheme is embarrassingly parallel since each new value depends only on
neighbors at the previous time level.

3.67.12. Comparison: Diffusion vs Wave Equation

358

DRAFT

3. Diffusion Equations

Property Diffusion Wave
Time derivative First order Second order
Stability (2D) F ≤ 0.25 C ≤ 1/

√
2

Solution character Smoothing, decaying Propagating, oscillating
Physical process Heat conduction Vibrations, acoustics

3.67.13. Summary

Key points for 2D diffusion with Devito:

1. The .laplace attribute handles dimension automatically
2. Stability conditions are more restrictive in higher dimensions
3. Equal spacing gives F ≤ 0.25 in 2D, F ≤ 1/6 in 3D
4. The same code patterns extend from 1D to 2D to 3D
5. Visualization requires contour/surface plots and animations

Devito’s abstraction means we write the physics symbolically and let the framework handle the
computational complexity across dimensions.

3.68. Exercise: Stabilizing the Crank-Nicolson method by Rannacher
time stepping

It is well known that the Crank-Nicolson method may give rise to non-physical oscillations in the
solution of diffusion equations if the initial data exhibit jumps (see Section Section 3.21). Rannacher
(Rannacher 1984) suggested a stabilizing technique consisting of using the Backward Euler scheme
for the first two time steps with step length 1

2∆t. One can generalize this idea to taking 2m time
steps of size 1

2∆t with the Backward Euler method and then continuing with the Crank-Nicolson
method, which is of second-order in time. The idea is that the high frequencies of the initial solution
are quickly damped out, and the Backward Euler scheme treats these high frequencies correctly.
Thereafter, the high frequency content of the solution is gone and the Crank-Nicolson method will
do well.

Test this idea for m = 1, 2, 3 on a diffusion problem with a discontinuous initial condition. Measure
the convergence rate using the solution (3.40) with the boundary conditions (3.41)-(3.42) for t
values such that the conditions are in the vicinity of ±1. For example, t < 5a1.6 · 10−2 makes the
solution diffusion from a step to almost a straight line. The program diffu_erf_sol.py shows how
to compute the analytical solution.

3.69. Project: Energy estimates for diffusion problems

This project concerns so-called energy estimates for diffusion problems that can be used for qualitative
analytical insight and for verification of implementations.

a)

359

DRAFT

3. Diffusion Equations

We start with a 1D homogeneous diffusion equation with zero Dirichlet conditions:

ut = αuxx,x ∈ Ω = (0, L), t ∈ (0, T], (3.104)
u(0, t) = u(L, t) = 0, t ∈ (0, T], (3.105)

u(x, 0) = I(x), x ∈ [0, L] . (3.106)

The energy estimate for this problem reads

||u|| ∗ ∗L2 ≤ ||I|| ∗ ∗L2, (3.107)

where the || · ||L2 norm is defined by

||g||L2 =
√∫ L

0
g2dx . (3.108)

The quantify ||u|| ∗ ∗L2 or 1
2 ||u|| ∗ ∗L

2 is known as the energy of the solution, although it is not the
physical energy of the system. A mathematical tradition has introduced the notion energy in this
context.

The estimate (3.107) says that the “size of u” never exceeds that of the initial condition, or more
precisely, it says that the area under the u curve decreases with time.

To show (3.107), multiply the PDE by u and integrate from 0 to L. Use that uut can be expressed
as the time derivative of u2 and that uxxu can integrated by parts to form an integrand u2

x. Show
that the time derivative of ||u||2L2 must be less than or equal to zero. Integrate this expression and
derive (3.107).

b)

Now we address a slightly different problem,

ut = αuxx+ f(x, t),x ∈ Ω = (0, L), t ∈ (0, T], (3.109)
u(0, t) = u(L, t) = 0, t ∈ (0, T], (3.110)

u(x, 0) = 0, x ∈ [0, L] . (3.111)

The associated energy estimate is

||u|| ∗ ∗L2 ≤ ||f || ∗ ∗L2 . (3.112)

(This result is more difficult to derive.)

Now consider the compound problem with an initial condition I(x) and a right-hand side f(x, t):

ut = αuxx+ f(x, t),x ∈ Ω = (0, L), t ∈ (0, T], (3.113)
u(0, t) = u(L, t) = 0, t ∈ (0, T], (3.114)

u(x, 0) = I(x), x ∈ [0, L] . (3.115)

360

DRAFT

3. Diffusion Equations

Show that if w1 fulfills the first problem (with I and f = 0) and w2 fulfills the second problem (with
f and I = 0), then u = w1 + w2 is the solution of the compound problem above. Using the triangle
inequality for norms,

||a+ b|| ≤ ||a||+ ||b||,

show that the energy estimate for the compound problem becomes

||u|| ∗ ∗L2 ≤ ||I|| ∗ ∗L2 + ||f ||L2 . (3.116)

c)

One application of (3.116) is to prove uniqueness of the solution. Suppose u1 and u2 both fulfill the
compound problem. Show that u = u1 − u2 then fulfills the compound problem with f = 0 and
I = 0. Use (3.116) to deduce that the energy must be zero for all times and therefore that u1 = u2,
which proves that the solution is unique.

d)

Generalize (3.116) to a 2D/3D diffusion equation ut = ∇ · (α∇u) for x ∈ Ω.

� Use integration by parts in multi dimensions:∫
Ω
u∇ · (α∇u) dx = −

∫
Ω
α∇u · ∇udx−

∫
∂Ω
uα

∂u

∂n
,

where ∂u
∂n = n · ∇u, n being the outward unit normal to the boundary ∂Ω of the domain Ω.

e)

Now we also consider the multi-dimensional PDE ut = ∇ · (α∇u). Integrate both sides over Ω and
use Gauss’ divergence theorem,

∫
Ω∇ · q dx =

∫
∂Ω q · n ds for a vector field q. Show that if we have

homogeneous Neumann conditions on the boundary, ∂u/∂n = 0, area under the u surface remains
constant in time and ∫

Ω
udx =

∫
Ω
I dx . (3.117)

f)

Establish a code in 1D, 2D, or 3D that can solve a diffusion equation with a source term f , initial
condition I, and zero Dirichlet or Neumann conditions on the whole boundary.

We can use (3.116) and (3.117) as a partial verification of the code. Choose some functions f and I
and check that (3.116) is obeyed at any time when zero Dirichlet conditions are used. Iterate over
the same I functions and check that (3.117) is fulfilled when using zero Neumann conditions.

g)

Make a list of some possible bugs in the code, such as indexing errors in arrays, failure to set the
correct boundary conditions, evaluation of a term at a wrong time level, and similar. For each of
the bugs, see if the verification tests from the previous subexercise pass or fail. This investigation
shows how strong the energy estimates and the estimate (3.117) are for pointing out errors in the
implementation.

361

DRAFT

3. Diffusion Equations

3.70. Exercise: Splitting methods and preconditioning

In Section Section 3.51.1, we outlined a class of iterative methods for Au = b based on splitting A
into A = M −N and introducing the iteration

Muk = Nuk + b .

The very simplest splitting is M = I, where I is the identity matrix. Show that this choice
corresponds to the iteration

uk = uk−1 + rk−1, rk−1 = b−Auk−1, (3.118)

where rk−1 is the residual in the linear system in iteration k − 1. The formula (3.118) is known
as Richardson’s iteration. Show that if we apply the simple iteration method (3.118) to the
preconditioned system M−1Au = M−1b, we arrive at the Jacobi method by choosing M = D (the
diagonal of A) as preconditioner and the SOR method by choosing M = ω−1D + L (L being the
lower triangular part of A). This equivalence shows that we can apply one iteration of the Jacobi or
SOR method as preconditioner.

� Solution

Inserting M = I and N = I −A in the iterative method leads to

uk = (I −A)uk−1 + b = uk−1 + (b−Auk−1),

which is (3.118). Replacing A by M−1A and b by M−1b in this equation gives

uk = uk−1 +M−1rk−1, rk−1 = b−Auk−1,

which we after multiplication by M and reordering can write as

Muk = (M −A)uk−1 + b = Nuk−1 + b,

which is the standard form for the Jacobi and SOR methods. Choosing M = D gives Jacobi
and M = ω−1D + L gives SOR. We have shown that we may view M as a preconditioner of a
simplest possible iteration method.

3.71. Problem: Oscillating surface temperature of the earth

Consider a day-and-night or seasonal variation in temperature at the surface of the earth. How deep
down in the ground will the surface oscillations reach? For simplicity, we model only the vertical
variation along a coordinate x, where x = 0 at the surface, and x increases as we go down in the
ground. The temperature is governed by the heat equation

ϱcv
∂T

∂t
= ∇ · (k∇T),

in some spatial domain x ∈ [0, L], where L is chosen large enough such that we can assume that T
is approximately constant, independent of the surface oscillations, for x > L. The parameters ϱ,

362

DRAFT

3. Diffusion Equations

cv, and k are the density, the specific heat capacity at constant volume, and the heat conduction
coefficient, respectively.

a)

Derive the mathematical model for computing T (x, t). Assume the surface oscillations to be
sinusoidal around some mean temperature Tm. Let T = Tm initially. At x = L, assume T ≈ Tm.

� Solution

The surface temperature is set as

T (0, t) = Tm +A sin(ωt) .

With only one “active” spatial coordinate we get the initial-boundary value problem

ϱcv
∂T

∂t
= ∂

∂x

(
k(x)∂T

∂x

)
,x ∈ (0, L), t ∈ (0, T],

T (x, 0) = Tm, x ∈ [0, L],
T (0, t) = Tm +A sin(ωt), t ∈ (0, T],
T (L, t) = Tm, t ∈ (0, T].

b)

Scale the model in a) assuming k is constant. Use a time scale tc = ω−1 and a length scale
xc =

√
2α/ω, where α = k/(ϱcv). The primary unknown can be scaled as T −Tm

2A .

Show that the scaled PDE is
∂u

∂t̄
= 1

2
∂2u

∂x2 ,

with initial condition u(x̄, 0) = 0, left boundary condition u(0, t̄) = sin(t̄), and right boundary
condition u(L̄, t̄) = 0. The bar indicates a dimensionless quantity.

Show that u(x̄, t̄) = e−x̄ sin(x̄− t̄) is a solution that fulfills the PDE and the boundary condition at
x̄ = 0 (this is the solution we will experience as t̄→∞ and L→∞). Conclude that an appropriate
domain for x is [0, 4] if a damping e−4 ≈ 0.18 is appropriate for implementing ū ≈ const; increasing
to [0, 6] damps ū to 0.0025.

� Solution

Chapter 3.2.4 in the book (Langtangen and Pedersen 2016) describes the scaling of this problem
in detail. Inserting dimensionless variables t̄ = ωt, x̄ =

√
ω/(2α)x, and

u = T − Tm

2A ,

leads to

363

DRAFT

3. Diffusion Equations

∂u

∂t̄
= 1

2
∂2u

∂x2 , x̄ ∈ (0, L̄), t̄ ∈ (0, T̄],

u(x̄, 0) = 0, x̄ ∈ [0, 1],
u(0, t̄) = sin(t̄), t̄ ∈ (0, T̄],
u(L̄, t̄) = 0, t̄ ∈ (0, T̄].

The domain lengths L̄ and T̄ follows from straightforward scaling of L and T .
Inserting u(x̄, t̄) = e−x̄ sin(t̄− x̄) in the PDE shows that this is a solution. It also obeys the
boundary condition ū(0, t̄) = sin(t̄). As t̄→∞, the initial condition has no longer impact on
the solution and is “forgotten” and of no interest. The boundary condition at x̄ = L̄ is never
compatible with the given solution unless ū is damped to zero, which happens mathematically
as L̄→∞. For a numerical solution, however, we may use a small finite value such as L̄ = 4.

c)

Compute the scaled temperature and make animations comparing two solutions with L̄ = 4 and
L̄ = 8, respectively (keep ∆x the same).

� Solution

We can use the viz function in diff1D_vc.py to do the number crunching. Appropriate calls
and visualization go here:

364

DRAFT

3. Diffusion Equations

import os
import sys

sys.path.insert(0, os.path.join(os.pardir, "src-diffu"))
from diffu1D_vc import viz

sol = [] # store solutions
for Nx, L in [[20, 4], [40, 8]]:

dt = 0.1
dx = float(L) / Nx
D = dt / dx**2
from math import pi, sin

T = 2 * pi * 6
from numpy import zeros

a = zeros(Nx + 1) + 0.5
cpu, u_ = viz(

I=lambda x: 0,
a=a,
L=L,
Nx=Nx,
D=D,
T=T,
umin=-1.1,
umax=1.1,
theta=0.5,
u_L=lambda t: sin(t),
u_R=0,
animate=False,
store_u=True,

)
sol.append(u_)
print("computed solution for Nx=%d in [0,%g]" % (Nx, L))

print(sol[0].shape)
print(sol[1].shape)
import matplotlib.pyplot as plt

counter = 0
for u0, u1 in zip(sol[0][2:], sol[1][2:], strict=False):

x0 = sol[0][0]
x1 = sol[1][0]
plt.clf()
plt.plot(x0, u0, "r-", label="short")
plt.plot(x1, u1, "b-", label="long")
plt.legend()
plt.axis([x1[0], x1[-1], -1.1, 1.1])
plt.savefig("tmp_%04d.png" % counter)
counter += 1

365

DRAFT

3. Diffusion Equations

MOVIE: [https://github.com/hplgit/fdm-book/raw/master/doc/pub/book/html/mov-
diffu/surface_osc/movie.mp4]

3.72. Problem: Oscillating and pulsating flow in tubes

We consider flow in a straight tube with radius R and straight walls. The flow is driven by a pressure
gradient β(t). The effect of gravity can be neglected. The mathematical problem reads

ϱ
∂u

∂t
= µ

1
r

∂

∂r

(
r
∂u

∂r

)
+ β(t), r ∈ [0, R], t ∈ (0, T], (3.119)

u(r, 0) = I(r), r ∈ [0, R], (3.120)
u(R, t) = 0, t ∈ (0, T], (3.121)
∂u

∂r
(0, t) = 0, t ∈ (0, T]. (3.122)

We consider two models for β(t). One plain, sinusoidal oscillation:

β = A sin(ωt),

and one with periodic pulses,
β = A sin16(ωt),

Note that both models can be written as β = A sinm(ωt), with m = 1 and m = 16, respectively.

a)

Scale the mathematical model, using the viscous time scale ϱR2/µ.

� Solution

We can introduce
r̄ = r

R
, t̄ = t

ϱR2/µ
, u = u

uc
.

Inserted in the PDE, we get

∂ū

∂t̄
= 1
r̄

∂

∂r̄

(
r̄
∂ū

∂r̄

)
+ R2A

ucµ
sinm(αt̄)

where α is a dimensionless number

α = ωϱR2

µ
= ϱR2/µ

1/ω ,

reflecting the ratio of the viscous diffusion time scale and the time scale of the oscillating
pressure gradient. We may choose uc such that the coefficient in the pressure gradient term
equals unity:

uc = R2A

µ
.

366

DRAFT

3. Diffusion Equations

The governing PDE, dropping the bars, then reads

∂u

∂t
= 1
r

∂

∂r

(
r
∂u

∂r

)
+ sinm(αt̄), r ∈ (0, 1), t ∈ (0, T] .

b)

Implement the scaled model from a), using the unifying θ scheme in time and centered differences
in space.

� Solution

We need to take into account extensions below: a coefficient in front of the viscous term, and
an extra source term.
A preliminary and unfinished code:

367

DRAFT

3. Diffusion Equations

import time

import scipy.sparse
import scipy.sparse.linalg
import sympy as sym
from numpy import linspace, log, ones, sqrt, sum, zeros

def solver_theta(I, a, R, Nr, D, T, theta=0.5, u_L=None, u_R=0, user_action=None, f=0):
"""
Solve the diffusion equation for axi-symmetric case:

u_t = 1/r * (r*a(r)*u_r)_r + f(r,t)
on (0,R) with boundary conditions u(0,t)_r = 0 and u(R,t) = 0.

Method: (implicit) theta-rule in time.
D = dt/dr**2 and implicitly specifies the time step.
u_L = None implies du/dr = 0, i.e. a symmetry condition.
"""
t0 = time.perf_counter()

r = linspace(0, R, Nr + 1) # mesh points in space
dr = r[1] - r[0]
dt = D * dr**2
Nt = int(round(T / float(dt)))
t = linspace(0, T, Nt + 1) # mesh points in time

if isinstance(u_L, (float, int)):
u_L_ = float(u_L)
u_L = lambda t: u_L_

if isinstance(u_R, (float, int)):
u_R_ = float(u_R)
u_R = lambda t: u_R_

if isinstance(f, (float, int)):
f_ = float(f)
f = lambda r, t: f_

ra = r * a # help array in scheme

inv_r = zeros(len(r) - 2)
inv_r = 1.0 / r[1:-1]

u = zeros(Nr + 1) # solution array at t[n+1]
u_1 = zeros(Nr + 1) # solution at t[n]

Dl = 0.5 * D * theta
Dr = 0.5 * D * (1 - theta)

Representation of sparse matrix and right-hand side
diagonal = zeros(Nr + 1)
lower = zeros(Nr)
upper = zeros(Nr)
b = zeros(Nr + 1)

Precompute sparse matrix (scipy format)
diagonal[1:-1] = 1 + Dl * (ra[2:] + 2 * ra[1:-1] + ra[:-2]) * inv_r
lower[:-1] = -Dl * (ra[1:-1] + ra[:-2]) * inv_r
upper[1:] = -Dl * (ra[2:] + ra[1:-1]) * inv_r
Insert boundary conditions
if u_L is None: # symmetry axis, du/dr = 0

diagonal[0] = 1 + 8 * a[0] * Dl
upper[0] = -8 * a[0] * Dl

else:
diagonal[0] = 1
upper[0] = 0

diagonal[Nr] = 1
lower[-1] = 0

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nr + 1, Nr + 1),
format="csr",

)

Set initial condition
for i in range(0, Nr + 1):

u_1[i] = I(r[i])

if user_action is not None:
user_action(u_1, r, t, 0)

Time loop
for n in range(0, Nt):

b[1:-1] = (
u_1[1:-1]
+ Dr
* (

(ra[2:] + ra[1:-1]) * (u_1[2:] - u_1[1:-1])
- (ra[1:-1] + ra[0:-2]) * (u_1[1:-1] - u_1[:-2])

)
* inv_r
+ dt * theta * f(r[1:-1], t[n + 1])
+ dt * (1 - theta) * f(r[1:-1], t[n])

)

Boundary conditions
if u_L is None: # symmetry axis, du/dr = 0

b[0] = (
u_1[0]
+ 8 * a[0] * Dr * (u_1[1] - u_1[0])
+ dt * theta * f(0, (n + 1) * dt)
+ dt * (1 - theta) * f(0, n * dt)

)
else:

b[0] = u_L(t[n + 1])
b[-1] = u_R(t[n + 1])

Solve
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, r, t, n + 1)

Switch variables before next step
u_1, u = u, u_1

t1 = time.perf_counter()
return u_1, t, t1 - t0

368

DRAFT

3. Diffusion Equations

c)

Verify the implementation in b) using a manufactured solution that is quadratic in r and linear in t.
Make a corresponding test function.

� You need to include an extra source term

in the equation to allow for such tests. Let the spatial variation be 1 − r2 such that the
boundary condition is fulfilled.

d)

Make animations for m = 1, 16 and α = 1, 0.1. Choose T such that the motion has reached a steady
state (non-visible changes from period to period in u).

e)

For α ≫ 1, the scaling in a) is not good, because the characteristic time for changes (due to the
pressure) is much smaller than the viscous diffusion time scale (α becomes large). We should in this
case base the short time scale on 1/ω. Scale the model again, and make an animation for m = 1, 16
and α = 10.

� Solution

Now the governing PDE becomes

∂u

∂t
= α−1 1

r

∂

∂r

(
r
∂u

∂r

)
+ sinm t, r ∈ (0, 1), t ∈ (0, T] .

In this case,
uc = A

ϱω
.

We see that for α ≫ 1, we can neglect the viscous term, and we basically have a balance
between the acceleration and the driving pressure gradient:

∂u

∂t
= sinm t .

3.73. Problem: Scaling a welding problem

Welding equipment makes a very localized heat source that moves in time. We shall investigate the
heating due to welding and choose, for maximum simplicity, a one-dimensional heat equation with a
fixed temperature at the ends, and we neglect melting. We shall scale the problem, and besides
solving such a problem numerically, the aim is to investigate the appropriateness of alternative
scalings.

The governing PDE problem reads

369

DRAFT

3. Diffusion Equations

ϱc
∂u

∂t
= k

∂2u

∂x2 + f,x ∈ (0, L), t ∈ (0, T),

u(x, 0) = Us, x ∈ [0, L],
u(0, t) = u(L, t) = 0, t ∈ (0, T].

Here, u is the temperature, ϱ the density of the material, c a heat capacity, k the heat conduction
coefficient, f is the heat source from the welding equipment, and Us is the initial constant (room)
temperature in the material.

A possible model for the heat source is a moving Gaussian function:

f = A exp
(
−1

2

(
x− vt
σ

)2
)
,

where A is the strength, σ is a parameter governing how peak-shaped (or localized in space) the
heat source is, and v is the velocity (in positive x direction) of the source.

a)

Let xc, tc, uc, and fc be scales, i.e., characteristic sizes, of x, t, u, and f , respectively. The natural
choice of xc and fc is L and A, since these make the scaled x and f in the interval [0, 1]. If each of
the three terms in the PDE are equally important, we can find tc and uc by demanding that the
coefficients in the scaled PDE are all equal to unity. Perform this scaling. Use scaled quantities in
the arguments for the exponential function in f too and show that

f̄ = e− 1
2 β2(x̄−γt̄)2

,

where β and γ are dimensionless numbers. Give an interpretation of β and γ.

� Solution

We introduce
x̄ = x

L
, t̄ = t

tc
, ū = u− Us

uc
, f̄ = f

A
.

Inserted in the PDE and dividing by ϱcuc/tc such that the coefficient in front of ∂ū/∂t̄ becomes
unity, and thereby all terms become dimensionless, we get

∂ū

∂t̄
= ktc
ϱcL2

∂2ū

∂x̄2 −
Atc
ϱcuc

f̄ .

Demanding that all three terms are equally important, it follows that
ktc
ϱcL2 = 1, Atc

ϱcuc
= 1 .

These constraints imply the diffusion time scale

tc = ϱcL2

k
,

and a scale for uc,

uc = AL2

k
.

370

DRAFT

3. Diffusion Equations

The scaled PDE reads
∂ū

∂t̄
= ∂2ū

∂x̄2 − f̄ .

Scaling f results in

f̄ = exp
(
−1

2

(
x− vt
σ

)2
)

= exp
(
−1

2
L2

σ2

(
x̄− vtc

L
t

)2
)

= exp
(
−1

2β
2 (x̄− γt̄)2),

where β and γ are dimensionless numbers:

β = L

σ
, γ = vtc

L
= vϱcL

k
.

The σ parameter measures the width of the Gaussian peak, so β is the ratio of the domain
and the width of the heat source (large β implies a very peak-formed heat source). The γ
parameter arises from tc/(L/v), which is the ratio of the diffusion time scale and the time
it takes for the heat source to travel through the domain. Equivalently, we can multiply by
tc/tc to get γ = v/(tcL) as the ratio between the velocity of the heat source and the diffusion
velocity.

b)

Argue that for large γ we should base the time scale on the movement of the heat source. Show
that this gives rise to the scaled PDE

∂ū

∂t̄
= γ−1∂

2ū

∂x̄2 − f̄ ,

and
f̄ = exp (−1

2β
2(x̄− t̄)2) .

Discuss when the scalings in a) and b) are appropriate.

� Solution

We perform the scaling as in a), but this time we determine tc such that the heat source moves
with unit velocity. This means that

vtc
L

= 1 ⇒ tc = L

v
.

Scaling of the PDE gives, as before,

∂ū

∂t̄
= ktc
ϱcL2

∂2ū

∂x̄2 −
Atc
ϱcuc

f̄ .

371

DRAFT

3. Diffusion Equations

Inserting the expression for tc, we have

∂ū

∂t̄
= kL

ϱcL2v

∂2ū

∂x̄2 −
AL

vϱcuc
f̄ .

We recognize the first coefficient as γ−1, while uc can be determined from demanding the
second coefficient to be unity:

uc = AL

vϱc
.

The scaled PDE is therefore
∂ū

∂t̄
= γ−1∂

2ū

∂x̄2 − f̄ .

If the heat source moves very fast, there is little time for the diffusion to transport the heat
away from the source, and the heat conduction term becomes insignificant. This is reflected
in the coefficient γ−1, which is small when γ, the ratio of the heat source velocity and the
diffusion velocity, is large.
The scaling in a) is therefore appropriate if diffusion is a significant process, i.e., the welding
equipment moves at a slow speed so heat can efficiently spread out by diffusion. For large
γ, the scaling in b) is appropriate, and t = 1 corresponds to having the heat source traveled
through the domain (with the scaling in a), the heat source will leave the domain in short
time).

c)

One aim with scaling is to get a solution that lies in the interval [−1, 1]. This is not always the case
when uc is based on a scale involving a source term, as we do in a) and b). However, from the scaled
PDE we realize that if we replace f̄ with δf̄ , where δ is a dimensionless factor, this corresponds to
replacing uc by uc/δ. So, if we observe that ū ∼ 1/δ in simulations, we can just replace f̄ by δf̄ in
the scaled PDE.

Use this trick and implement the two scaled models. Reuse software for the diffusion equation
(e.g., the solver function in diffu1D_vc.py). Make a function run(gamma, beta=10, delta=40,
scaling=1, animate=False) that runs the model with the given γ, β, and δ parameters as well as
an indicator scaling that is 1 for the scaling in a) and 2 for the scaling in b). The last argument
can be used to turn screen animations on or off.

Experiments show that with γ = 1 and β = 10, δ = 20 is appropriate. Then max |ū| will be larger
than 4 for γ = 40, but that is acceptable.

Equip the run function with visualization, both animation of ū and f̄ , and plots with ū and f̄ for
t = 0.2 and t = 0.5.

� Since the amplitudes of ū and f̄ differs by a factor δ,

it is attractive to plot f̄/δ together with ū.

372

DRAFT

3. Diffusion Equations

� Solution

Here is a possible run function:

373

DRAFT

3. Diffusion Equations

import os
import sys

sys.path.insert(0, os.path.join(os.pardir, "src-diffu"))
import numpy as np
from diffu1D_vc import solver

def run(gamma, beta=10, delta=40, scaling=1, animate=False):
"""Run the scaled model for welding."""
if scaling == 1:

v = gamma
a = 1

elif scaling == 2:
v = 1
a = 1.0 / gamma

b = 0.5 * beta**2
L = 1.0
ymin = 0
global ymax
ymax = 1.2

I = lambda x: 0
f = lambda x, t: delta * np.exp(-b * (x - v * t) ** 2)

import time

import matplotlib.pyplot as plt

plot_arrays = []

def process_u(u, x, t, n):
global ymax
if animate:

plt.clf()
plt.plot(x, u, "r-", x, f(x, t[n]) / delta, "b-")
plt.axis([0, L, ymin, ymax])
plt.title(f"t={t[n]:f}")
plt.xlabel("x")
plt.ylabel(f"u and f/{delta:g}")
plt.draw()
plt.pause(0.001)

if t[n] == 0:
time.sleep(1)
plot_arrays.append(x)

dt = t[1] - t[0]
tol = dt / 10.0
if abs(t[n] - 0.2) < tol or abs(t[n] - 0.5) < tol:

plot_arrays.append((u.copy(), f(x, t[n]) / delta))
if u.max() > ymax:

ymax = u.max()

Nx = 100
D = 10
T = 0.5
u_L = u_R = 0
theta = 1.0
cpu = solver(I, a, f, L, Nx, D, T, theta, u_L, u_R, user_action=process_u)
x = plot_arrays[0]
plt.figure()
for u, f in plot_arrays[1:]:

plt.plot(x, u, "r-", x, f, "b--")
plt.axis([x[0], x[-1], 0, ymax])
plt.xlabel("x")
plt.ylabel(rf"$u, \ f/{delta:g}$")
plt.legend(

[
"$u,\\ t=0.2$",
f"$f/{delta:g},\\ t=0.2$",
"$u,\\ t=0.5$",
f"$f/{delta:g},\\ t=0.5$",

]
)
filename = "tmp1_gamma%g_s%d" % (gamma, scaling)
s = "diffusion" if scaling == 1 else "source"
plt.title(rf"$\beta = {beta:g},\ \gamma = {gamma:g},\ $" + f"scaling={s}")
plt.savefig(filename + ".pdf")
plt.savefig(filename + ".png")
return cpu

374

DRAFT

3. Diffusion Equations

Note that we have dropped the bar notation in the plots. It is common to drop the bars as
soon as the scaled problem is established.

d)

Use the software in c) to investigate γ = 0.2, 1, 5, 40 for the two scalings. Discuss the results.

� Solution

For these investigations, we compare the two scalings for each of the different γ values. An
appropriate function for automating the tasks is

def investigate():
"""Do scientific experiments with the run function above."""
import glob

Clean up old files
for filename in glob.glob("tmp1_gamma*") + glob.glob("welding_gamma*"):

os.remove(filename)

gamma_values = 1, 40, 5, 0.2, 0.025
for gamma in gamma_values:

for scaling in 1, 2:
run(gamma=gamma, beta=10, delta=20, scaling=scaling)

Combine images
for gamma in gamma_values:

for ext in "pdf", "png":
cmd = (

"montage "
"tmp1_gamma{gamma:g}_s1.{ext} "
"tmp1_gamma{gamma:g}_s2.{ext} "
"-tile 2x1 -geometry +0+0 "
"welding_gamma{gamma:g}.{ext}".format(**vars())

)
os.system(cmd)
pdflatex doesn't like 0.2 in filenames...
if "." in str(gamma):

os.rename(
"welding_gamma{gamma:g}.{ext}".format(**vars()),
("welding_gamma{gamma:g}".format(**vars())).replace(".", "_")
+ "."
+ ext,

)

We run here a Backward Euler scheme with Nx = 100 and quite long time steps.
Running the investigate function, we get the following plots:

375

DRAFT

3. Diffusion Equations

Figure 3.24.: FIGURE: [fig-diffu/welding_gamma0_2, width=800 frac=1]

Figure 3.25.: FIGURE: [fig-diffu/welding_gamma5, width=800 frac=1]

376

DRAFT

3. Diffusion Equations

Figure 3.26.: For γ ≪ 1 as in γ = 0.025, the heat source moves very slowly on the diffusion
time scale and has hardly entered the medium, while the scaling in b) is not
inappropriate, but a larger δ is needed to bring ū around unity. We see that
for γ = 0.2, each of the scalings work, but with the diffusion time scale, the
heat source has not moved much into the domain. For γ = 1, the mathematical
problems are identical and hence the plots too. For γ = 5, the time scale based on
the source is clearly the best choice, and for γ = 40, only this scale is appropriate.

A conclusion is that the scaling in b) works well for a range of γ values, also in the case γ ≪ 1.

3.74. Exercise: Implement a Forward Euler scheme for axi-symmetric
diffusion

Based on the discussion in Section Section 3.35, derive in detail the discrete equations for a Forward
Euler in time, centered in space, finite difference method for axi-symmetric diffusion. The diffusion
coefficient may be a function of the radial coordinate. At the outer boundary r = R, we may
have either a Dirichlet or Robin condition. Implement this scheme. Construct appropriate test
problems.

� Solution

We start with the equation at r = 0. According to Section Section 3.35, we get

un+1
0 − un

0
∆t = 4α(0)u

n
1 − un

0
∆r2 − fn

0 .

For i > 0, we have

un+1
i − un

i

∆t = 1
ri∆r2 (1

2(ri + ri+1)1
2(αi + αi+1)(un

i+1 − un
i)−

1
2(ri−1 + ri)

1
2(αi−1 + αi)(un

i − un
i−1)) + fn

i

377

DRAFT

3. Diffusion Equations

Solving with respect to un+1
i and introducing D = ∆t/∆r2 results in

un+1
0 = un

0 + 4Dα(0)(un
1 − un

0) + fn
0 ,

un+1
i = un

i +D
1
ri

(1
2(ri + ri+1)1

2(αi + αi+1)(un
i+1 − un

i)−

1
2(ri−1 + ri)

1
2(αi−1 + αi)(un

i − un
i−1)) + ∆tfn

i ,

i = 1, . . . , Nr − 1,

and un+1
i at the end point i = Nr is assumed known in case of a Dirichlet condition. A Robin

condition
−α∂u

∂n
= hT (u− Us),

can be discretized at i = Nr by

−αi
un

i+1 − un
i−1

2∆r = hT (un
i − Us) .

Solving with respect to the value at the fictitious point i+ 1 gives

un
i+1 = un

i−1 − 2∆rhT

αi
(un

i − Us) .

This value is then inserted for un
i+1 in the discrete PDE at i = Nr.

3.75. Exercises: Diffusion with Devito

These exercises explore the diffusion equation using Devito’s symbolic finite difference framework.

3.75.1. Exercise 1: Verify the Fourier Stability Limit

The Forward Euler scheme for the diffusion equation requires F ≤ 0.5 for stability.

a) Use solve_diffusion_1d with F = 0.5 and verify that the solution decays smoothly.
b) Try F = 0.51 and observe what happens.
c) Plot the solution at several time steps for both cases.

378

DRAFT

3. Diffusion Equations

ñ Solution

from src.diffu import solve_diffusion_1d
import numpy as np
import matplotlib.pyplot as plt

Stable case: F = 0.5
result_stable = solve_diffusion_1d(

L=1.0, a=1.0, Nx=50, T=0.1, F=0.5,
save_history=True,

)

Unstable case: F = 0.51
Note: The solver will raise a ValueError for F > 0.5
To demonstrate instability, we would need to bypass the check
or use the legacy NumPy implementation

plt.figure(figsize=(10, 4))

plt.subplot(1, 2, 1)
for i in [0, 5, 10, 20]:

if i < len(result_stable.t_history):
plt.plot(result_stable.x, result_stable.u_history[i],

label=f't = {result_stable.t_history[i]:.3f}')
plt.xlabel('x')
plt.ylabel('u')
plt.title('Stable: F = 0.5')
plt.legend()

The F > 0.5 case shows exponential growth with oscillations
plt.subplot(1, 2, 2)
plt.text(0.5, 0.5, 'F > 0.5 causes instability:\n'

'Solution grows exponentially\nwith oscillations',
ha='center', va='center', fontsize=12)

plt.title('Unstable: F > 0.5')
plt.tight_layout()

3.75.2. Exercise 2: Convergence Rate Verification

Verify that the Forward Euler scheme achieves second-order spatial convergence when the Fourier
number F is held fixed.

a) Use grid sizes Nx = 10, 20, 40, 80, 160.
b) Compute the L2 error against the exact sinusoidal solution.
c) Plot the error vs. grid spacing on a log-log scale.
d) Compute the observed convergence rate.

379

DRAFT

3. Diffusion Equations

ñ Solution

from src.diffu import solve_diffusion_1d, exact_diffusion_sine
import numpy as np
import matplotlib.pyplot as plt

grid_sizes = [10, 20, 40, 80, 160]
errors = []
L = 1.0
a = 1.0
T = 0.1
F = 0.5

for Nx in grid_sizes:
result = solve_diffusion_1d(L=L, a=a, Nx=Nx, T=T, F=F)
u_exact = exact_diffusion_sine(result.x, result.t, L, a)
error = np.sqrt(np.mean((result.u - u_exact)**2))
errors.append(error)
print(f"Nx = {Nx:3d}, error = {error:.4e}")

Compute convergence rate
errors = np.array(errors)
dx = L / np.array(grid_sizes)
log_dx = np.log(dx)
log_err = np.log(errors)
rate = np.polyfit(log_dx, log_err, 1)[0]

print(f"\nObserved convergence rate: {rate:.2f}")
print(f"Expected rate: 2.0")

Plot
plt.figure(figsize=(8, 6))
plt.loglog(dx, errors, 'bo-', label=f'Observed (rate={rate:.2f})')
plt.loglog(dx, errors[0]*(dx/dx[0])**2, 'r--', label='O(dxˆ2)')
plt.xlabel('Grid spacing dx')
plt.ylabel('L2 error')
plt.legend()
plt.title('Convergence of Forward Euler for Diffusion')
plt.grid(True)

3.75.3. Exercise 3: Gaussian Initial Condition

Study the diffusion of a Gaussian temperature profile.

a) Set up a Gaussian initial condition centered at x = L/2 with width σ = 0.05.
b) Simulate for T = 0.5 and visualize the spreading.

380

DRAFT

3. Diffusion Equations

c) Show that the total “heat content” (integral of u) is conserved over time (with homogeneous
Neumann BCs) or decreases (with Dirichlet BCs).

ñ Solution

from src.diffu import solve_diffusion_1d, gaussian_initial_condition
import numpy as np
import matplotlib.pyplot as plt

result = solve_diffusion_1d(
L=1.0, a=1.0, Nx=100, T=0.5, F=0.5,
I=lambda x: gaussian_initial_condition(x, L=1.0, sigma=0.05),
save_history=True,

)

Plot evolution
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
times = [0, 0.05, 0.1, 0.2, 0.5]
for t in times:

idx = int(t / result.dt)
if idx < len(result.t_history):

plt.plot(result.x, result.u_history[idx],
label=f't = {result.t_history[idx]:.2f}')

plt.xlabel('x')
plt.ylabel('u')
plt.title('Gaussian Diffusion')
plt.legend()

Heat content over time (with Dirichlet BCs, heat is lost at boundaries)
plt.subplot(1, 2, 2)
dx = result.x[1] - result.x[0]
heat_content = [np.trapz(result.u_history[i], result.x)

for i in range(len(result.t_history))]
plt.plot(result.t_history, heat_content)
plt.xlabel('Time')
plt.ylabel('Total heat content')
plt.title('Heat Loss Through Boundaries')
plt.tight_layout()

With Dirichlet BCs (u = 0 at boundaries), heat flows out and the total decreases. With
Neumann BCs (insulated boundaries), total heat would be conserved.

381

DRAFT

3. Diffusion Equations

3.75.4. Exercise 4: Discontinuous Initial Condition

The diffusion equation smooths out discontinuities over time.

a) Use a “plug” initial condition (1 for |x− L/2| < 0.1, 0 otherwise).
b) Compare the solution for F = 0.5 and F = 0.25.
c) Observe the oscillations (Gibbs phenomenon) for F = 0.5.

ñ Solution

from src.diffu import solve_diffusion_1d, plug_initial_condition
import numpy as np
import matplotlib.pyplot as plt

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

for ax, F in zip(axes, [0.5, 0.25]):
result = solve_diffusion_1d(

L=1.0, a=1.0, Nx=100, T=0.1, F=F,
I=lambda x: plug_initial_condition(x, L=1.0, width=0.1),
save_history=True,

)

times = [0, 0.01, 0.02, 0.05, 0.1]
for t in times:

idx = int(t / result.dt)
if idx < len(result.t_history):

ax.plot(result.x, result.u_history[idx],
label=f't = {result.t_history[idx]:.3f}')

ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(f'Plug Diffusion (F = {F})')
ax.legend()

plt.tight_layout()

At F = 0.5, oscillations appear near the discontinuity (numerical Gibbs phenomenon). At
F = 0.25, the solution is smoother but the simulation takes more time steps.

3.75.5. Exercise 5: 2D Heat Diffusion

Simulate heat diffusion in a 2D square domain.

a) Set up a Gaussian “hot spot” centered at (0.5, 0.5).
b) Apply u = 0 on all boundaries (heat sink).
c) Visualize the temperature distribution at several times.

382

DRAFT

3. Diffusion Equations

d) Compute the decay rate of the maximum temperature.

ñ Solution

from src.diffu import solve_diffusion_2d, gaussian_2d_initial_condition
import numpy as np
import matplotlib.pyplot as plt

result = solve_diffusion_2d(
Lx=1.0, Ly=1.0, a=1.0, Nx=50, Ny=50, T=0.2, F=0.25,
I=lambda X, Y: gaussian_2d_initial_condition(X, Y, 1.0, 1.0, sigma=0.1),
save_history=True,

)

Plot at several times
fig, axes = plt.subplots(2, 3, figsize=(12, 8))
X, Y = np.meshgrid(result.x, result.y, indexing='ij')

times = [0, 0.04, 0.08, 0.12, 0.16, 0.2]
for ax, t in zip(axes.flat, times):

idx = int(t / result.dt)
if idx >= len(result.t_history):

idx = -1
c = ax.contourf(X, Y, result.u_history[idx], levels=20, cmap='hot')
ax.set_title(f't = {result.t_history[idx]:.3f}')
ax.set_aspect('equal')

plt.tight_layout()

Maximum temperature decay
max_temps = [result.u_history[i].max() for i in range(len(result.t_history))]
plt.figure()
plt.semilogy(result.t_history, max_temps)
plt.xlabel('Time')
plt.ylabel('Maximum temperature')
plt.title('Exponential Decay of Peak Temperature')
plt.grid(True)

3.75.6. Exercise 6: Variable Diffusion Coefficient

In heterogeneous materials, the diffusion coefficient varies in space.

a) Modify the solver to accept a spatially varying α(x).
b) Set up a two-layer problem: α = 1 for x < L/2, α = 0.1 for x > L/2.
c) Observe how heat diffuses differently in the two regions.

Hint: In Devito, use a Function instead of a Constant for the diffusion coefficient.

383

DRAFT

3. Diffusion Equations

ñ Solution

384

DRAFT

3. Diffusion Equations

from devito import Grid, TimeFunction, Function, Eq, solve, Operator
import numpy as np
import matplotlib.pyplot as plt

Setup
L = 2.0
Nx = 200
T = 0.5
grid = Grid(shape=(Nx + 1,), extent=(L,))

Variable diffusion coefficient
a = Function(name='a', grid=grid)
x_coords = np.linspace(0, L, Nx + 1)
a.data[:] = np.where(x_coords < L/2, 1.0, 0.1)

Temperature field
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

Initial condition: Gaussian in left region
sigma = 0.1
x0 = 0.5
u.data[0, :] = np.exp(-((x_coords - x0) / sigma)**2)

PDE: u_t = a(x) * u_xx
Note: Using variable coefficient
pde = u.dt - a * u.dx2
stencil = Eq(u.forward, solve(pde, u.forward))

Stability: use max(a) for dt calculation
dx = L / Nx
F = 0.5
dt = F * dx**2 / a.data.max()
Nt = int(T / dt)

Boundary conditions
bc_left = Eq(u[grid.stepping_dim + 1, 0], 0)
bc_right = Eq(u[grid.stepping_dim + 1, Nx], 0)

op = Operator([stencil, bc_left, bc_right])

Time stepping with history
history = [u.data[0, :].copy()]
times = [0]

for n in range(Nt):
op.apply(time_m=0, time_M=0, dt=dt)
u.data[0, :] = u.data[1, :]
if n % 100 == 0:

history.append(u.data[0, :].copy())
times.append((n + 1) * dt)

Plot
plt.figure(figsize=(10, 6))
for i, t in enumerate(times[::2]):

plt.plot(x_coords, history[::2][i], label=f't = {t:.2f}')
plt.axvline(L/2, color='k', linestyle='--', label='Interface')
plt.xlabel('x')
plt.ylabel('u')
plt.legend()
plt.title('Diffusion in Two-Layer Medium')

385

DRAFT

3. Diffusion Equations

Heat diffuses quickly in the left region (α = 1) but slowly in the right region (α = 0.1). The
solution shows a discontinuity in the temperature gradient at the interface.

3.75.7. Exercise 7: Manufactured Solution

Verify the implementation using the Method of Manufactured Solutions.

a) Choose a solution u(x, t) = x(L− x) · t.
b) Compute the source term f(x, t) needed to make this satisfy ut = αuxx + f .
c) Verify that the numerical solution matches the manufactured solution to machine precision.

386

DRAFT

3. Diffusion Equations

ñ Solution

387

DRAFT

3. Diffusion Equations

import sympy as sp

Define symbolic variables
x_sym, t_sym, a_sym, L_sym = sp.symbols('x t a L')

Manufactured solution
u_mms = x_sym * (L_sym - x_sym) * t_sym

Compute required source term
u_t = sp.diff(u_mms, t_sym)
u_xx = sp.diff(u_mms, x_sym, 2)
f_sym = u_t - a_sym * u_xx

print(f"Manufactured solution: u = {u_mms}")
print(f"Source term: f = {sp.simplify(f_sym)}")

f = x*(L-x) - a*(-2)*t = x*(L-x) + 2*a*t

Numerical verification
from devito import Grid, TimeFunction, Eq, solve, Operator, Constant
import numpy as np

L = 1.5
Nx = 20
a = 0.5
T = 0.2

dx = L / Nx
F = 0.5
dt = F * dx**2 / a
Nt = int(T / dt)

grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

x_coords = np.linspace(0, L, Nx + 1)

Source term as a function
def f_source(x, t):

return x * (L - x) + 2 * a * t

Exact solution
def u_exact(x, t):

return x * (L - x) * t

Initial condition (t=0 gives u=0)
u.data[0, :] = u_exact(x_coords, 0)

Include source term in the PDE (simplified for Forward Euler)
Manual time stepping with source
for n in range(Nt):

t_n = n * dt
u_new = (u.data[0, 1:-1] +

F * (u.data[0, :-2] - 2*u.data[0, 1:-1] + u.data[0, 2:]) +
dt * f_source(x_coords[1:-1], t_n))

u.data[0, 1:-1] = u_new
u.data[0, 0] = 0
u.data[0, -1] = 0

Compare
u_num = u.data[0, :]
u_ex = u_exact(x_coords, Nt * dt)
error = np.max(np.abs(u_num - u_ex))
print(f"\nMax error: {error:.2e}")
print("Expected: machine precision (~1e-14) for linear-in-t, quadratic-in-x solution")

388

DRAFT

3. Diffusion Equations

The Forward Euler scheme is exact for solutions linear in time and quadratic in space, so the
error should be near machine precision.

3.75.8. Exercise 8: Energy Decay

The “energy” of the diffusion equation, defined as:

E(t) = 1
2

∫ L

0
u2 dx

always decreases for the diffusion equation (with homogeneous BCs).

a) Compute E(t) numerically at each time step.
b) Verify that E(t) is monotonically decreasing.
c) Compare the decay rate to the theoretical prediction for the fundamental mode: E(t) ∝

e−2α(π/L)2t.

389

DRAFT

3. Diffusion Equations

ñ Solution

390

DRAFT

3. Diffusion Equations

from src.diffu import solve_diffusion_1d
import numpy as np
import matplotlib.pyplot as plt

result = solve_diffusion_1d(
L=1.0, a=1.0, Nx=100, T=1.0, F=0.5,
I=lambda x: np.sin(np.pi * x), # Fundamental mode
save_history=True,

)

Compute energy at each time step
dx = result.x[1] - result.x[0]
energies = []
for u_n in result.u_history:

E = 0.5 * np.trapz(u_n**2, result.x)
energies.append(E)

energies = np.array(energies)

Theoretical decay: E(t) = E(0) * exp(-2*a*(pi/L)ˆ2 * t)
L = 1.0
a = 1.0
decay_rate = 2 * a * (np.pi / L)**2
E_theory = energies[0] * np.exp(-decay_rate * result.t_history)

Plot
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.semilogy(result.t_history, energies, 'b-', label='Numerical')
plt.semilogy(result.t_history, E_theory, 'r--', label='Theory')
plt.xlabel('Time')
plt.ylabel('Energy E(t)')
plt.legend()
plt.title('Energy Decay')

plt.subplot(1, 2, 2)
Verify monotonic decrease
dE = np.diff(energies)
plt.plot(result.t_history[1:], dE)
plt.axhline(0, color='k', linestyle='--')
plt.xlabel('Time')
plt.ylabel('dE/dt')
plt.title('Energy Change (should be < 0)')
plt.tight_layout()

Compute observed decay rate
log_E = np.log(energies[energies > 0])
t_fit = result.t_history[:len(log_E)]
rate_obs = -np.polyfit(t_fit, log_E, 1)[0]
print(f"Observed decay rate: {rate_obs:.4f}")
print(f"Theoretical rate: {decay_rate:.4f}")

391

DRAFT

3. Diffusion Equations

3.75.9. Exercise 9: 2D Convergence Test

Verify second-order convergence for the 2D diffusion solver.

a) Use the exact 2D sinusoidal solution.
b) Run with Nx = Ny = 10, 20, 40, 80.
c) Compute the observed convergence rate.

ñ Solution

from src.diffu import convergence_test_diffusion_2d
import numpy as np
import matplotlib.pyplot as plt

grid_sizes, errors, rate = convergence_test_diffusion_2d(
grid_sizes=[10, 20, 40, 80],
T=0.05,
F=0.25,

)

print(f"Observed convergence rate: {rate:.2f}")

Plot
plt.figure(figsize=(8, 6))
dx = 1.0 / np.array(grid_sizes)
plt.loglog(dx, errors, 'bo-', label=f'Observed (rate={rate:.2f})')
plt.loglog(dx, errors[0]*(dx/dx[0])**2, 'r--', label='O(dxˆ2)')
plt.xlabel('Grid spacing')
plt.ylabel('L2 error')
plt.legend()
plt.title('2D Diffusion Convergence')
plt.grid(True)

The 2D solver should also achieve second-order spatial convergence when the Fourier number
is held fixed.

3.75.10. Exercise 10: Comparison with Legacy Code

Compare the Devito solver with the legacy NumPy implementation.

a) Run both solvers with the same parameters.
b) Verify they produce the same results.
c) Compare execution times.

392

DRAFT

3. Diffusion Equations

ñ Solution

from src.diffu import solve_diffusion_1d
from src.diffu.diffu1D_u0 import solver_FE_simple
import numpy as np
import time

Parameters
L = 1.0
a = 1.0
Nx = 200
F = 0.5
T = 0.1

dx = L / Nx
dt = F * dx**2 / a

Devito solver
t0 = time.perf_counter()
result_devito = solve_diffusion_1d(

L=L, a=a, Nx=Nx, T=T, F=F,
I=lambda x: np.sin(np.pi * x),

)
t_devito = time.perf_counter() - t0

Legacy NumPy solver
t0 = time.perf_counter()
u_legacy, x_legacy, t_legacy, cpu_legacy = solver_FE_simple(

I=lambda x: np.sin(np.pi * x),
a=a,
f=lambda x, t: 0,
L=L,
dt=dt,
F=F,
T=T,

)
t_numpy = time.perf_counter() - t0

Compare results
diff = np.max(np.abs(result_devito.u - u_legacy))
print(f"Maximum difference: {diff:.2e}")
print(f"Devito time: {t_devito:.4f} s")
print(f"NumPy time: {t_numpy:.4f} s")

Note: For small problems, NumPy may be faster due to compilation
overhead. For large problems, Devito's optimized C code wins.

393

DRAFT

3. Diffusion Equations

For large grids, Devito’s automatically generated and optimized C code typically outperforms
pure Python/NumPy implementations. The advantage grows with problem size.

394

DRAFT
4. Advection-Dominated Equations

Wave (Chapter Chapter 2) and diffusion (Chapter Chapter 3) equations are solved reliably by finite
difference methods. As soon as we add a first-order derivative in space, representing advective
transport (also known as convective transport), the numerics gets more complicated and intuitively
attractive methods no longer work well. We shall show how and why such methods fail and
provide remedies. The present chapter builds on basic knowledge about finite difference methods
for diffusion and wave equations, including the analysis by Fourier components, truncation error
analysis (Appendix Chapter 7), and compact difference notation.

ñ Remark on terminology

It is common to refer to movement of a fluid as convection, while advection is the transport of
some material dissolved or suspended in the fluid. We shall mostly choose the word advection
here, but both terms are in heavy use, and for mass transport of a substance the PDE has an
advection term, while the similar term for the heat equation is a convection term.

Much more comprehensive discussion of dispersion analysis for advection problems can be found
in the book by Duran (Duran 2010). This is a an excellent resource for further studies on the
topic of advection PDEs, with emphasis on generalizations to real geophysical problems. The book
by Fletcher (Fletcher 2013) also has a good overview of methods for advection and convection
problems.

4.1. 1D linear advection equations with constant velocity

We consider the pure advection model

∂u

∂t
+ v

∂u

∂x
= 0, x ∈ (0, L), t ∈ (0, T], (4.1)

u(x, 0) = I(x), x ∈ (0, L), (4.2)

u(0, t) = U0, t ∈ (0, T]. (4.3)

In (4.3), v is a given parameter, typically reflecting the transport velocity of a quantity u with a
flow. There is only one boundary condition (4.2) since the spatial derivative is only first order in
the PDE (4.3). The information at x = 0 and the initial condition get transported in the positive x
direction if v > 0 through the domain.

It is easiest to find the solution of (4.3) if we remove the boundary condition and consider a process
on the infinite domain (−∞,∞). The solution is simply

u(x, t) = I(x− vt) . (4.4)

395

DRAFT

4. Advection-Dominated Equations

This is also the solution we expect locally in a finite domain before boundary conditions have
reflected or modified the wave.

A particular feature of the solution (4.4) is that

u(xi, tn+1) = u(xi−1, tn), (4.5)

if xi = i∆x and tn = n∆t are points in a uniform mesh. We see this relation from

u(i∆x, (n+ 1)∆t) = I(i∆x− v(n+ 1)∆t)
= I((i− 1)∆x− vn∆t− v∆t+ ∆x)
= I((i− 1)∆x− vn∆t)
= u((i− 1)∆x, n∆t),

provided v = ∆x/∆t. So, whenever we see a scheme that collapses to

un+1 ∗ ∗i = u ∗ ∗i− 1n, (4.6)

for the PDE in question, we have in fact a scheme that reproduces the analytical solution, and many
of the schemes to be presented possess this nice property!

Finally, we add that a discussion of appropriate boundary conditions for the advection PDE in
multiple dimensions is a challenging topic beyond the scope of this text.

4.2. Simplest scheme: forward in time, centered in space

4.2.1. Method

A first attempt to solve a PDE like (4.3) will normally be to look for a time-discretization scheme
that is explicit so we avoid solving systems of linear equations. In space, we anticipate that centered
differences are most accurate and therefore best. These two arguments lead us to a Forward Euler
scheme in time and centered differences in space:

[D+
t u+ vD2xu = 0]ni

Written out, we see that this expression implies that

un+1 = un − 1
2C(un

i+1 − un
i−1),

with C as the Courant number
C = v∆t

∆x .

Implementation

A solver function for our scheme goes as follows.

396

DRAFT

4. Advection-Dominated Equations

import numpy as np

def solver_FECS(I, U0, v, L, dt, C, T, user_action=None):
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = v * dt / C
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v * dt / dx

u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
for i in range(1, Nx):

u[i] = u_n[i] - 0.5 * C * (u_n[i + 1] - u_n[i - 1])

u[0] = U0

if user_action is not None:
user_action(u, x, t, n + 1)

u_n, u = u, u_n

def solver(I, U0, v, L, dt, C, T, user_action=None, scheme="FE", periodic_bc=True):
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = v * dt / C
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v * dt / dx
print("dt=%g, dx=%g, Nx=%d, C=%g" % (dt, dx, Nx, C))

u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)
u_nm1 = np.zeros(Nx + 1)
integral = np.zeros(Nt + 1)

397

DRAFT

4. Advection-Dominated Equations

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

u[0] = U0

integral[0] = dx * (0.5 * u_n[0] + 0.5 * u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
if scheme == "FE":

if periodic_bc:
i = 0
u[i] = u_n[i] - 0.5 * C * (u_n[i + 1] - u_n[Nx])
u[Nx] = u[0]

for i in range(1, Nx):
u[i] = u_n[i] - 0.5 * C * (u_n[i + 1] - u_n[i - 1])

elif scheme == "LF":
if n == 0:

if periodic_bc:
i = 0
u_n[i] = u_n[Nx]

for i in range(1, Nx + 1):
u[i] = u_n[i] - C * (u_n[i] - u_n[i - 1])

else:
if periodic_bc:

i = 0
u[i] = u_nm1[i] - C * (u_n[i + 1] - u_n[Nx - 1])

for i in range(1, Nx):
u[i] = u_nm1[i] - C * (u_n[i + 1] - u_n[i - 1])

if periodic_bc:
u[Nx] = u[0]

elif scheme == "UP":
if periodic_bc:

u_n[0] = u_n[Nx]
for i in range(1, Nx + 1):

u[i] = u_n[i] - C * (u_n[i] - u_n[i - 1])
elif scheme == "LW":

if periodic_bc:
i = 0
u[i] = (

u_n[i]
- 0.5 * C * (u_n[i + 1] - u_n[Nx - 1])
+ 0.5 * C * (u_n[i + 1] - 2 * u_n[i] + u_n[Nx - 1])

)
for i in range(1, Nx):

398

DRAFT

4. Advection-Dominated Equations

u[i] = (
u_n[i]
- 0.5 * C * (u_n[i + 1] - u_n[i - 1])
+ 0.5 * C * (u_n[i + 1] - 2 * u_n[i] + u_n[i - 1])

)
if periodic_bc:

u[Nx] = u[0]
else:

raise ValueError('scheme="%s" not implemented' % scheme)

if not periodic_bc:
u[0] = U0

integral[n + 1] = dx * (0.5 * u[0] + 0.5 * u[Nx] + np.sum(u[1:-1]))

if user_action is not None:
user_action(u, x, t, n + 1)

u_nm1, u_n, u = u_n, u, u_nm1
print("I:", integral[n + 1])

return integral

def run_FECS(case):
"""Special function for the FECS case."""
if case == "gaussian":

def I(x):
return np.exp(-0.5 * ((x - L / 10) / sigma) ** 2)

elif case == "cosinehat":

def I(x):
return np.cos(np.pi * 5 / L * (x - L / 10)) if x < L / 5 else 0

L = 1.0
sigma = 0.02
legends = []

def plot(u, x, t, n):
"""Animate and plot every m steps in the same figure."""
plt.figure(1)
if n == 0:

lines = plot(x, u)
else:

lines[0].set_ydata(u)
plt.draw()

plt.figure(2)
m = 40

399

DRAFT

4. Advection-Dominated Equations

if n % m != 0:
return

print(
"t=%g, n=%d, u in [%g, %g] w/%d points" % (t[n], n, u.min(), u.max(), x.size)

)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
legends.append("t=%g" % t[n])

plt.ion()
U0 = 0
dt = 0.001
C = 1
T = 1
solver(I=I, U0=U0, v=1.0, L=L, dt=dt, C=C, T=T, user_action=plot)
plt.legend(legends, loc="lower left")
plt.savefig("tmp.png")
plt.savefig("tmp.pdf")
plt.axis([0, L, -0.75, 1.1])
plt.show()

def run(scheme="UP", case="gaussian", C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == "gaussian":

def I(x):
return np.exp(-0.5 * ((x - L / 10) / sigma) ** 2)

elif case == "cosinehat":

def I(x):
return np.cos(np.pi * 5 / L * (x - L / 10)) if 0 < x < L / 5 else 0

L = 1.0
sigma = 0.02
global lines # needs to be saved between calls to plot

def plot(u, x, t, n):
"""Plot t=0 and t=0.6 in the same figure."""
plt.figure(1)
global lines
if n == 0:

lines = plt.plot(x, u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.xlabel("x")
plt.ylabel("u")

400

DRAFT

4. Advection-Dominated Equations

plt.axes().set_aspect(0.15)
plt.savefig("tmp_%04d.png" % n)
plt.savefig("tmp_%04d.pdf" % n)

else:
lines[0].set_ydata(u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.title("C=%g, dt=%g, dx=%g" % (C, t[1] - t[0], x[1] - x[0]))
plt.legend(["t=%.3f" % t[n]])
plt.xlabel("x")
plt.ylabel("u")
plt.draw()
plt.savefig("tmp_%04d.png" % n)

plt.figure(2)
eps = 1e-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:

return
print(

"t=%g, n=%d, u in [%g, %g] w/%d points" % (t[n], n, u.min(), u.max(), x.size)
)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
plt.draw()
if n > 0:

y = [I(x_ - v * t[n]) for x_ in x]
plt.plot(x, y, "k--")
if abs(t[n] - 0.6) < eps:

filename = ("tmp_%s_dt%s_C%s" % (scheme, t[1] - t[0], C)).replace(".", "")
np.savez(filename, x=x, u=u, u_e=y)

plt.ion()
U0 = 0
T = 0.7
v = 1
codecs = dict(flv="flv", mp4="libx264", webm="libvpx", ogg="libtheora")
import glob
import os

for name in glob.glob("tmp_*.png"):
os.remove(name)

for ext in codecs:
name = "movie.%s" % ext
if os.path.isfile(name):

os.remove(name)

if scheme == "CN":
integral = solver_theta(I, v, L, dt, C, T, user_action=plot, FE=False)

401

DRAFT

4. Advection-Dominated Equations

elif scheme == "BE":
integral = solver_theta(I, v, L, dt, C, T, theta=1, user_action=plot)

else:
integral = solver(

I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T, scheme=scheme, user_action=plot
)

plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel("x")
plt.ylabel("u")
plt.axes().set_aspect(0.5) # no effect
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()
for codec in codecs:

cmd = "ffmpeg -i tmp_%%04d.png -r 25 -vcodec %s movie.%s" % (codecs[codec], codec)
os.system(cmd)

print("Integral of u:", integral.max(), integral.min())

def solver_theta(I, v, L, dt, C, T, theta=0.5, user_action=None, FE=False):
"""
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5).
Vectorized implementation and sparse (tridiagonal)
coefficient matrix.
"""
import time

t0 = time.perf_counter() # for measuring the CPU time
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = v * dt / C
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v * dt / dx
print("dt=%g, dx=%g, Nx=%d, C=%g" % (dt, dx, Nx, C))

u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)
u_nm1 = np.zeros(Nx + 1)
integral = np.zeros(Nt + 1)

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

402

DRAFT

4. Advection-Dominated Equations

integral[0] = dx * (0.5 * u_n[0] + 0.5 * u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx + 1)

diagonal[:] = 1
lower[:] = -0.5 * theta * C
upper[:] = 0.5 * theta * C
if FE:

diagonal[:] += 4.0 / 6
lower[:] += 1.0 / 6
upper[:] += 1.0 / 6

upper[0] = 0
lower[-1] = 0

diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

)

for n in range(0, Nt):
b[1:-1] = u_n[1:-1] + 0.5 * (1 - theta) * C * (u_n[:-2] - u_n[2:])
if FE:

b[1:-1] += 1.0 / 6 * u_n[:-2] + 1.0 / 6 * u_n[:-2] + 4.0 / 6 * u_n[1:-1]
b[0] = u_n[Nx]
b[-1] = u_n[0] # boundary conditions
b[0] = 0
b[-1] = 0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

integral[n + 1] = dx * (0.5 * u[0] + 0.5 * u[Nx] + np.sum(u[1:-1]))

u_n, u = u, u_n

403

DRAFT

4. Advection-Dominated Equations

t1 = time.perf_counter()
return integral

if __name__ == "__main__":
run(scheme="LW", case="gaussian", C=1, dt=0.01)

4.2.2. Test cases

The typical solution u has the shape of I and is transported at velocity v to the right (if v > 0).
Let us consider two different initial conditions, one smooth (Gaussian pulse) and one non-smooth
(half-truncated cosine pulse):

u(x, 0) = Ae− 1
2

(
x−L/10

σ

)2

,

u(x, 0) = A cos
(5π
L

(
x− L

10

))
, x <

L

5 else 0 . (4.7)

The parameter A is the maximum value of the initial condition.

Before doing numerical simulations, we scale the PDE problem and introduce x̄ = x/L and t̄ = vt/L,
which gives

∂ū

∂t̄
+ ∂ū

∂x̄
= 0 .

The unknown u is scaled by the maximum value of the initial condition: ū = u/max |I(x)| such
that |ū(x̄, 0)| ∈ [0, 1]. The scaled problem is solved by setting v = 1, L = 1, and A = 1. From now
on we drop the bars.

To run our test cases and plot the solution, we make the function

def run_FECS(case):
"""Special function for the FECS case."""
if case == "gaussian":

def I(x):
return np.exp(-0.5 * ((x - L / 10) / sigma) ** 2)

elif case == "cosinehat":

def I(x):
return np.cos(np.pi * 5 / L * (x - L / 10)) if x < L / 5 else 0

L = 1.0
sigma = 0.02
legends = []

def plot(u, x, t, n):
"""Animate and plot every m steps in the same figure."""
plt.figure(1)

404

DRAFT

4. Advection-Dominated Equations

if n == 0:
lines = plot(x, u)

else:
lines[0].set_ydata(u)
plt.draw()

plt.figure(2)
m = 40
if n % m != 0:

return
print(

"t=%g, n=%d, u in [%g, %g] w/%d points" % (t[n], n, u.min(), u.max(), x.size)
)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
legends.append("t=%g" % t[n])

plt.ion()
U0 = 0
dt = 0.001
C = 1
T = 1
solver(I=I, U0=U0, v=1.0, L=L, dt=dt, C=C, T=T, user_action=plot)
plt.legend(legends, loc="lower left")
plt.savefig("tmp.png")
plt.savefig("tmp.pdf")
plt.axis([0, L, -0.75, 1.1])
plt.show()

def run(scheme="UP", case="gaussian", C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == "gaussian":

def I(x):
return np.exp(-0.5 * ((x - L / 10) / sigma) ** 2)

elif case == "cosinehat":

def I(x):
return np.cos(np.pi * 5 / L * (x - L / 10)) if 0 < x < L / 5 else 0

L = 1.0
sigma = 0.02
global lines # needs to be saved between calls to plot

def plot(u, x, t, n):
"""Plot t=0 and t=0.6 in the same figure."""

405

DRAFT

4. Advection-Dominated Equations

plt.figure(1)
global lines
if n == 0:

lines = plt.plot(x, u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.xlabel("x")
plt.ylabel("u")
plt.axes().set_aspect(0.15)
plt.savefig("tmp_%04d.png" % n)
plt.savefig("tmp_%04d.pdf" % n)

else:
lines[0].set_ydata(u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.title("C=%g, dt=%g, dx=%g" % (C, t[1] - t[0], x[1] - x[0]))
plt.legend(["t=%.3f" % t[n]])
plt.xlabel("x")
plt.ylabel("u")
plt.draw()
plt.savefig("tmp_%04d.png" % n)

plt.figure(2)
eps = 1e-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:

return
print(

"t=%g, n=%d, u in [%g, %g] w/%d points" % (t[n], n, u.min(), u.max(), x.size)
)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
plt.draw()
if n > 0:

y = [I(x_ - v * t[n]) for x_ in x]
plt.plot(x, y, "k--")
if abs(t[n] - 0.6) < eps:

filename = ("tmp_%s_dt%s_C%s" % (scheme, t[1] - t[0], C)).replace(".", "")
np.savez(filename, x=x, u=u, u_e=y)

plt.ion()
U0 = 0
T = 0.7
v = 1
codecs = dict(flv="flv", mp4="libx264", webm="libvpx", ogg="libtheora")
import glob
import os

for name in glob.glob("tmp_*.png"):
os.remove(name)

406

DRAFT

4. Advection-Dominated Equations

for ext in codecs:
name = "movie.%s" % ext
if os.path.isfile(name):

os.remove(name)

if scheme == "CN":
integral = solver_theta(I, v, L, dt, C, T, user_action=plot, FE=False)

elif scheme == "BE":
integral = solver_theta(I, v, L, dt, C, T, theta=1, user_action=plot)

else:
integral = solver(

I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T, scheme=scheme, user_action=plot
)

plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel("x")
plt.ylabel("u")
plt.axes().set_aspect(0.5) # no effect
plt.savefig("tmp1.png")
plt.savefig("tmp1.pdf")
plt.show()
for codec in codecs:

cmd = "ffmpeg -i tmp_%%04d.png -r 25 -vcodec %s movie.%s" % (codecs[codec], codec)
os.system(cmd)

print("Integral of u:", integral.max(), integral.min())

def solver_theta(I, v, L, dt, C, T, theta=0.5, user_action=None, FE=False):
"""
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5).
Vectorized implementation and sparse (tridiagonal)
coefficient matrix.
"""
import time

t0 = time.perf_counter() # for measuring the CPU time
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points in time
dx = v * dt / C
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v * dt / dx
print("dt=%g, dx=%g, Nx=%d, C=%g" % (dt, dx, Nx, C))

407

DRAFT

4. Advection-Dominated Equations

u = np.zeros(Nx + 1)
u_n = np.zeros(Nx + 1)
u_nm1 = np.zeros(Nx + 1)
integral = np.zeros(Nt + 1)

for i in range(0, Nx + 1):
u_n[i] = I(x[i])

integral[0] = dx * (0.5 * u_n[0] + 0.5 * u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx + 1)

diagonal[:] = 1
lower[:] = -0.5 * theta * C
upper[:] = 0.5 * theta * C
if FE:

diagonal[:] += 4.0 / 6
lower[:] += 1.0 / 6
upper[:] += 1.0 / 6

upper[0] = 0
lower[-1] = 0

diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

)

for n in range(0, Nt):
b[1:-1] = u_n[1:-1] + 0.5 * (1 - theta) * C * (u_n[:-2] - u_n[2:])
if FE:

b[1:-1] += 1.0 / 6 * u_n[:-2] + 1.0 / 6 * u_n[:-2] + 4.0 / 6 * u_n[1:-1]
b[0] = u_n[Nx]
b[-1] = u_n[0] # boundary conditions
b[0] = 0
b[-1] = 0 # boundary conditions

408

DRAFT

4. Advection-Dominated Equations

u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n + 1)

integral[n + 1] = dx * (0.5 * u[0] + 0.5 * u[Nx] + np.sum(u[1:-1]))

u_n, u = u, u_n

t1 = time.perf_counter()
return integral

if __name__ == "__main__":
run(scheme="LW", case="gaussian", C=1, dt=0.01)

4.2.3. Bug?

Running either of the test cases, the plot becomes a mess, and the printout of u values in the plot
function reveals that u grows very quickly. We may reduce ∆t and make it very small, yet the
solution just grows. Such behavior points to a bug in the code. However, choosing a coarse mesh
and performing one time step by hand calculations produces the same numbers as the code, so the
implementation seems to be correct. The hypothesis is therefore that the solution is unstable.

4.3. Analysis of the scheme

It is easy to show that a typical Fourier component

u(x, t) = B sin(k(x− ct))

is a solution of our PDE for any spatial wave length λ = 2π/k and any amplitude B. (Since the
PDE to be investigated by this method is homogeneous and linear, B will always cancel out, so we
tend to skip this amplitude, but keep it here in the beginning for completeness.)

A general solution may be viewed as a collection of long and short waves with different amplitudes.
Algebraically, the work simplifies if we introduce the complex Fourier component

u(x, t) = Aeeikx,

with
Ae = Be−ikv∆t = Be−iCk∆x .

Note that |Ae| ≤ 1.

It turns out that many schemes also allow a Fourier wave component as solution, and we can use
the numerically computed values of Ae (denoted A) to learn about the quality of the scheme. Hence,
to analyze the difference scheme we have just implemented, we look at how it treats the Fourier
component

un
q = Aneikq∆x .

409

DRAFT

4. Advection-Dominated Equations

Inserting the numerical component in the scheme,

[D+
t Ae

ikq∆x + vD2xAe
ikq∆x = 0]nq ,

and making use of (6.5) results in

[eikq∆x(A− 1
∆t + v

1
∆xi sin(k∆x)) = 0]nq ,

which implies
A = 1− iC sin(k∆x) .

The numerical solution features the formula An. To find out whether An means growth in time, we
rewrite A in polar form: A = Are

iϕ, for real numbers Ar and ϕ, since we then have An = An
r e

iϕn.
The magnitude of An is An

r . In our case, Ar = (1 + C2 sin2(kx))1/2 > 1, so An
r will increase in time,

whereas the exact solution will not. Regardless of ∆t, we get unstable numerical solutions.

4.4. Leapfrog in time, centered differences in space

4.4.1. Method

Another explicit scheme is to do a “leapfrog” jump over 2∆t in time and combine it with central
differences in space:

[D2tu+ vD2xu = 0]ni ,

which results in the updating formula

un+1
i = un−1 ∗ ∗i− C(u ∗ ∗i+ 1n − un

i−1) .

A special scheme is needed to compute u1, but we leave that problem for now. Anyway, this special
scheme can be found in advec1D.py.

4.4.2. Implementation

We now need to work with three time levels and must modify our solver a bit:

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
...
u = np.zeros(Nx+1)
u_1 = np.zeros(Nx+1)
u_2 = np.zeros(Nx+1)
...
for n in range(0, Nt):

if scheme == 'FE':
for i in range(1, Nx):

u[i] = u_1[i] - 0.5*C*(u_1[i+1] - u_1[i-1])
elif scheme == 'LF':

410

https://github.com/devitocodes/devito_book/tree/main/src/advec/advec1D.py

DRAFT

4. Advection-Dominated Equations

if n == 0:
for i in range(1, Nx):

...
else:

for i in range(1, Nx+1):
u[i] = u_2[i] - C*(u_1[i] - u_1[i-1])

u_2, u_1, u = u_1, u, u_2

4.4.3. Running a test case

Let us try a coarse mesh such that the smooth Gaussian initial condition is represented by 1 at
mesh node 1 and 0 at all other nodes. This triangular initial condition should then be advected
to the right. Choosing scaled variables as ∆t = 0.1, T = 1, and C = 1 gives the plot in Figure
Figure 4.1, which is in fact identical to the exact solution (!).

Figure 4.1.: Exact solution obtained by Leapfrog scheme with ∆t = 0.1 and C = 1.

4.4.4. Running more test cases

We can run two types of initial conditions for C = 0.8: one very smooth with a Gaussian function
(Figure Figure 4.2) and one with a discontinuity in the first derivative (Figure Figure 4.3). Unless
we have a very fine mesh, as in the left plots in the figures, we get small ripples behind the main
wave, and this main wave has the amplitude reduced.

411

DRAFT

4. Advection-Dominated Equations

Figure 4.2.: Advection of a Gaussian function with a leapfrog scheme and C = 0.8, ∆t = 0.001 (left)
and ∆t = 0.01 (right).

Figure 4.3.: Advection of half a cosine function with a leapfrog scheme and C = 0.8, ∆t = 0.001
(left) and ∆t = 0.01 (right).

412

DRAFT

4. Advection-Dominated Equations

4.4.5. Analysis

We can perform a Fourier analysis again. Inserting the numerical Fourier component in the Leapfrog
scheme, we get

A2 − i2C sin(k∆x)A− 1 = 0,
and

A = −iC sin(k∆x)±
√

1− C2 sin2(k∆x) .

Rewriting to polar form, A = Are
iϕ, we see that Ar = 1, so the numerical component is neither

increasing nor decreasing in time, which is exactly what we want. However, for C > 1, the square
root can become complex valued, so stability is obtained only as long as C ≤ 1.

. Stability

For all the working schemes to be presented in this chapter, we get the stability condition
C ≤ 1:

∆t ≤ ∆x
v
.

This is called the CFL condition and applies almost always to successful schemes for advection
problems. Of course, one can use Crank-Nicolson or Backward Euler schemes for increased and
even unconditional stability (no ∆t restrictions), but these have other less desired damping
problems.

We introduce p = k∆x. The amplification factor now reads

A = −iC sin p±
√

1− C2 sin2 p,

and is to be compared to the exact amplification factor

Ae = e−ikv∆t = e−ikC∆x = e−iCp .

Section Section 4.10 compares numerical amplification factors of many schemes with the exact
expression.

4.5. Upwind differences in space

Since the PDE reflects transport of information along with a flow in positive x direction, when v > 0,
it could be natural to go (what is called) upstream and not downstream in the spatial derivative to
collect information about the change of the function. That is, we approximate

∂u

∂x
(xi, tn) ≈ [D−

x u]ni =
un

i − un
i−1

∆x .

This is called an upwind difference (the corresponding difference in the time direction would be
called a backward difference, and we could use that name in space too, but upwind is the common
name for a difference against the flow in advection problems). This spatial approximation does
magic compared to the scheme we had with Forward Euler in time and centered difference in space.
With an upwind difference,

[D+
t u+ vD−

x u = 0]ni , (4.8)

413

DRAFT

4. Advection-Dominated Equations

written out as
un+1

i = un
i − C(un ∗ ∗i− un ∗ ∗i− 1),

gives a generally popular and robust scheme that is stable if C ≤ 1. As with the Leapfrog scheme,
it becomes exact if C = 1, exactly as shown in Figure Figure 4.1. This is easy to see since C = 1
gives the property (4.6). However, any C < 1 gives a significant reduction in the amplitude of the
solution, which is a purely numerical effect, see Figures Figure 4.4 and Figure 4.5. Experiments
show, however, that reducing ∆t or ∆x, while keeping C reduces the error.

Figure 4.4.: Advection of a Gaussian function with a forward in time, upwind in space scheme and
C = 0.8, ∆t = 0.01 (left) and ∆t = 0.001 (right).

Figure 4.5.: Advection of half a cosine function with a forward in time, upwind in space scheme and
C = 0.8, ∆t = 0.001 (left) and ∆t = 0.01 (right).

The amplification factor can be computed using the formula (6.4),
A− 1

∆t + v

∆x(1− e−ik∆x) = 0,

which means
A = 1− C(1− cos(p)− i sin(p)) .

For C < 1 there is, unfortunately, non-physical damping of discrete Fourier components, giving rise
to reduced amplitude of un

i as in Figures Figure 4.4 and Figure 4.5. The damping seen in these
figures is quite severe. Stability requires C ≤ 1.

414

DRAFT

4. Advection-Dominated Equations

ñ Interpretation of upwind difference as artificial diffusion

One can interpret the upwind difference as extra, artificial diffusion in the equation. Solving

∂u

∂t
+ v

∂u

∂x
= ν

∂2u

∂x2 ,

by a forward difference in time and centered differences in space,

D+ ∗ ∗tu+ vD ∗ ∗2xu = νDxDxu]ni ,

actually gives the upwind scheme (4.8) if ν = v∆x/2. That is, solving the PDE ut + vux = 0
by centered differences in space and forward difference in time is unsuccessful, but by adding
some artificial diffusion νuxx, the method becomes stable:

∂u

∂t
+ v

∂u

∂x
=
(
α+ v∆x

2

)
∂2u

∂x2 .

4.6. Periodic boundary conditions

So far, we have given the value on the left boundary, un
0 , and used the scheme to propagate the

solution signal through the domain. Often, we want to follow such signals for long time series,
and periodic boundary conditions are then relevant since they enable a signal that leaves the right
boundary to immediately enter the left boundary and propagate through the domain again.

The periodic boundary condition is

u(0, t) = u(L, t), un
0 = un

Nx
.

It means that we in the first equation, involving un
0 , insert un

Nx
, and that we in the last equation,

involving un+1
Nx

insert un+1
0 . Normally, we can do this in the simple way that u_1[0] is updated as

u_1[Nx] at the beginning of a new time level.

In some schemes we may need un
Nx+1 and un

−1. Periodicity then means that these values are equal
to un

1 and un
Nx−1, respectively. For the upwind scheme, it is sufficient to set u_1[0]=u_1[Nx] at a

new time level before computing u[1]. This ensures that u[1] becomes right and at the next time
level u[0] at the current time level is correctly updated. For the Leapfrog scheme we must update
u[0] and u[Nx] using the scheme:

if periodic_bc:
i = 0
u[i] = u_2[i] - C*(u_1[i+1] - u_1[Nx-1])

for i in range(1, Nx):
u[i] = u_2[i] - C*(u_1[i+1] - u_1[i-1])

if periodic_bc:
u[Nx] = u[0]

415

DRAFT

4. Advection-Dominated Equations

4.7. Implementation

4.7.1. Test condition

Analytically, we can show that the integral in space under the u(x, t) curve is constant:

∫ L

0

(
∂u

∂t
+ v

∂u

∂x

)
dx = 0

∂

∂t

∫ L

0
udx = −

∫ L

0
v
∂u

∂x
dx

∂u

∂t

∫ L

0
udx = [vu]L0 = 0

as long as u(0) = u(L) = 0. We can therefore use the property∫ L

0
u(x, t)dx = const

as a partial verification during the simulation. Now, any numerical method with C ̸= 1 will deviate
from the constant, expected value, so the integral is a measure of the error in the scheme. The
integral can be computed by the Trapezoidal integration rule

dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))

if u is an array holding the solution.

4.7.2. The code

An appropriate solver function for multiple schemes may go as shown below.

def solver(I, U0, v, L, dt, C, T, user_action=None,
scheme='FE', periodic_bc=True):

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = v*dt/C
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v*dt/dx
print 'dt=%g, dx=%g, Nx=%d, C=%g' % (dt, dx, Nx, C)

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)
u_nm1 = np.zeros(Nx+1)

416

DRAFT

4. Advection-Dominated Equations

integral = np.zeros(Nt+1)

for i in range(0, Nx+1):
u_n[i] = I(x[i])

u[0] = U0

integral[0] = dx*(0.5*u_n[0] + 0.5*u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
if scheme == 'FE':

if periodic_bc:
i = 0
u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[Nx])
u[Nx] = u[0]

for i in range(1, Nx):
u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[i-1])

elif scheme == 'LF':
if n == 0:

if periodic_bc:
i = 0
u_n[i] = u_n[Nx]

for i in range(1, Nx+1):
u[i] = u_n[i] - C*(u_n[i] - u_n[i-1])

else:
if periodic_bc:

i = 0
u[i] = u_nm1[i] - C*(u_n[i+1] - u_n[Nx-1])

for i in range(1, Nx):
u[i] = u_nm1[i] - C*(u_n[i+1] - u_n[i-1])

if periodic_bc:
u[Nx] = u[0]

elif scheme == 'UP':
if periodic_bc:

u_n[0] = u_n[Nx]
for i in range(1, Nx+1):

u[i] = u_n[i] - C*(u_n[i] - u_n[i-1])
else:

raise ValueError('scheme="%s" not implemented' % scheme)

if not periodic_bc:
u[0] = U0

integral[n+1] = dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))

417

DRAFT

4. Advection-Dominated Equations

if user_action is not None:
user_action(u, x, t, n+1)

u_nm1, u_n, u = u_n, u, u_nm1
return integral

4.7.3. Solving a specific problem

We need to call up the solver function in some kind of administering problem solving function
that can solve specific problems and make appropriate visualization. The function below makes
both static plots, screen animation, and hard copy videos in various formats.

def run(scheme='UP', case='gaussian', C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == 'gaussian':
def I(x):

return np.exp(-0.5*((x-L/10)/sigma)**2)
elif case == 'cosinehat':

def I(x):
return np.cos(np.pi*5/L*(x - L/10)) if x < L/5 else 0

L = 1.0
sigma = 0.02
global lines # needs to be saved between calls to plot

def plot(u, x, t, n):
"""Plot t=0 and t=0.6 in the same figure."""
plt.figure(1)
global lines
if n == 0:

lines = plt.plot(x, u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.xlabel('x'); plt.ylabel('u')
plt.axes().set_aspect(0.15)
plt.savefig('tmp_%04d.png' % n)
plt.savefig('tmp_%04d.pdf' % n)

else:
lines[0].set_ydata(u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.title('C=%g, dt=%g, dx=%g' %

(C, t[1]-t[0], x[1]-x[0]))
plt.legend(['t=%.3f' % t[n]])
plt.xlabel('x'); plt.ylabel('u')
plt.draw()
plt.savefig('tmp_%04d.png' % n)

418

DRAFT

4. Advection-Dominated Equations

plt.figure(2)
eps = 1E-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:

return
print 't=%g, n=%d, u in [%g, %g] w/%d points' % \

(t[n], n, u.min(), u.max(), x.size)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
plt.hold('on')
plt.draw()
if n > 0:

y = [I(x_-v*t[n]) for x_ in x]
plt.plot(x, y, 'k--')
if abs(t[n] - 0.6) < eps:

filename = ('tmp_%s_dt%s_C%s' % \
(scheme, t[1]-t[0], C)).replace('.', '')

np.savez(filename, x=x, u=u, u_e=y)

plt.ion()
U0 = 0
T = 0.7
v = 1
codecs = dict(flv='flv', mp4='libx264', webm='libvpx',

ogg='libtheora')
import glob, os
for name in glob.glob('tmp_*.png'):

os.remove(name)
for ext in codecs:

name = 'movie.%s' % ext
if os.path.isfile(name):

os.remove(name)

integral = solver(
I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T,
scheme=scheme, user_action=plot)

plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel('x'); plt.ylabel('u')
plt.savefig('tmp1.png'); plt.savefig('tmp1.pdf')
plt.show()
for codec in codecs:

cmd = 'ffmpeg -i tmp_%%04d.png -r 25 -vcodec %s movie.%s' % \
(codecs[codec], codec)

os.system(cmd)
print 'Integral of u:', integral.max(), integral.min()

419

DRAFT

4. Advection-Dominated Equations

The complete code is found in the file advec1D.py.

4.8. A Crank-Nicolson discretization in time and centered differences in
space

Another obvious candidate for time discretization is the Crank-Nicolson method combined with
centered differences in space:

[Dtu]ni + v
1
2([D2xu]n+1 ∗ ∗i+ [D ∗ ∗2xu]ni) = 0 .

It can be nice to include the Backward Euler scheme too, via the θ-rule,

[Dtu]ni + vθ[D2xu]n+1 ∗ ∗i+ v(1− θ)[D ∗ ∗2xu]ni = 0 .

When θ is different from zero, this gives rise to an implicit scheme,

un+1 ∗ ∗i+ θ

2C(un+1 ∗ ∗i+ 1− un+1
i−1) = un

i −
1− θ

2 C(un ∗ ∗i+ 1− un ∗ ∗i− 1)

for i = 1, . . . , Nx − 1. At the boundaries we set u = 0 and simulate just to the point of time when
the signal hits the boundary (and gets reflected).

un+1 ∗ ∗0 = un+1 ∗ ∗Nx = 0 .

The elements on the diagonal in the matrix become:

Ai,i = 1, i = 0, . . . , Nx .

On the subdiagonal and superdiagonal we have

Ai−1,i = −θ2C, Ai+1,i = θ

2C, i = 1, . . . , Nx − 1,

with A0,1 = 0 and ANx−1,Nx = 0 due to the known boundary conditions. And finally, the right-hand
side becomes

b0 = un
Nx

bi = un
i −

1− θ
2 C(un ∗ ∗i+ 1− un ∗ ∗i− 1), i = 1, . . . , Nx − 1

bNx = un
0

The dispersion relation follows from inserting un
q = Aneikx and using the formula (6.5) for the

spatial differences:
A = 1− (1− θ)iC sin p

1 + θiC sin p .

Figure Figure 4.6 depicts a numerical solution for C = 0.8 and the Crank-Nicolson with severe
oscillations behind the main wave. These oscillations are damped as the mesh is refined. Switching

420

https://github.com/devitocodes/devito_book/tree/main/src/advec/advec1D.py

DRAFT

4. Advection-Dominated Equations

Figure 4.6.: Crank-Nicolson in time, centered in space, Gaussian profile, C = 0.8, ∆t = 0.01 (left)
and ∆t = 0.005 (right).

Figure 4.7.: Backward-Euler in time, centered in space, half a cosine profile, C = 0.8, ∆t = 0.01
(left) and ∆t = 0.005 (right).

421

DRAFT

4. Advection-Dominated Equations

to the Backward Euler scheme removes the oscillations, but the amplitude is significantly reduced.
One could expect that the discontinuous derivative in the initial condition of the half a cosine wave
would make even stronger demands on producing a smooth profile, but Figure Figure 4.7 shows
that also here, Backward-Euler is capable of producing a smooth profile. All in all, there are no
major differences between the Gaussian initial condition and the half a cosine condition for any of
the schemes.

4.9. The Lax-Wendroff method

The Lax-Wendroff method is based on three ideas:

1. Express the new unknown un+1
i in terms of known quantities at t = tn by means of a Taylor

polynomial of second degree.
2. Replace time-derivatives at t = tn by spatial derivatives, using the PDE.
3. Discretize the spatial derivatives by second-order differences so we achieve a scheme of accuracy
O(∆t2) +O(∆x2).

Let us follow the recipe. First we have the three-term Taylor polynomial,

un+1
i = un

i + ∆t
(
∂u

∂t

)n

i
+ 1

2∆t2
(
∂2u

∂t2

)n

i

.

From the PDE we have that temporal derivatives can be substituted by spatial derivatives:

∂u

∂t
= −v∂u

∂x
,

and furthermore,
∂2u

∂t2
= v2∂

2u

∂x2 .

Inserted in the Taylor polynomial formula, we get

un+1
i = un

i − v∆t
(
∂u

∂x

)n

i
+ 1

2∆t2v2
(
∂2u

∂x2

)n

i

.

To obtain second-order accuracy in space we now use central differences:

un+1
i = un

i − v∆t[D2xu]ni + 1
2∆t2v2[DxDxu]ni ,

or written out,

un+1
i = un

i −
1
2C(un ∗ ∗i+ 1− un ∗ ∗i− 1) + 1

2C
2(un

i+1 − 2un
i + un

i−1) .

This is the explicit Lax-Wendroff scheme.

422

DRAFT

4. Advection-Dominated Equations

ñ Lax-Wendroff works because of artificial viscosity

From the formulas above, we notice that the Lax-Wendroff method is nothing but a Forward
Euler, central difference in space scheme, which we have shown to be useless because of chronic
instability, plus an artificial diffusion term of strength 1

2∆tv2. It means that we can take an
unstable scheme and add some diffusion to stabilize it. This is a common trick to deal with
advection problems. Sometimes, the real physical diffusion is not sufficiently large to make
schemes stable, so then we also add artificial diffusion.

From an analysis similar to the ones carried out above, we get an amplification factor for the
Lax-Wendroff method that equals

A = 1− iC sin p− 2C2 sin2(p/2) .

This means that |A| = 1 and also that we have an exact solution if C = 1!

4.10. Analysis of dispersion relations

We have developed expressions for A(C, p) in the exact solution un
q = Aneikq∆x of the discrete

equations. Note that the Fourier component that solves the original PDE problem has no damping
and moves with constant velocity v. There are two basic errors in the numerical Fourier component:
there may be damping and the wave velocity may depend on C and p = k∆x.

The shortest wavelength that can be represented is λ = 2∆x. The corresponding k is k = 2π/λ =
π/∆x, so p = k∆x ∈ (0, π].

Given a complex A as a function of C and p, how can we visualize it? The two key ingredients in A
is the magnitude, reflecting damping or growth of the wave, and the angle, closely related to the
velocity of the wave. The Fourier component

Dneik(x−ct)

has damping D and wave velocity c. Let us express our A in polar form, A = Are
−iϕ, and insert

this expression in our discrete component un
q = Aneikq∆x = Aneikx:

un
q = An

r e
−iϕneikx = An

r e
i(kx−nϕ) = An

r e
i(k(x−ct)),

for
c = ϕ

k∆t .

Now,
k∆t = Ck∆x

v
= Cp

v
,

so
c = ϕv

Cp
.

An appropriate dimensionless quantity to plot is the scaled wave velocity c/v:

c

v
= ϕ

Cp
.

423

DRAFT

4. Advection-Dominated Equations

Figures Figure 4.8–Figure 4.13 contain dispersion curves, velocity and damping, for various values
of C. The horizontal axis shows the dimensionless frequency p of the wave, while the figures to
the left illustrate the error in wave velocity c/v (should ideally be 1 for all p), and the figures to
the right display the absolute value (magnitude) of the damping factor Ar. The curves are labeled
according to the table below.

Label Method
FE Forward Euler in time, centered difference in space
LF Leapfrog in time, centered difference in space
UP Forward Euler in time, upwind difference in space
CN Crank-Nicolson in time, centered difference in space
LW Lax-Wendroff’s method
BE Backward Euler in time, centered difference in space

Figure 4.8.: Dispersion relations for C = 1.

Figure 4.9.: Dispersion relations for C = 1.

The total damping after some time T = n∆t is reflected by Ar(C, p)n. Since normally Ar < 1, the
damping goes like A1/∆t

r and approaches zero as ∆t→ 0. The only way to reduce damping is to

424

DRAFT

4. Advection-Dominated Equations

Figure 4.10.: Dispersion relations for C = 0.8.

Figure 4.11.: Dispersion relations for C = 0.8.

Figure 4.12.: Dispersion relations for C = 0.5.

425

DRAFT

4. Advection-Dominated Equations

Figure 4.13.: Dispersion relations for C = 0.5.

increase C and/or the mesh resolution.

We can learn a lot from the dispersion relation plots. For example, looking at the plots for C = 1,
the schemes LW, UP, and LF has no amplitude reduction, but LF has wrong phase velocity for the
shortest wave in the mesh. This wave does not (normally) have enough amplitude to be seen, so
for all practical purposes, there is no damping or wrong velocity of the individual waves, so the
total shape of the wave is also correct. For the CN scheme, see Figure Figure 4.6, each individual
wave has its amplitude, but they move with different velocities, so after a while, we see some of
these waves lagging behind. For the BE scheme, see Figure Figure 4.7, all the shorter waves are so
heavily dampened that we cannot see them after a while. We see only the longest waves, which
have slightly wrong velocity, but visible amplitudes are sufficiently equal to produce what looks like
a smooth profile.

Another feature was that the Leapfrog method produced oscillations, while the upwind scheme
did not. Since the Leapfrog method does not dampen the shorter waves, which have wrong wave
velocities of order 10 percent, we can see these waves as noise. The upwind scheme, however,
dampens these waves. The same effect is also present in the Lax-Wendroff scheme, but the damping
of the intermediate waves is hardly present, so there is visible noise in the total signal.

We realize that, compared to pure truncation error analysis, dispersion analysis sheds more light
on the behavior of the computational schemes. Truncation analysis just says that Lax-Wendroff is
better than upwind, because of the increased order in time, but most people would say upwind is
the better one when looking at the plots.

4.11. Stationary 1D advection-diffusion

Now we pay attention to a physical process where advection (or convection) is in balance with
diffusion:

v
du

dx
= α

d2u

dx2 . (4.9)

For simplicity, we assume v and α to be constant, but the extension to the variable-coefficient case
is trivial. This equation can be viewed as the stationary limit of the corresponding time-dependent

426

DRAFT

4. Advection-Dominated Equations

problem
∂u

∂t
+ v

∂u

∂x
= α

∂2u

∂x2 . (4.10)

Equations of the form (4.9) or (4.10) arise from transport phenomena, either mass or heat transport.
One can also view the equations as a simple model problem for the Navier-Stokes equations. With the
chosen boundary conditions, the differential equation problem models the phenomenon of a boundary
layer, where the solution changes rapidly very close to the boundary. This is a characteristic of many
fluid flow problems, which makes strong demands to numerical methods. The fundamental numerical
difficulty is related to non-physical oscillations of the solution (instability) if the first-derivative
spatial term dominates over the second-derivative term.

4.12. A simple model problem

We consider (4.9) on [0, L] equipped with the boundary conditions u(0) = U0, u(L) = UL. By
scaling we can reduce the number of parameters in the problem. We scale x by x̄ = x/L, and u by

ū = u− U0
UL − U0

.

Inserted in the governing equation we get

v(UL − U0)
L

dū

dx̄
= α(UL − U0)

L2
d2ū

dx̄2 , ū(0) = 0, ū(1) = 1 .

Dropping the bars is common. We can then simplify to

du

dx
= ϵ

d2u

dx2 , u(0) = 0, u(1) = 1 . (4.11)

There are two competing effects in this equation: the advection term transports signals to the
right, while the diffusion term transports signals to the left and the right. The value u(0) = 0 is
transported through the domain if ϵ is small, and u ≈ 0 except in the vicinity of x = 1, where
u(1) = 1 and the diffusion transports some information about u(1) = 1 to the left. For large ϵ,
diffusion dominates and the u takes on the “average” value, i.e., u gets a linear variation from 0 to 1
throughout the domain.

It turns out that we can find an exact solution to the differential equation problem and also to
many of its discretizations. This is one reason why this model problem has been so successful in
designing and investigating numerical methods for mixed convection/advection and diffusion. The
exact solution reads

ue(x) = ex/ϵ − 1
e1/ϵ − 1

.

The forthcoming plots illustrate this function for various values of ϵ.

427

DRAFT

4. Advection-Dominated Equations

4.13. A centered finite difference scheme

The most obvious idea to solve (4.11) is to apply centered differences:

[D2xu = ϵDxDxu]i

for i = 1, . . . , Nx − 1, with u0 = 0 and uNx = 1. Note that this is a coupled system of algebraic
equations involving u0, . . . , uNx .

Written out, the scheme becomes a tridiagonal system

Ai−1,iui−1 +Ai,iui +Ai+1.iui+1 = 0,

for i = 1, . . . , Nx − 1

A0,0 = 1,

Ai−1,i = − 1
∆x − ϵ

1
∆x2 ,

Ai,i = 2ϵ 1
∆x2 ,

Ai,i+1 = 1
∆x − ϵ

1
∆x2 ,

ANx,Nx = 1 .

The right-hand side of the linear system is zero except bNx = 1.

Figure Figure 4.14 shows reasonably accurate results with $N_x=20 $ and Nx = 40 cells in x
direction and a value of ϵ = 0.1. Decreasing ϵ to 0.01 leads to oscillatory solutions as depicted in
Figure Figure 4.15. This is, unfortunately, a typical phenomenon in this type of problem: non-
physical oscillations arise for small ϵ unless the resolution Nx is big enough. Exercise Section 4.18
develops a precise criterion: u is oscillation-free if

∆x ≤ 2
ϵ
.

If we take the present model as a simplified model for a viscous boundary layer in real, industrial
fluid flow applications, ϵ ∼ 10−6 and millions of cells are required to resolve the boundary layer.
Fortunately, this is not strictly necessary as we have methods in the next section to overcome the
problem!

ñ Solver

A suitable solver for doing the experiments is presented below.

428

DRAFT

4. Advection-Dominated Equations

Figure 4.14.: Comparison of exact and numerical solution for ϵ = 0.1 and Nx = 20, 40 with centered
differences.

Figure 4.15.: Comparison of exact and numerical solution for ϵ = 0.01 and Nx = 20, 40 with centered
differences.

429

DRAFT

4. Advection-Dominated Equations

import numpy as np

def solver(eps, Nx, method="centered"):
"""
Solver for the two point boundary value problem u'=eps*u'',
u(0)=0, u(1)=1.
"""
x = np.linspace(0, 1, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
u = np.zeros(Nx + 1)

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx + 1)

if method == "centered":
diagonal[:] = 2 * eps / dx**2
lower[:] = -1 / dx - eps / dx**2
upper[:] = 1 / dx - eps / dx**2

elif method == "upwind":
diagonal[:] = 1 / dx + 2 * eps / dx**2
lower[:] = 1 / dx - eps / dx**2
upper[:] = -eps / dx**2

upper[0] = 0
lower[-1] = 0
diagonal[0] = diagonal[-1] = 1
b[-1] = 1.0

diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

)
u[:] = scipy.sparse.linalg.spsolve(A, b)
return u, x

430

DRAFT

4. Advection-Dominated Equations

4.14. Remedy: upwind finite difference scheme

The scheme can be stabilized by letting the advective transport term, which is the dominating term,
collect its information in the flow direction, i.e., upstream or upwind of the point in question. So,
instead of using a centered difference

du

dx
∗ ∗i ≈ u ∗ ∗i+ 1− ui−1

2∆x ,

we use the one-sided upwind difference

du

dx
∗ ∗i ≈ u ∗ ∗i− ui−1

∆x ,

in case v > 0. For v < 0 we set
du

dx
∗ ∗i ≈ u ∗ ∗i+ 1− ui

∆x ,

On compact operator notation form, our upwind scheme can be expressed as

[D−
x u = ϵDxDxu]i

provided v > 0 (and ϵ > 0).

We write out the equations and implement them as shown in the program in Section Section 4.13.
The results appear in Figures Figure 4.16 and Figure 4.17: no more oscillations!

Figure 4.16.: Comparison of exact and numerical solution for ϵ = 0.1 and Nx = 20, 40 with upwind
difference.

We see that the upwind scheme is always stable, but it gives a thicker boundary layer when the
centered scheme is also stable. Why the upwind scheme is always stable is easy to understand as
soon as we undertake the mathematical analysis in Exercise Section 4.18. Moreover, the thicker
layer (seemingly larger diffusion) can be understood by doing Exercise Section 4.19.

431

DRAFT

4. Advection-Dominated Equations

Figure 4.17.: Comparison of exact and numerical solution for ϵ = 0.01 and Nx = 20, 40 with upwind
difference.

ñ Exact solution for this model problem

It turns out that one can introduce a linear combination of the centered and upwind differences
for the first-derivative term in this model problem. One can then adjust the weight in the
linear combination so that the numerical solution becomes identical to the analytical solution
of the differential equation problem at any mesh point.

Now it is time to combine time-dependency, convection (advection) and diffusion into one equation:

∂u

∂t
+ v

∂u

∂x
= α

∂2u

∂x2 . (4.12)

4.14.1. Analytical insight

The diffusion is now dominated by convection, a wave, and diffusion, a loss of amplitude. One
possible analytical solution is a traveling Gaussian function

u(x, t) = B exp
(
−
(
x− vt

4at

))
.

This function moves with velocity v > 0 to the right (v < 0 to the left) due to convection, but at
the same time we have a damping e−16a2t2 from diffusion.

4.15. Forward in time, centered in space scheme

The Forward Euler for the diffusion equation is a successful scheme, but it has a very strict stability
condition. The similar Forward in time, centered in space strategy always gives unstable solutions for
the advection PDE. What happens when we have both diffusion and advection present at once?

[Dtu+ vD2xu = αDxDxu+ f]ni .

432

DRAFT

4. Advection-Dominated Equations

We expect that diffusion will stabilize the scheme, but that advection will destabilize it.

Another problem is non-physical oscillations, but not growing amplitudes, due to centered differences
in the advection term. There will hence be two types of instabilities to consider. Our analysis
showed that pure advection with centered differences in space needs some artificial diffusion to
become stable (and then it produces upwind differences for the advection term). Adding more
physical diffusion should further help the numerics to stabilize the non-physical oscillations.

The scheme is quickly implemented, but suffers from the need for small space and time steps,
according to this reasoning. A better approach is to get rid of the non-physical oscillations in space
by simply applying an upwind difference on the advection term.

4.16. Forward in time, upwind in space scheme

A good approximation for the pure advection equation is to use upwind discretization of the
advection term. We also know that centered differences are good for the diffusion term, so let us
combine these two discretizations:

[Dtu+ vD−
x u = αDxDxu+ f]ni ,

for v > 0. Use vD+u if v < 0. In this case the physical diffusion and the extra numerical diffusion
v∆x/2 will stabilize the solution, but give an overall too large reduction in amplitude compared
with the exact solution.

We may also interpret the upwind difference as artificial numerical diffusion and centered differences
in space everywhere, so the scheme can be expressed as

[Dtu+ vD−
2xu = α

v∆x
2 DxDxu+ f]ni .

4.17. Applications of advection equations

There are two major areas where advection and convection applications arise: transport of a
substance and heat transport in a fluid. To derive the models, we may look at the similar derivations
of diffusion models in Section Section 3.66, but change the assumption from a solid to fluid medium.
This gives rise to the extra advection or convection term v · ∇u. We briefly show how this is done.

Normally, transport in a fluid is dominated by the fluid flow and not diffusion, so we can neglect
diffusion compared to advection or convection. The end result is anyway an equation of the form

∂u

∂t
+ v · ∇u = 0 .

Transport of a substance {#sec-advec-app-mass}

The diffusion of a substance in Section Section 3.66.1 takes place in a solid medium, but in a fluid
we can have two transport mechanisms: one by diffusion and one by advection. The latter arises
from the fact that the substance particles are moved with the fluid velocity v such that the effective
flux now consists of two and not only one component as in (3.96):

q = −α∇c+ v .̧

433

DRAFT

4. Advection-Dominated Equations

Inserted in the equation ∇ · q = 0 we get the extra advection term ∇ · (v)̧. Very often we deal with
incompressible flows, ∇ · v = 0 such that the advective term becomes v · ∇c. The mass transport
equation for a substance then reads

∂c

∂t
+ v · ∇c = α∇2c .

Transport of heat in fluids {#sec-advec-app-heat}

The derivation of the heat equation in Section Section 3.66.2 is limited to heat transport in solid
bodies. If we turn the attention to heat transport in fluids, we get a material derivative of the
internal energy in (3.98),

De

dt
= −∇ · q,

and more terms if work by stresses is also included, where

De

dt
= ∂e

∂t
+ v · ∇e,

v being the velocity of the fluid. The convective term v ·∇e must therefore be added to the governing
equation, resulting typically in

ϱc

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k∇T) + f, (4.13)

where f is some external heating inside the medium.

4.18. Exercise: Analyze 1D stationary convection-diffusion problem

Explain the observations in the numerical experiments from Sections Section 4.13 and Section 4.14
by finding exact numerical solutions.

� The difference equations allow solutions on the form Ai, where

A is an unknown constant and i is a mesh point counter. There are two solutions for A,
so the general solution is a linear combination of the two, where the constants in the linear
combination are determined from the boundary conditions.

4.19. Exercise: Interpret upwind difference as artificial diffusion

Consider an upwind, one-sided difference approximation to a term du/dx in a differential equation.
Show that this formula can be expressed as a centered difference plus an artificial diffusion term
of strength proportional to ∆x. This means that introducing an upwind difference also means
introducing extra diffusion of order O(∆x).

434

DRAFT

4. Advection-Dominated Equations

4.20. Advection Schemes with Devito

Having understood the mathematical properties and challenges of advection schemes in the previous
sections, we now implement these methods using Devito’s symbolic framework. Devito allows us to
write the discrete equations in a form close to the mathematical notation while generating optimized
code automatically.

4.20.1. The Advection Equation

The 1D linear advection equation is:

∂u

∂t
+ c

∂u

∂x
= 0 (4.14)

where c is the advection velocity (assumed constant and positive). The exact solution is:

u(x, t) = I(x− ct)

which represents the initial condition I(x) traveling to the right at velocity c without change in
shape.

4.20.2. Devito Implementation Patterns

Unlike diffusion and wave equations, the advection equation requires careful treatment of the spatial
derivative. Centered differences lead to instability (as we saw with the FTCS scheme), so we need
alternative approaches:

Scheme Spatial Discretization Order Key Property
Upwind Backward difference 1st Stable, diffusive
Lax-Wendroff Centered + diffusion 2nd Less diffusion, some

dispersion
Lax-
Friedrichs

Averaged neighbors 1st Very diffusive but robust

All schemes require the CFL condition: C = c∆t/∆x ≤ 1.

435

DRAFT

4. Advection-Dominated Equations

Property Diffusion Wave Advection

4.20.3. Comparison with Wave and Diffusion Equations

The advection equation differs fundamentally from the diffusion and wave equations we’ve solved
previously:

Property Diffusion Wave Advection
time_order 1 2 1
Spatial deriv. 2nd (.dx2) 2nd (.laplace) 1st (.dx)
Stability F ≤ 0.5 C ≤ 1 C ≤ 1
Centered space Stable Stable Unstable
Information Spreads both ways Spreads both ways One direction

The key difference is that advection has directional information flow, which requires using upwind
differences rather than centered differences.

4.20.4. Upwind Scheme Implementation

The upwind scheme uses a backward difference for the spatial derivative when c > 0:

un+1
i − un

i

∆t + c
un

i − un
i−1

∆x = 0

which gives the update formula:

un+1
i = un

i − C(un
i − un

i−1) (4.15)

In Devito, we express this using shifted indexing:

from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np

def solve_advection_upwind(L, c, Nx, T, C, I):
"""Upwind scheme for 1D advection."""
Grid setup
dx = L / Nx
dt = C * dx / c

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=1)

436

DRAFT

4. Advection-Dominated Equations

Set initial condition
x_coords = np.linspace(0, L, Nx + 1)
u.data[0, :] = I(x_coords)

Courant number as constant
courant = Constant(name='C', value=C)

Upwind stencil: uˆ{n+1} = u - C*(u - u[x-dx])
u_minus = u.subs(x_dim, x_dim - x_dim.spacing)
stencil = u - courant * (u - u_minus)
update = Eq(u.forward, stencil)

op = Operator([update])
... time stepping loop

The key line is:

u_minus = u.subs(x_dim, x_dim - x_dim.spacing)

This creates a reference to un
i−1 by substituting x_dim - x_dim.spacing for x_dim in the

TimeFunction u.

4.20.5. Lax-Wendroff Scheme Implementation

The Lax-Wendroff scheme achieves second-order accuracy by including both a centered advection
term and a diffusion-like correction:

un+1
i = un

i −
C

2 (un
i+1 − un

i−1) + C2

2 (un
i+1 − 2un

i + un
i−1)

This can be written using Devito’s derivative operators:

def solve_advection_lax_wendroff(L, c, Nx, T, C, I):
"""Lax-Wendroff scheme for 1D advection."""
dx = L / Nx
dt = C * dx / c

grid = Grid(shape=(Nx + 1,), extent=(L,))
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

x_coords = np.linspace(0, L, Nx + 1)
u.data[0, :] = I(x_coords)

courant = Constant(name='C', value=C)

Lax-Wendroff: u - (C/2)*dx*u.dx + (C2/2)*dx2*u.dx2

437

DRAFT

4. Advection-Dominated Equations

u.dx = centered first derivative
u.dx2 = centered second derivative
stencil = u - 0.5*courant*dx*u.dx + 0.5*courant**2*dx**2*u.dx2
update = Eq(u.forward, stencil)

op = Operator([update])
... time stepping loop

Here we use Devito’s built-in derivative operators:

• u.dx computes the centered first derivative (ui+1 − ui−1)/(2∆x)
• u.dx2 computes the centered second derivative (ui+1 − 2ui + ui−1)/∆x2

4.20.6. Lax-Friedrichs Scheme Implementation

The Lax-Friedrichs scheme is simpler but more diffusive:

un+1
i = 1

2(un
i+1 + un

i−1)− C

2 (un
i+1 − un

i−1)

def solve_advection_lax_friedrichs(L, c, Nx, T, C, I):
"""Lax-Friedrichs scheme for 1D advection."""
dx = L / Nx
dt = C * dx / c

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=1)

x_coords = np.linspace(0, L, Nx + 1)
u.data[0, :] = I(x_coords)

courant = Constant(name='C', value=C)

Neighbor values
u_plus = u.subs(x_dim, x_dim + x_dim.spacing)
u_minus = u.subs(x_dim, x_dim - x_dim.spacing)

Lax-Friedrichs stencil
stencil = 0.5*(u_plus + u_minus) - 0.5*courant*(u_plus - u_minus)
update = Eq(u.forward, stencil)

op = Operator([update])
... time stepping loop

438

DRAFT

4. Advection-Dominated Equations

4.20.7. Periodic Boundary Conditions

For advection problems, periodic boundary conditions are often useful to study wave propagation
without boundary effects:

t_dim = grid.stepping_dim

Periodic BC: u[0] wraps to u[Nx], u[Nx] wraps to u[0]
bc_left = Eq(u[t_dim + 1, 0], u[t_dim, Nx])
bc_right = Eq(u[t_dim + 1, Nx], u[t_dim + 1, 0])

op = Operator([update, bc_left, bc_right])

4.20.8. Using the Solvers

The complete solver implementation in src/advec/advec1D_devito.py provides convenient inter-
faces:

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs,
exact_advection_periodic

)
import numpy as np

Define initial condition
def I(x):

return np.exp(-0.5*((x - 0.25)/0.05)**2)

Solve with upwind scheme
result = solve_advection_upwind(

L=1.0, c=1.0, Nx=100, T=0.5, C=0.8, I=I,
periodic_bc=True

)

Compare with exact solution
u_exact = exact_advection_periodic(result.x, result.t, c=1.0, L=1.0, I=I)
error = np.max(np.abs(result.u - u_exact))
print(f"Max error: {error:.6f}")

4.20.9. Scheme Comparison

The three schemes exhibit different numerical behaviors:

439

DRAFT

4. Advection-Dominated Equations

import matplotlib.pyplot as plt
from src.advec import (

solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs,
exact_advection_periodic

)
import numpy as np

def I(x):
return np.exp(-0.5*((x - 0.25)/0.05)**2)

L, c, Nx, T, C = 1.0, 1.0, 50, 0.5, 0.8

Solve with all three schemes
r_upwind = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)
r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
r_lf = solve_advection_lax_friedrichs(L, c, Nx, T, C, I, periodic_bc=True)

Exact solution
u_exact = exact_advection_periodic(r_upwind.x, r_upwind.t, c, L, I)

plt.figure(figsize=(10, 6))
plt.plot(r_upwind.x, u_exact, 'k-', lw=2, label='Exact')
plt.plot(r_upwind.x, r_upwind.u, 'b--', label='Upwind')
plt.plot(r_lw.x, r_lw.u, 'r-.', label='Lax-Wendroff')
plt.plot(r_lf.x, r_lf.u, 'g:', label='Lax-Friedrichs')
plt.legend()
plt.xlabel('x')
plt.ylabel('u')
plt.title(f'Advection: Nx={Nx}, C={C}, T={T}')
plt.savefig('advec_scheme_comparison.pdf')

The Lax-Wendroff scheme typically preserves the wave amplitude better but may show small
oscillations. The upwind and Lax-Friedrichs schemes are more diffusive, causing the wave to spread
and reduce in amplitude.

4.20.10. Convergence Testing

We can verify the convergence rates of the schemes:

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
convergence_test_advection

)

440

DRAFT

4. Advection-Dominated Equations

Test upwind (expect 1st order)
sizes, errors, rate = convergence_test_advection(

solve_advection_upwind,
grid_sizes=[25, 50, 100, 200],
T=0.25, C=0.8

)
print(f"Upwind convergence rate: {rate:.2f}") # ~1.0

Test Lax-Wendroff (expect 2nd order)
sizes, errors, rate = convergence_test_advection(

solve_advection_lax_wendroff,
grid_sizes=[25, 50, 100, 200],
T=0.25, C=0.8

)
print(f"Lax-Wendroff convergence rate: {rate:.2f}") # ~2.0

4.20.11. Key Takeaways

1. Upwind differencing is essential for stable advection schemes—centered differences in space
are unconditionally unstable.

2. The Courant number C = c∆t/∆x controls stability; all schemes require C ≤ 1.

3. Trade-offs exist between accuracy and numerical diffusion:

• Upwind: Stable, 1st order, diffusive
• Lax-Wendroff: 2nd order, less diffusion, may have small oscillations
• Lax-Friedrichs: Very stable, very diffusive

4. Devito’s shifted indexing via u.subs(x_dim, x_dim - x_dim.spacing) allows expressing
upwind differences naturally.

5. Periodic BCs are implemented by explicitly setting boundary equations that copy values
from the opposite end of the domain.

4.21. Exercises: Advection with Devito

4.21.1. Exercise 1: Verify CFL Stability Condition

The upwind scheme requires C ≤ 1 for stability.

a) Run the upwind solver with C = 0.5, C = 0.9, and C = 1.0 for T = 1.0 with a Gaussian initial
condition. Verify that all solutions remain bounded.

b) Try C = 1.01 and observe what happens. How quickly does the instability grow?

c) For C = 1.0 exactly, the upwind scheme should reproduce the exact solution (up to machine
precision). Verify this numerically.

441

DRAFT

4. Advection-Dominated Equations

� Solution

from src.advec import solve_advection_upwind, exact_advection_periodic
import numpy as np

def I(x):
return np.exp(-0.5*((x - 0.25)/0.05)**2)

Part a: Stable Courant numbers
for C in [0.5, 0.9, 1.0]:

result = solve_advection_upwind(
L=1.0, c=1.0, Nx=100, T=1.0, C=C, I=I

)
print(f"C={C}: u in [{result.u.min():.4f}, {result.u.max():.4f}]")

Part b: Slightly unstable
This will raise ValueError since C > 1 violates stability
try:

result = solve_advection_upwind(
L=1.0, c=1.0, Nx=100, T=1.0, C=1.01, I=I

)
except ValueError as e:

print(f"Error: {e}")

Part c: Exact at C=1
result = solve_advection_upwind(

L=1.0, c=1.0, Nx=100, T=0.5, C=1.0, I=I, periodic_bc=True
)
u_exact = exact_advection_periodic(result.x, result.t, 1.0, 1.0, I)
error = np.max(np.abs(result.u - u_exact))
print(f"Error at C=1: {error:.2e}") # Should be ~machine precision

4.21.2. Exercise 2: Compare Numerical Diffusion

The upwind scheme introduces numerical diffusion that causes the wave amplitude to decrease over
time.

a) Run all three schemes (upwind, Lax-Wendroff, Lax-Friedrichs) with C = 0.8 for T = 2.0 and
track the maximum value of u over time.

b) Plot the amplitude decay for each scheme. Which scheme preserves the amplitude best?

c) For the Gaussian initial condition, measure the “width” of the pulse (e.g., the distance between
points where u = 0.5 max(u)) at T = 0 and T = 2. How much has each scheme spread the pulse?

442

DRAFT

4. Advection-Dominated Equations

� Solution

443

DRAFT

4. Advection-Dominated Equations

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs

)
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.exp(-0.5*((x - 0.25)/0.05)**2)

Run all schemes with history
L, c, Nx, T, C = 1.0, 1.0, 100, 2.0, 0.8

r_up = solve_advection_upwind(L, c, Nx, T, C, I, save_history=True)
r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, save_history=True)
r_lf = solve_advection_lax_friedrichs(L, c, Nx, T, C, I, save_history=True)

Part b: Track amplitude decay
max_up = [np.max(u) for u in r_up.u_history]
max_lw = [np.max(u) for u in r_lw.u_history]
max_lf = [np.max(u) for u in r_lf.u_history]

plt.figure()
plt.plot(r_up.t_history, max_up, 'b-', label='Upwind')
plt.plot(r_lw.t_history, max_lw, 'r--', label='Lax-Wendroff')
plt.plot(r_lf.t_history, max_lf, 'g-.', label='Lax-Friedrichs')
plt.axhline(1.0, color='k', linestyle=':', label='Exact')
plt.xlabel('Time')
plt.ylabel('Max amplitude')
plt.legend()
plt.title('Amplitude decay comparison')
plt.savefig('amplitude_decay.pdf')

Part c: Measure pulse width at half-maximum
def half_width(u, x):

u_max = np.max(u)
half_max = 0.5 * u_max
above = np.where(u >= half_max)[0]
if len(above) > 0:

return x[above[-1]] - x[above[0]]
return 0

print("Initial width:", half_width(I(r_up.x), r_up.x))
print("Upwind width:", half_width(r_up.u, r_up.x))
print("Lax-Wendroff width:", half_width(r_lw.u, r_lw.x))
print("Lax-Friedrichs width:", half_width(r_lf.u, r_lf.x))

444

DRAFT

4. Advection-Dominated Equations

4.21.3. Exercise 3: Convergence Rate Verification

Verify the theoretical convergence rates: - Upwind: 1st order - Lax-Wendroff: 2nd order - Lax-
Friedrichs: 1st order

a) Use the convergence_test_advection function with grid sizes [25, 50, 100, 200, 400] and verify
the rates.

b) Create a log-log plot of error vs grid size for all three schemes.

c) What happens to the convergence rate if you use a discontinuous initial condition (step function)
instead of the smooth Gaussian?

445

DRAFT

4. Advection-Dominated Equations

� Solution

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs,
convergence_test_advection

)
import numpy as np
import matplotlib.pyplot as plt

Part a: Verify rates
grid_sizes = [25, 50, 100, 200, 400]

sizes_up, err_up, rate_up = convergence_test_advection(
solve_advection_upwind, grid_sizes, T=0.25, C=0.8

)
print(f"Upwind rate: {rate_up:.2f}")

sizes_lw, err_lw, rate_lw = convergence_test_advection(
solve_advection_lax_wendroff, grid_sizes, T=0.25, C=0.8

)
print(f"Lax-Wendroff rate: {rate_lw:.2f}")

sizes_lf, err_lf, rate_lf = convergence_test_advection(
solve_advection_lax_friedrichs, grid_sizes, T=0.25, C=0.8

)
print(f"Lax-Friedrichs rate: {rate_lf:.2f}")

Part b: Log-log plot
plt.figure()
plt.loglog(sizes_up, err_up, 'b-o', label=f'Upwind (rate={rate_up:.2f})')
plt.loglog(sizes_lw, err_lw, 'r-s', label=f'Lax-Wendroff (rate={rate_lw:.2f})')
plt.loglog(sizes_lf, err_lf, 'g-ˆ', label=f'Lax-Friedrichs (rate={rate_lf:.2f})')

Reference slopes
h = np.array(sizes_up)
plt.loglog(h, err_up[0]*(h[0]/h), 'k--', alpha=0.5, label='O(h)')
plt.loglog(h, err_lw[0]*(h[0]/h)**2, 'k:', alpha=0.5, label='O(h2)')

plt.xlabel('Grid points')
plt.ylabel('L2 Error')
plt.legend()
plt.title('Convergence comparison')
plt.gca().invert_xaxis()
plt.savefig('convergence_advec.pdf')

446

DRAFT

4. Advection-Dominated Equations

4.21.4. Exercise 4: Step Function Advection

A step (Heaviside) function is a challenging test case for advection schemes because of the disconti-
nuity.

a) Advect a step function from x = 0.25 using all three schemes with C = 0.8 and ∆x = 0.01.
Compare the results at T = 0.5.

b) The Lax-Wendroff scheme may show oscillations near the discontinuity (Gibbs phenomenon).
Observe and document this behavior.

c) How does the upwind scheme handle the step? Does it preserve the sharp transition?

447

DRAFT

4. Advection-Dominated Equations

� Solution

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs,
step_initial_condition,
exact_advection_periodic

)
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.where(x < 0.25, 1.0, 0.0)

L, c, Nx, T, C = 1.0, 1.0, 100, 0.5, 0.8

r_up = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)
r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
r_lf = solve_advection_lax_friedrichs(L, c, Nx, T, C, I, periodic_bc=True)

u_exact = exact_advection_periodic(r_up.x, r_up.t, c, L, I)

plt.figure(figsize=(10, 6))
plt.plot(r_up.x, u_exact, 'k-', lw=2, label='Exact')
plt.plot(r_up.x, r_up.u, 'b--', label='Upwind')
plt.plot(r_lw.x, r_lw.u, 'r-.', label='Lax-Wendroff')
plt.plot(r_lf.x, r_lf.u, 'g:', label='Lax-Friedrichs')
plt.legend()
plt.xlabel('x')
plt.ylabel('u')
plt.title('Step function advection')
plt.ylim(-0.2, 1.3)
plt.savefig('step_advection.pdf')

Note Lax-Wendroff oscillations near discontinuity

4.21.5. Exercise 5: Long-Time Integration

With periodic boundary conditions, a wave should return to its starting position after traveling one
domain length.

a) Advect a Gaussian pulse for T = 1.0 (one complete cycle with c = 1, L = 1) and compare the
final solution to the initial condition.

b) Run for T = 10.0 (10 cycles) and measure how much the amplitude has decayed for each
scheme.

448

DRAFT

4. Advection-Dominated Equations

c) For each scheme, estimate after how many cycles the peak amplitude drops to 50% of its initial
value.

� Solution

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs

)
import numpy as np

def I(x):
return np.exp(-0.5*((x - 0.25)/0.05)**2)

L, c, Nx, C = 1.0, 1.0, 100, 0.8

Part a: One cycle
for T in [1.0, 10.0]:

r_up = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)
r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
r_lf = solve_advection_lax_friedrichs(L, c, Nx, T, C, I, periodic_bc=True)

print(f"\nT = {T} ({int(T)} cycles):")
print(f" Upwind: max = {r_up.u.max():.4f}")
print(f" Lax-Wendroff: max = {r_lw.u.max():.4f}")
print(f" Lax-Friedrichs: max = {r_lf.u.max():.4f}")

Part c: Find half-life
def find_halflife(solver_func, L, c, Nx, C, I, max_cycles=100):

for n in range(1, max_cycles + 1):
T = float(n)
result = solver_func(L, c, Nx, T, C, I, periodic_bc=True)
if result.u.max() < 0.5:

return n
return max_cycles

print("\nCycles to 50% amplitude:")
print(f" Upwind: {find_halflife(solve_advection_upwind, L, c, Nx, C, I)}")
print(f" Lax-Wendroff: {find_halflife(solve_advection_lax_wendroff, L, c, Nx, C, I)}")
print(f" Lax-Friedrichs: {find_halflife(solve_advection_lax_friedrichs, L, c, Nx, C, I)}")

4.21.6. Exercise 6: Effect of Courant Number

The Courant number C affects both stability and accuracy.

449

DRAFT

4. Advection-Dominated Equations

a) For the upwind scheme, run with C = 0.2, 0.5, 0.8, and 1.0 for T = 1.0. Plot the final solutions
on the same figure.

b) Which value of C gives the best accuracy? Why?

c) Measure the L2 error for each C value and create a plot of error vs. C.

450

DRAFT

4. Advection-Dominated Equations

� Solution

from src.advec import solve_advection_upwind, exact_advection_periodic
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.exp(-0.5*((x - 0.25)/0.05)**2)

L, c, Nx, T = 1.0, 1.0, 100, 1.0
C_values = [0.2, 0.5, 0.8, 1.0]

plt.figure(figsize=(10, 6))

errors = []
for C in C_values:

result = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)
plt.plot(result.x, result.u, label=f'C={C}')

u_exact = exact_advection_periodic(result.x, result.t, c, L, I)
dx = L / Nx
error = np.sqrt(dx * np.sum((result.u - u_exact)**2))
errors.append(error)

Add exact solution
u_exact = exact_advection_periodic(result.x, T, c, L, I)
plt.plot(result.x, u_exact, 'k--', lw=2, label='Exact')

plt.legend()
plt.xlabel('x')
plt.ylabel('u')
plt.title('Effect of Courant number on upwind scheme')
plt.savefig('courant_effect.pdf')

Error vs C
plt.figure()
plt.plot(C_values, errors, 'bo-')
plt.xlabel('Courant number C')
plt.ylabel('L2 Error')
plt.title('Error vs Courant number (Upwind)')
plt.savefig('error_vs_courant.pdf')

C=1 gives exact solution for upwind
print("Errors:", dict(zip(C_values, errors)))

451

DRAFT

4. Advection-Dominated Equations

4.21.7. Exercise 7: Variable Velocity Field

Modify the upwind solver to handle a spatially varying velocity c(x).

a) Implement an upwind scheme for:

∂u

∂t
+ c(x)∂u

∂x
= 0

where the local Courant number varies: Ci = c(xi)∆t/∆x.

b) Test with c(x) = 1 + 0.5 sin(2πx) and observe how the wave stretches and compresses as it moves
through regions of different velocity.

452

DRAFT

4. Advection-Dominated Equations

� Solution

453

DRAFT

4. Advection-Dominated Equations

from devito import Grid, TimeFunction, Function, Eq, Operator, Constant
import numpy as np
import matplotlib.pyplot as plt

def solve_advection_variable_c(L, c_func, Nx, T, dt, I):
"""Upwind scheme with spatially varying velocity."""
grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions
t_dim = grid.stepping_dim

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=1)
c = Function(name='c', grid=grid)

x_coords = np.linspace(0, L, Nx + 1)
u.data[0, :] = I(x_coords)
c.data[:] = c_func(x_coords)

dx = L / Nx
dt_const = Constant(name='dt', value=dt)
dx_const = Constant(name='dx', value=dx)

Local Courant number: C_i = c_i * dt / dx
Upwind: uˆ{n+1} = u - (c*dt/dx)*(u - u[x-dx])
u_minus = u.subs(x_dim, x_dim - x_dim.spacing)
stencil = u - (c * dt_const / dx_const) * (u - u_minus)
update = Eq(u.forward, stencil)

Periodic BCs
bc_left = Eq(u[t_dim + 1, 0], u[t_dim, Nx])
bc_right = Eq(u[t_dim + 1, Nx], u[t_dim + 1, 0])

op = Operator([update, bc_left, bc_right])

Nt = int(round(T / dt))
for n in range(Nt):

op.apply(time_m=n, time_M=n, dt=dt)

return u.data[Nt % 2, :].copy(), x_coords

Test with variable velocity
def I(x):

return np.exp(-0.5*((x - 0.25)/0.05)**2)

def c_var(x):
return 1.0 + 0.5*np.sin(2*np.pi*x)

L, Nx = 1.0, 200
dx = L / Nx
c_max = 1.5 # max of c(x)
dt = 0.5 * dx / c_max # ensure CFL < 1 everywhere

u_final, x = solve_advection_variable_c(L, c_var, Nx, T=1.0, dt=dt, I=I)

plt.figure(figsize=(10, 6))
plt.plot(x, I(x), 'k--', label='Initial')
plt.plot(x, u_final, 'b-', label='Final (T=1)')
plt.xlabel('x')
plt.ylabel('u')
plt.legend()
plt.title('Advection with variable velocity c(x) = 1 + 0.5*sin(2*pi*x)')
plt.savefig('variable_velocity.pdf')

454

DRAFT

4. Advection-Dominated Equations

4.21.8. Exercise 8: Advection-Diffusion Equation

Combine advection and diffusion:
∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2

a) Implement a solver using upwind for advection and centered differences for diffusion.

b) Compare the behavior for ν = 0 (pure advection), ν = 0.01 (advection-dominated), and ν = 0.1
(diffusion-dominated).

c) What is the stability condition when both advection and diffusion are present?

455

DRAFT

4. Advection-Dominated Equations

� Solution

456

DRAFT

4. Advection-Dominated Equations

from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np
import matplotlib.pyplot as plt

def solve_advec_diff(L, c, nu, Nx, T, C, I):
"""Advection-diffusion with upwind advection + centered diffusion."""
dx = L / Nx

Stability requires both CFL and diffusion conditions
dt_adv = C * dx / c if c > 0 else np.inf
dt_diff = 0.4 * dx**2 / nu if nu > 0 else np.inf
dt = min(dt_adv, dt_diff)

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions
t_dim = grid.stepping_dim

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

x_coords = np.linspace(0, L, Nx + 1)
u.data[0, :] = I(x_coords)

C_const = Constant(name='C', value=c * dt / dx)
F_const = Constant(name='F', value=nu * dt / dx**2)

Upwind advection + centered diffusion
u_minus = u.subs(x_dim, x_dim - x_dim.spacing)
advection = C_const * (u - u_minus)
diffusion = F_const * dx**2 * u.dx2

stencil = u - advection + diffusion
update = Eq(u.forward, stencil)

Periodic BCs
bc_left = Eq(u[t_dim + 1, 0], u[t_dim, Nx])
bc_right = Eq(u[t_dim + 1, Nx], u[t_dim + 1, 0])

op = Operator([update, bc_left, bc_right])

Nt = int(round(T / dt))
for n in range(Nt):

op.apply(time_m=n, time_M=n, dt=dt)

return u.data[Nt % 2, :].copy(), x_coords

def I(x):
return np.exp(-0.5*((x - 0.25)/0.05)**2)

L, c, Nx, T, C = 1.0, 1.0, 100, 0.5, 0.8

plt.figure(figsize=(10, 6))

for nu, style in [(0.0, 'b-'), (0.01, 'r--'), (0.1, 'g-.')]:
u, x = solve_advec_diff(L, c, nu, Nx, T, C, I)
plt.plot(x, u, style, label=f'nu={nu}')

plt.plot(x, I(x), 'k:', lw=2, label='Initial')
plt.legend()
plt.xlabel('x')
plt.ylabel('u')
plt.title('Advection-diffusion equation')
plt.savefig('advec_diff.pdf')

457

DRAFT

4. Advection-Dominated Equations

4.21.9. Exercise 9: Cosine Hat Initial Condition

The “cosine hat” is a smoother alternative to the step function:

I(x) =

cos
(

5π
L (x− L/10)

)
if x < L/5

0 otherwise

a) Implement this initial condition and advect it using all three schemes.

b) Compare the behavior at the sharp cutoff (x = L/5) between schemes.

c) Does the Lax-Wendroff scheme show oscillations for this smoother discontinuity?

458

DRAFT

4. Advection-Dominated Equations

� Solution

from src.advec import (
solve_advection_upwind,
solve_advection_lax_wendroff,
solve_advection_lax_friedrichs

)
import numpy as np
import matplotlib.pyplot as plt

def cosine_hat(x, L=1.0):
"""Cosine hat initial condition."""
result = np.zeros_like(x)
mask = x < L/5
result[mask] = np.cos(5*np.pi/L * (x[mask] - L/10))
return result

def I(x):
return cosine_hat(x, L=1.0)

L, c, Nx, T, C = 1.0, 1.0, 100, 0.5, 0.8

r_up = solve_advection_upwind(L, c, Nx, T, C, I, periodic_bc=True)
r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
r_lf = solve_advection_lax_friedrichs(L, c, Nx, T, C, I, periodic_bc=True)

plt.figure(figsize=(10, 6))
plt.plot(r_up.x, I(r_up.x - c*T), 'k-', lw=2, label='Exact')
plt.plot(r_up.x, r_up.u, 'b--', label='Upwind')
plt.plot(r_lw.x, r_lw.u, 'r-.', label='Lax-Wendroff')
plt.plot(r_lf.x, r_lf.u, 'g:', label='Lax-Friedrichs')
plt.legend()
plt.xlabel('x')
plt.ylabel('u')
plt.title('Cosine hat advection')
plt.savefig('cosinehat.pdf')

4.21.10. Exercise 10: Implement Leapfrog Scheme

The leapfrog scheme uses a two-level time difference:

un+1
i − un−1

i

2∆t + c
un

i+1 − un
i−1

2∆x = 0

This is a three-time-level scheme requiring special initialization for u1.

a) Implement the leapfrog scheme using Devito with time_order=2.

459

DRAFT

4. Advection-Dominated Equations

b) Use the upwind scheme to compute u1 from u0, then switch to leapfrog.

c) Compare the leapfrog scheme’s dispersion properties with Lax-Wendroff. Does leapfrog preserve
amplitude better?

460

DRAFT

4. Advection-Dominated Equations

� Solution

461

DRAFT

4. Advection-Dominated Equations

from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np
import matplotlib.pyplot as plt

def solve_advection_leapfrog(L, c, Nx, T, C, I):
"""Leapfrog scheme with upwind initialization."""
dx = L / Nx
dt = C * dx / c

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim, = grid.dimensions
t_dim = grid.stepping_dim

time_order=2 gives access to u, u.forward, u.backward
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=1)

x_coords = np.linspace(0, L, Nx + 1)

Set uˆ0
u.data[0, :] = I(x_coords)

First step: use upwind to get uˆ1
courant = Constant(name='C', value=C)
u_minus = u.subs(x_dim, x_dim - x_dim.spacing)
upwind_stencil = u - courant * (u - u_minus)

For leapfrog: uˆ{n+1} = uˆ{n-1} - C*(uˆn_{i+1} - uˆn_{i-1})
u_plus_x = u.subs(x_dim, x_dim + x_dim.spacing)
u_minus_x = u.subs(x_dim, x_dim - x_dim.spacing)
leapfrog_stencil = u.backward - courant * (u_plus_x - u_minus_x)

Periodic BCs
bc_left = Eq(u[t_dim + 1, 0], u[t_dim, Nx])
bc_right = Eq(u[t_dim + 1, Nx], u[t_dim + 1, 0])

First step with upwind
update_first = Eq(u.forward, upwind_stencil)
op_first = Operator([update_first, bc_left, bc_right])
op_first.apply(time_m=0, time_M=0, dt=dt)

Leapfrog for remaining steps
update_lf = Eq(u.forward, leapfrog_stencil)
op_lf = Operator([update_lf, bc_left, bc_right])

Nt = int(round(T / dt))
for n in range(1, Nt):

op_lf.apply(time_m=n, time_M=n, dt=dt)

return u.data[Nt % 3, :].copy(), x_coords

def I(x):
return np.exp(-0.5*((x - 0.25)/0.05)**2)

L, c, Nx, T, C = 1.0, 1.0, 100, 1.0, 0.8

u_lf, x = solve_advection_leapfrog(L, c, Nx, T, C, I)

Compare with Lax-Wendroff
from src.advec import solve_advection_lax_wendroff, exact_advection_periodic
r_lw = solve_advection_lax_wendroff(L, c, Nx, T, C, I, periodic_bc=True)
u_exact = exact_advection_periodic(x, T, c, L, I)

plt.figure()
plt.plot(x, u_exact, 'k-', lw=2, label='Exact')
plt.plot(x, u_lf, 'b--', label='Leapfrog')
plt.plot(x, r_lw.u, 'r-.', label='Lax-Wendroff')
plt.legend()
plt.xlabel('x')
plt.ylabel('u')
plt.title('Leapfrog vs Lax-Wendroff')
plt.savefig('leapfrog.pdf')

print(f"Leapfrog max: {u_lf.max():.4f}")
print(f"Lax-Wendroff max: {r_lw.u.max():.4f}")

462

DRAFT
5. Nonlinear Problems

5.1. Linear versus nonlinear equations

5.1.1. Algebraic equations

A linear, scalar, algebraic equation in x has the form

ax+ b = 0,

for arbitrary real constants a and b. The unknown is a number x. All other algebraic equations,
e.g., x2 + ax+ b = 0, are nonlinear. The typical feature in a nonlinear algebraic equation is that the
unknown appears in products with itself, like x2 or ex = 1 + x+ 1

2x
2 + 1

3!x
3 + · · ·.

We know how to solve a linear algebraic equation, x = −b/a, but there are no general methods for
finding the exact solutions of nonlinear algebraic equations, except for very special cases (quadratic
equations constitute a primary example). A nonlinear algebraic equation may have no solution,
one solution, or many solutions. The tools for solving nonlinear algebraic equations are iterative
methods, where we construct a series of linear equations, which we know how to solve, and hope
that the solutions of the linear equations converge to a solution of the nonlinear equation we want
to solve. Typical methods for nonlinear algebraic equation equations are Newton’s method, the
Bisection method, and the Secant method.

5.1.2. Differential equations

The unknown in a differential equation is a function and not a number. In a linear differential
equation, all terms involving the unknown function are linear in the unknown function or its
derivatives. Linear here means that the unknown function, or a derivative of it, is multiplied by a
number or a known function. All other differential equations are non-linear.

The easiest way to see if an equation is nonlinear, is to spot nonlinear terms where the unknown
function or its derivatives are multiplied by each other. For example, in

u′(t) = −a(t)u(t) + b(t),

the terms involving the unknown function u are linear: u′ contains the derivative of the unknown
function multiplied by unity, and au contains the unknown function multiplied by a known function.
However,

u′(t) = u(t)(1− u(t)),

is nonlinear because of the term −u2 where the unknown function is multiplied by itself. Also

∂u

∂t
+ u

∂u

∂x
= 0,

463

DRAFT

5. Nonlinear Problems

is nonlinear because of the term uux where the unknown function appears in a product with its
derivative. (Note here that we use different notations for derivatives: u′ or du/dt for a function u(t)
of one variable, ∂u

∂t or ut for a function of more than one variable.)

Another example of a nonlinear equation is

u′′ + sin(u) = 0,

because sin(u) contains products of u, which becomes clear if we expand the function in a Taylor
series:

sin(u) = u− 1
3u

3 + . . .

ñ Mathematical proof of linearity

To really prove mathematically that some differential equation in an unknown u is linear, show
for each term T (u) that with u = au1 + bu2 for constants a and b,

T (au1 + bu2) = aT (u1) + bT (u2) .

For example, the term T (u) = (sin2 t)u′(t) is linear because

T (au1 + bu2) = (sin2 t)(au1(t) + bu2(t))
= a(sin2 t)u1(t) + b(sin2 t)u2(t)
= aT (u1) + bT (u2) .

However, T (u) = sin u is nonlinear because

T (au1 + bu2) = sin(au1 + bu2) ̸= a sin u1 + b sin u2 .

5.2. A simple model problem

A series of forthcoming examples will explain how to tackle nonlinear differential equations with
various techniques. We start with the (scaled) logistic equation as model problem:

u′(t) = u(t)(1− u(t)) . (5.1)

This is a nonlinear ordinary differential equation (ODE) which will be solved by different strategies
in the following. Depending on the chosen time discretization of (5.1), the mathematical problem
to be solved at every time level will either be a linear algebraic equation or a nonlinear algebraic
equation. In the former case, the time discretization method transforms the nonlinear ODE into
linear subproblems at each time level, and the solution is straightforward to find since linear algebraic
equations are easy to solve. However, when the time discretization leads to nonlinear algebraic
equations, we cannot (except in very rare cases) solve these without turning to approximate, iterative
solution methods.

The next subsections introduce various methods for solving nonlinear differential equations, using
(5.1) as model. We shall go through the following set of cases:

464

DRAFT

5. Nonlinear Problems

• explicit time discretization methods (with no need to solve nonlinear algebraic equations)
• implicit Backward Euler time discretization, leading to nonlinear algebraic equations solved by
• an exact analytical technique
• Picard iteration based on manual linearization
• a single Picard step
• Newton’s method
• implicit Crank-Nicolson time discretization and linearization via a geometric mean formula

Thereafter, we compare the performance of the various approaches. Despite the simplicity of (5.1),
the conclusions reveal typical features of the various methods in much more complicated nonlinear
PDE problems.

5.3. Linearization by explicit time discretization

Time discretization methods are divided into explicit and implicit methods. Explicit methods lead
to a closed-form formula for finding new values of the unknowns, while implicit methods give a linear
or nonlinear system of equations that couples (all) the unknowns at a new time level. Here we shall
demonstrate that explicit methods constitute an efficient way to deal with nonlinear differential
equations.

The Forward Euler method is an explicit method. When applied to (5.1), sampled at t = tn, it
results in

un+1 − un

∆t = un(1− un),

which is a linear algebraic equation for the unknown value un+1 that we can easily solve:

un+1 = un + ∆t un(1− un) .

In this case, the nonlinearity in the original equation poses no difficulty in the discrete algebraic
equation. Any other explicit scheme in time will also give only linear algebraic equations to solve.
For example, a typical 2nd-order Runge-Kutta method for (5.1) leads to the following formulas:

u∗ = un + ∆tun(1− un),

un+1 = un + ∆t12 (un(1− un) + u∗(1− u∗))) .

The first step is linear in the unknown u∗. Then u∗ is known in the next step, which is linear in the
unknown un+1 .

5.4. Exact solution of nonlinear algebraic equations

Switching to a Backward Euler scheme for (5.1),

un − un−1

∆t = un(1− un), (5.2)

465

DRAFT

5. Nonlinear Problems

results in a nonlinear algebraic equation for the unknown value un. The equation is of quadratic
type:

∆t(un)2 + (1−∆t)un − un−1 = 0,

and may be solved exactly by the well-known formula for such equations. Before we do so, however,
we will introduce a shorter, and often cleaner, notation for nonlinear algebraic equations at a given
time level. The notation is inspired by the natural notation (i.e., variable names) used in a program,
especially in more advanced partial differential equation problems. The unknown in the algebraic
equation is denoted by u, while u(1) is the value of the unknown at the previous time level (in
general, u(ℓ) is the value of the unknown ℓ levels back in time). The notation will be frequently
used in later sections. What is meant by u should be evident from the context: u may either be 1)
the exact solution of the ODE/PDE problem, 2) the numerical approximation to the exact solution,
or 3) the unknown solution at a certain time level.

The quadratic equation for the unknown un in (5.2) can, with the new notation, be written

F (u) = ∆tu2 + (1−∆t)u− u(1) = 0 . (5.3)

The solution is readily found to be

u = 1
2∆t

(
−1 + ∆t±

√
(1−∆t)2 − 4∆tu(1)

)
. (5.4)

Now we encounter a fundamental challenge with nonlinear algebraic equations: the equation may
have more than one solution. How do we pick the right solution? This is in general a hard problem.
In the present simple case, however, we can analyze the roots mathematically and provide an
answer. The idea is to expand the roots in a series in ∆t and truncate after the linear term since
the Backward Euler scheme will introduce an error proportional to ∆t anyway. Using sympy, we
find the following Taylor series expansions of the roots:

>>> import sympy as sym
>>> dt, u_1, u = sym.symbols('dt u_1 u')
>>> r1, r2 = sym.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print r1.series(dt, 0, 2) # 2 terms in dt, around dt=0
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print r2.series(dt, 0, 2)
u_1 + dt*(-u_1**2 + u_1) + O(dt**2)

We see that the r1 root, corresponding to a minus sign in front of the square root in (5.4), behaves
as 1/∆t and will therefore blow up as ∆t→ 0! Since we know that u takes on finite values, actually
it is less than or equal to 1, only the r2 root is of relevance in this case: as ∆t→ 0, u→ u(1), which
is the expected result.

For those who are not well experienced with approximating mathematical formulas by series
expansion, an alternative method of investigation is simply to compute the limits of the two roots
as ∆t→ 0 and see if a limit appears unreasonable:

466

DRAFT

5. Nonlinear Problems

>>> print r1.limit(dt, 0)
-oo
>>> print r2.limit(dt, 0)
u_1

5.5. Linearization

When the time integration of an ODE results in a nonlinear algebraic equation, we must normally
find its solution by defining a sequence of linear equations and hope that the solutions of these
linear equations converge to the desired solution of the nonlinear algebraic equation. Usually, this
means solving the linear equation repeatedly in an iterative fashion. Alternatively, the nonlinear
equation can sometimes be approximated by one linear equation, and consequently there is no need
for iteration.

Constructing a linear equation from a nonlinear one requires linearization of each nonlinear term.
This can be done manually as in Picard iteration, or fully algorithmically as in Newton’s method.
Examples will best illustrate how to linearize nonlinear problems.

5.6. Picard iteration

Let us write (5.3) in a more compact form

F (u) = au2 + bu+ c = 0,

with a = ∆t, b = 1−∆t, and c = −u(1). Let u− be an available approximation of the unknown u.
Then we can linearize the term u2 simply by writing u−u. The resulting equation, F̂ (u) = 0, is now
linear and hence easy to solve:

F (u) ≈ F̂ (u) = au−u+ bu+ c = 0 .

Since the equation F̂ = 0 is only approximate, the solution u does not equal the exact solution
ue of the exact equation F (ue) = 0, but we can hope that u is closer to ue than u− is, and hence
it makes sense to repeat the procedure, i.e., set u− = u and solve F̂ (u) = 0 again. There is no
guarantee that u is closer to ue than u−, but this approach has proven to be effective in a wide
range of applications.

The idea of turning a nonlinear equation into a linear one by using an approximation u− of u in
nonlinear terms is a widely used approach that goes under many names: fixed-point iteration, the
method of successive substitutions, nonlinear Richardson iteration, and Picard iteration. We will
stick to the latter name.

Picard iteration for solving the nonlinear equation arising from the Backward Euler discretization
of the logistic equation can be written as

u = − c

au− + b
, u− ← u .

467

DRAFT

5. Nonlinear Problems

The ← symbols means assignment (we set u− equal to the value of u). The iteration is started with
the value of the unknown at the previous time level: u− = u(1).

Some prefer an explicit iteration counter as superscript in the mathematical notation. Let uk be
the computed approximation to the solution in iteration k. In iteration k + 1 we want to solve

aukuk+1 + buk+1 + c = 0 ⇒ uk+1 = − c

auk + b
, k = 0, 1, . . .

Since we need to perform the iteration at every time level, the time level counter is often also
included:

aun,kun,k+1 + bun,k+1 − un−1 = 0 ⇒ un,k+1 = un

aun,k + b
, k = 0, 1, . . . ,

with the start value un,0 = un−1 and the final converged value un = un,k for sufficiently large k.

However, we will normally apply a mathematical notation in our final formulas that is as close as
possible to what we aim to write in a computer code and then it becomes natural to use u and u−

instead of uk+1 and uk or un,k+1 and un,k.

5.6.1. Stopping criteria

The iteration method can typically be terminated when the change in the solution is smaller than a
tolerance ϵu:

|u− u−| ≤ ϵu,

or when the residual in the equation is sufficiently small (< ϵr),

|F (u)| = |au2 + bu+ c| < ϵr .

A single Picard iteration Instead of iterating until a stopping criterion is fulfilled, one may
iterate a specific number of times. Just one Picard iteration is popular as this corresponds to
the intuitive idea of approximating a nonlinear term like (un)2 by un−1un. This follows from the
linearization u−un and the initial choice of u− = un−1 at time level tn. In other words, a single
Picard iteration corresponds to using the solution at the previous time level to linearize nonlinear
terms. The resulting discretization becomes (using proper values for a, b, and c)

un − un−1

∆t = un(1− un−1), (5.5)

which is a linear algebraic equation in the unknown un, making it easy to solve for un without any
need for an alternative notation.

We shall later refer to the strategy of taking one Picard step, or equivalently, linearizing terms with
use of the solution at the previous time step, as the Picard1 method. It is a widely used approach in
science and technology, but with some limitations if ∆t is not sufficiently small (as will be illustrated
later).

468

DRAFT

5. Nonlinear Problems

ñ Equation (5.5) does not

correspond to a “pure” finite difference method where the equation is sampled at a point and
derivatives replaced by differences (because the un−1 term on the right-hand side must then
be un). The best interpretation of the scheme (5.5) is a Backward Euler difference combined
with a single (perhaps insufficient) Picard iteration at each time level, with the value at the
previous time level as start for the Picard iteration.

5.7. Linearization by a geometric mean

We consider now a Crank-Nicolson discretization of (5.1). This means that the time derivative is
approximated by a centered difference,

[Dtu = u(1− u)]n+ 1
2 ,

written out as
un+1 − un

∆t = un+ 1
2 − (un+ 1

2)2 . (5.6)

The term un+ 1
2 is normally approximated by an arithmetic mean,

un+ 1
2 ≈ 1

2(un + un+1),

such that the scheme involves the unknown function only at the time levels where we actually intend
to compute it. The same arithmetic mean applied to the nonlinear term gives

(un+ 1
2)2 ≈ 1

4(un + un+1)2,

which is nonlinear in the unknown un+1. However, using a geometric mean for (un+ 1
2)2 is a way of

linearizing the nonlinear term in (5.6):

(un+ 1
2)2 ≈ unun+1 .

Using an arithmetic mean on the linear un+ 1
2 term in (5.6) and a geometric mean for the second

term, results in a linearized equation for the unknown un+1:

un+1 − un

∆t = 1
2(un + un+1) + unun+1,

which can readily be solved:

un+1 =
1 + 1

2∆t
1 + ∆tun − 1

2∆t
un .

This scheme can be coded directly, and since there is no nonlinear algebraic equation to iterate
over, we skip the simplified notation with u for un+1 and u(1) for un. The technique with using
a geometric average is an example of transforming a nonlinear algebraic equation to a linear one,
without any need for iterations.

469

DRAFT

5. Nonlinear Problems

The geometric mean approximation is often very effective for linearizing quadratic nonlinearities.
Both the arithmetic and geometric mean approximations have truncation errors of order ∆t2 and
are therefore compatible with the truncation error O(∆t2) of the centered difference approximation
for u′ in the Crank-Nicolson method.

Applying the operator notation for the means and finite differences, the linearized Crank-Nicolson
scheme for the logistic equation can be compactly expressed as

[Dtu = ut + u2t,g]n+ 1
2 .

ñ Remark

If we use an arithmetic instead of a geometric mean for the nonlinear term in (5.6), we end up
with a nonlinear term (un+1)2. This term can be linearized as u−un+1 in a Picard iteration
approach and in particular as unun+1 in a Picard1 iteration approach. The latter gives a
scheme almost identical to the one arising from a geometric mean (the difference in un+1 being
1
4∆tun(un+1 − un) ≈ 1

4∆t2u′u, i.e., a difference of size ∆t2).

5.8. Newton’s method

The Backward Euler scheme (5.2) for the logistic equation leads to a nonlinear algebraic equation
(5.3). Now we write any nonlinear algebraic equation in the general and compact form

F (u) = 0 .

Newton’s method linearizes this equation by approximating F (u) by its Taylor series expansion
around a computed value u− and keeping only the linear part:

F (u) = F (u−) + F ′(u−)(u− u−) + 1
2F

′′(u−)(u− u−)2 + · · ·

≈ F (u−) + F ′(u−)(u− u−) = F̂ (u) .

The linear equation F̂ (u) = 0 has the solution

u = u− − F (u−)
F ′(u−) .

Expressed with an iteration index in the unknown, Newton’s method takes on the more familiar
mathematical form

uk+1 = uk − F (uk)
F ′(uk) , k = 0, 1, . . .

It can be shown that the error in iteration k + 1 of Newton’s method is proportional to the square
of the error in iteration k, a result referred to as quadratic convergence. This means that for
small errors the method converges very fast, and in particular much faster than Picard iteration
and other iteration methods. (The proof of this result is found in most textbooks on numerical
analysis.) However, the quadratic convergence appears only if uk is sufficiently close to the solution.

470

DRAFT

5. Nonlinear Problems

Further away from the solution the method can easily converge very slowly or diverge. The reader
is encouraged to do Exercise Section 5.38 to get a better understanding for the behavior of the
method.

Application of Newton’s method to the logistic equation discretized by the Backward Euler method
is straightforward as we have

F (u) = au2 + bu+ c, a = ∆t, b = 1−∆t, c = −u(1),

and then
F ′(u) = 2au+ b .

The iteration method becomes

u = u− + a(u−)2 + bu− + c

2au− + b
, u− ← u . (5.7)

At each time level, we start the iteration by setting u− = u(1). Stopping criteria as listed for the
Picard iteration can be used also for Newton’s method.

An alternative mathematical form, where we write out a, b, and c, and use a time level counter n
and an iteration counter k, takes the form

un,k+1 = un,k + ∆t(un,k)2 + (1−∆t)un,k − un−1

2∆tun,k + 1−∆t , un,0 = un−1, (5.8)

for k = 0, 1, A program implementation is much closer to (5.7) than to (5.8), but the latter is
better aligned with the established mathematical notation used in the literature.

5.9. Relaxation

One iteration in Newton’s method or Picard iteration consists of solving a linear problem F̂ (u) = 0.
Sometimes convergence problems arise because the new solution u of F̂ (u) = 0 is “too far away”
from the previously computed solution u−. A remedy is to introduce a relaxation, meaning that we
first solve F̂ (u∗) = 0 for a suggested value u∗ and then we take u as a weighted mean of what we
had, u−, and what our linearized equation F̂ = 0 suggests, u∗:

u = ωu∗ + (1− ω)u− .

The parameter ω is known as a relaxation parameter, and a choice ω < 1 may prevent divergent
iterations.

Relaxation in Newton’s method can be directly incorporated in the basic iteration formula:

u = u− − ω F (u−)
F ′(u−) . (5.9)

471

DR
AF

T

5. Nonlinear Problems

5.10. Implementation and experiments

The program logistic.py contains implementations of all the methods described above. Below is
an extract of the file showing how the Picard and Newton methods are implemented for a Backward
Euler discretization of the logistic equation.

def BE_logistic(u0, dt, Nt, choice=“Picard”, eps_r=1e-3, omega=1, max_iter=1000): if choice ==
“Picard1”: choice = “Picard” max_iter = 1

u = np.zeros(Nt + 1)
iterations = []
u[0] = u0
for n in range(1, Nt + 1):

a = dt
b = 1 - dt
c = -u[n - 1]
if choice in ("r1", "r2"):

r1, r2 = quadratic_roots(a, b, c)
u[n] = r1 if choice == "r1" else r2
iterations.append(0)

elif choice == "Picard":

def F(u):
return a * u**2 + b * u + c

u_ = u[n - 1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega * (-c / (a * u_ + b)) + (1 - omega) * u_
k += 1

u[n] = u_
iterations.append(k)

elif choice == "Newton":

def F(u):
return a * u**2 + b * u + c

def dF(u):
return 2 * a * u + b

u_ = u[n - 1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_) / dF(u_)
k += 1

u[n] = u_

472

https://github.com/devitocodes/devito_book/tree/main/src/nonlin/logistic.py

DRAFT

5. Nonlinear Problems

iterations.append(k)
return u, iterations

```python
def BE_logistic(u0, dt, Nt, choice='Picard',

eps_r=1E-3, omega=1, max_iter=1000):
if choice == 'Picard1':

choice = 'Picard'
max_iter = 1

u = np.zeros(Nt+1)
iterations = []
u[0] = u0
for n in range(1, Nt+1):

a = dt
b = 1 - dt
c = -u[n-1]

if choice == 'Picard':

def F(u):
return a*u**2 + b*u + c

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega*(-c/(a*u_ + b)) + (1-omega)*u_
k += 1

u[n] = u_
iterations.append(k)

elif choice == 'Newton':

def F(u):
return a*u**2 + b*u + c

def dF(u):
return 2*a*u + b

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_)/dF(u_)
k += 1

u[n] = u_
iterations.append(k)

return u, iterations

473



DRAFT

5. Nonlinear Problems

The Crank-Nicolson method utilizing a linearization based on the geometric mean gives a simpler
algorithm:

def CN_logistic(u0, dt, Nt):
u = np.zeros(Nt + 1)
u[0] = u0
for n in range(0, Nt):

u[n + 1] = (1 + 0.5 * dt) / (1 + dt * u[n] - 0.5 * dt) * u[n]
return u

We may run experiments with the model problem (5.1) and the different strategies for dealing with
nonlinearities as described above. For a quite coarse time resolution, ∆t = 0.9, use of a tolerance
ϵr = 0.1 in the stopping criterion introduces an iteration error, especially in the Picard iterations,
that is visibly much larger than the time discretization error due to a large ∆t. This is illustrated
by comparing the upper two plots in Figure Figure 5.1. The one to the right has a stricter tolerance
ϵ = 10−3, which causes all the curves corresponding to Picard and Newton iteration to be on top
of each other (and no changes can be visually observed by reducing ϵr further). The reason why
Newton’s method does much better than Picard iteration in the upper left plot is that Newton’s
method with one step comes far below the ϵr tolerance, while the Picard iteration needs on average
7 iterations to bring the residual down to ϵr = 10−1, which gives insufficient accuracy in the solution
of the nonlinear equation. It is obvious that the Picard1 method gives significant errors in addition
to the time discretization unless the time step is as small as in the lower right plot.

The BE exact curve corresponds to using the exact solution of the quadratic equation at each time
level, so this curve is only affected by the Backward Euler time discretization. The CN gm curve
corresponds to the theoretically more accurate Crank-Nicolson discretization, combined with a
geometric mean for linearization. This curve appears more accurate, especially if we take the plot
in the lower right with a small ∆t and an appropriately small ϵr value as the exact curve.

When it comes to the need for iterations, Figure Figure 5.2 displays the number of iterations required
at each time level for Newton’s method and Picard iteration. The smaller ∆t is, the better starting
value we have for the iteration, and the faster the convergence is. With ∆t = 0.9 Picard iteration
requires on average 32 iterations per time step, but this number is dramatically reduced as ∆t is
reduced.

However, introducing relaxation and a parameter ω = 0.8 immediately reduces the average of 32 to
7, indicating that for the large ∆t = 0.9, Picard iteration takes too long steps. An approximately
optimal value for ω in this case is 0.5, which results in an average of only 2 iterations! An even
more dramatic impact of ω appears when ∆t = 1: Picard iteration does not convergence in 1000
iterations, but ω = 0.5 again brings the average number of iterations down to 2.

Remark. The simple Crank-Nicolson method with a geometric mean for the quadratic nonlinearity
gives visually more accurate solutions than the Backward Euler discretization. Even with a tolerance
of ϵr = 10−3, all the methods for treating the nonlinearities in the Backward Euler discretization
give graphs that cannot be distinguished. So for accuracy in this problem, the time discretization is
much more crucial than ϵr. Ideally, one should estimate the error in the time discretization, as the
solution progresses, and set ϵr accordingly.

474



DRAFT

5. Nonlinear Problems

Figure 5.1.: Impact of solution strategy and time step length on the solution.

475



DRAFT

5. Nonlinear Problems

Figure 5.2.: Comparison of the number of iterations at various time levels for Picard and Newton
iteration.

476



DRAFT

5. Nonlinear Problems

5.11. Generalization to a general nonlinear ODE

Let us see how the various methods in the previous sections can be applied to the more generic
model

u′ = f(u, t), (5.10)
where f is a nonlinear function of u.

5.11.1. Explicit time discretization

Explicit ODE methods like the Forward Euler scheme, Runge-Kutta methods and Adams-Bashforth
methods all evaluate f at time levels where u is already computed, so nonlinearities in f do not
pose any difficulties.

5.11.2. Backward Euler discretization

Approximating u′ by a backward difference leads to a Backward Euler scheme, which can be written
as

F (un) = un −∆t f(un, tn)− un−1 = 0,
or alternatively

F (u) = u−∆t f(u, tn)− u(1) = 0 .
A simple Picard iteration, not knowing anything about the nonlinear structure of f , must approximate
f(u, tn) by f(u−, tn):

F̂ (u) = u−∆t f(u−, tn)− u(1) .

The iteration starts with u− = u(1) and proceeds with repeating

u∗ = ∆t f(u−, tn) + u(1), u = ωu∗ + (1− ω)u−, u− ← u,

until a stopping criterion is fulfilled.

ñ Explicit vs implicit treatment of nonlinear terms

Evaluating f for a known u− is referred to as explicit treatment of f , while if f(u, t) has
some structure, say f(u, t) = u3, parts of f can involve the unknown u, as in the manual
linearization (u−)2u, and then the treatment of f is “more implicit” and “less explicit”. This
terminology is inspired by time discretization of u′ = f(u, t), where evaluating f for known u
values gives explicit schemes, while treating f or parts of f implicitly, makes f contribute to
the unknown terms in the equation at the new time level.
Explicit treatment of f usually means stricter conditions on ∆t to achieve stability of time
discretization schemes. The same applies to iteration techniques for nonlinear algebraic
equations: the “less” we linearize f (i.e., the more we keep of u in the original formula), the
faster the convergence may be.
We may say that f(u, t) = u3 is treated explicitly if we evaluate f as (u−)3, partially implicit if
we linearize as (u−)2u and fully implicit if we represent f by u3. (Of course, the fully implicit
representation will require further linearization, but with f(u, t) = u2 a fully implicit treatment
is possible if the resulting quadratic equation is solved with a formula.)

477



DRAFT

5. Nonlinear Problems

For the ODE u′ = −u3 with f(u, t) = −u3 and coarse time resolution ∆t = 0.4, Picard iteration
with (u−)2u requires 8 iterations with ϵr = 10−3 for the first time step, while (u−)3 leads to
22 iterations. After about 10 time steps both approaches are down to about 2 iterations per
time step, but this example shows a potential of treating f more implicitly.
A trick to treat f implicitly in Picard iteration is to evaluate it as f(u−, t)u/u−. For a
polynomial f , f(u, t) = um, this corresponds to (u−)mu/u− = (u−)m−1u. Sometimes this
more implicit treatment has no effect, as with f(u, t) = exp(−u) and f(u, t) = ln(1 + u), but
with f(u, t) = sin(2(u+ 1)), the f(u−, t)u/u− trick leads to 7, 9, and 11 iterations during the
first three steps, while f(u−, t) demands 17, 21, and 20 iterations. (Experiments can be done
with the code ODE_Picard_tricks.py.)

Newton’s method applied to a Backward Euler discretization of u′ = f(u, t) requires computation of
the derivative

F ′(u) = 1−∆t∂f
∂u

(u, tn) .

Starting with the solution at the previous time level, u− = u(1), we can just use the standard
formula

u = u− − ω F (u−)
F ′(u−) = u− − ωu

− −∆t f(u−, tn)− u(1)

1−∆t ∂
∂uf(u−, tn)

. (5.11)

5.11.3. Crank-Nicolson discretization

The standard Crank-Nicolson scheme with arithmetic mean approximation of f takes the form

un+1 − un

∆t = 1
2(f(un+1, tn+1) + f(un, tn)) .

We can write the scheme as a nonlinear algebraic equation

F (u) = u− u(1) −∆t12f(u, tn+1)−∆t12f(u(1), tn) = 0 . (5.12)

A Picard iteration scheme must in general employ the linearization

F̂ (u) = u− u(1) −∆t12f(u−, tn+1)−∆t12f(u(1), tn),

while Newton’s method can apply the general formula (5.11) with F (u) given in (5.12) and

F ′(u) = 1− 1
2∆t∂f

∂u
(u, tn+1) .

5.12. Systems of ODEs

We may write a system of ODEs

478

https://github.com/devitocodes/devito_book/tree/main/src/nonlin/ODE_Picard_tricks.py


DRAFT

5. Nonlinear Problems

d

dt
u0(t) = f0(u0(t), u1(t), . . . , uN (t), t),

d

dt
u1(t) = f1(u0(t), u1(t), . . . , uN (t), t),

...
d

dt
um(t) = fm(u0(t), u1(t), . . . , uN (t), t),

as
u′ = f(u, t), u(0) = U0,

if we interpret u as a vector u = (u0(t), u1(t), . . . , uN (t)) and f as a vector function with components
(f0(u, t), f1(u, t), . . . , fN (u, t)).

Most solution methods for scalar ODEs, including the Forward and Backward Euler schemes and
the Crank-Nicolson method, generalize in a straightforward way to systems of ODEs simply by
using vector arithmetics instead of scalar arithmetics, which corresponds to applying the scalar
scheme to each component of the system. For example, here is a backward difference scheme applied
to each component,

un
0 − un−1

0
∆t = f0(un, tn),

un
1 − un−1

1
∆t = f1(un, tn),

...
un

N − u
n−1
N

∆t = fN (un, tn),

which can be written more compactly in vector form as

un − un−1

∆t = f(un, tn) .

This is a system of algebraic equations,

un −∆t f(un, tn)− un−1 = 0,

or written out

un
0 −∆t f0(un, tn)− un−1

0 = 0,
...

un
N −∆t fN (un, tn)− un−1

N = 0 .

479



DRAFT

5. Nonlinear Problems

5.12.1. Example

We shall address the 2× 2 ODE system for oscillations of a pendulum subject to gravity and air
drag. The system can be written as

ω̇ = − sin θ − βω|ω|, (5.13)
θ̇ = ω, (5.14)

where β is a dimensionless parameter (this is the scaled, dimensionless version of the original,
physical model). The unknown components of the system are the angle θ(t) and the angular velocity
ω(t). We introduce u0 = ω and u1 = θ, which leads to

u′
0 = f0(u, t) = − sin u1 − βu0|u0|,
u′

1 = f1(u, t) = u0 .

A Crank-Nicolson scheme reads

un+1
0 − un

0
∆t = − sin un+ 1

2
1 − βun+ 1

2
0 |un+ 1

2
0 |

≈ − sin
(1

2(un+1
1 + u1n)

)
− β 1

4(un+1
0 + un

0 )|un+1
0 + un

0 |, (5.15)

un+1
1 − un

1
∆t = u

n+ 1
2

0 ≈ 1
2(un+1

0 + un
0 ) . (5.16)

This is a coupled system of two nonlinear algebraic equations in two unknowns un+1
0 and un+1

1 .

Using the notation u0 and u1 for the unknowns un+1
0 and un+1

1 in this system, writing u(1)
0 and u(1)

1
for the previous values un

0 and un
1 , multiplying by ∆t and moving the terms to the left-hand sides,

gives

u0 − u(1)
0 + ∆t sin

(1
2(u1 + u

(1)
1 )
)

+ 1
4∆tβ(u0 + u

(1)
0 )|u0 + u

(1)
0 | = 0, (5.17)

u1 − u(1)
1 −

1
2∆t(u0 + u

(1)
0 ) = 0 . (5.18)

Obviously, we have a need for solving systems of nonlinear algebraic equations, which is the topic of
the next section.

5.13. Systems of nonlinear algebraic equations

Implicit time discretization methods for a system of ODEs, or a PDE, lead to systems of nonlinear
algebraic equations, written compactly as

F (u) = 0,

480



DRAFT

5. Nonlinear Problems

where u is a vector of unknowns u = (u0, . . . , uN ), and F is a vector function: F = (F0, . . . , FN ).
The system at the end of Section Section 5.12 fits this notation with N = 1, F0(u) given by the
left-hand side of (5.17), while F1(u) is the left-hand side of (5.18).

Sometimes the equation system has a special structure because of the underlying problem, e.g.,

A(u)u = b(u),

with A(u) as an (N+1)× (N+1) matrix function of u and b as a vector function: b = (b0, . . . , bN ).

We shall next explain how Picard iteration and Newton’s method can be applied to systems like
F (u) = 0 and A(u)u = b(u). The exposition has a focus on ideas and practical computations.
More theoretical considerations, including quite general results on convergence properties of these
methods, can be found in Kelley (Kelley 1995).

5.14. Picard iteration

We cannot apply Picard iteration to nonlinear equations unless there is some special structure. For
the commonly arising case A(u)u = b(u) we can linearize the product A(u)u to A(u−)u and b(u)
as b(u−). That is, we use the most previously computed approximation in A and b to arrive at a
linear system for u:

A(u−)u = b(u−) .

A relaxed iteration takes the form

A(u−)u∗ = b(u−), u = ωu∗ + (1− ω)u− .

In other words, we solve a system of nonlinear algebraic equations as a sequence of linear systems.

ñ Algorithm for relaxed Picard iteration

Given A(u)u = b(u) and an initial guess u−, iterate until convergence:

1. solve A(u−)u∗ = b(u−) with respect to u∗

2. u = ωu∗ + (1− ω)u−

3. u− ← u

“Until convergence” means that the iteration is stopped when the change in the unknown, ||u− u−||,
or the residual ||A(u)u− b||, is sufficiently small, see Section Section 5.16 for more details.

5.15. Newton’s method

The natural starting point for Newton’s method is the general nonlinear vector equation F (u) = 0.
As for a scalar equation, the idea is to approximate F around a known value u− by a linear function
F̂ , calculated from the first two terms of a Taylor expansion of F . In the multi-variate case these
two terms become

F (u−) + J(u−) · (u− u−),

481



DRAFT

5. Nonlinear Problems

where J is the Jacobian of F , defined by

Ji,j = ∂Fi

∂uj
.

So, the original nonlinear system is approximated by

F̂ (u) = F (u−) + J(u−) · (u− u−) = 0,

which is linear in u and can be solved in a two-step procedure: first solve Jδu = −F (u−) with
respect to the vector δu and then update u = u− + δu. A relaxation parameter can easily be
incorporated:

u = ω(u− + δu) + (1− ω)u− = u− + ωδu .

ñ Algorithm for Newton’s method

Given F (u) = 0 and an initial guess u−, iterate until convergence:

1. solve Jδu = −F (u−) with respect to δu
2. u = u− + ωδu
3. u− ← u

For the special system with structure A(u)u = b(u),

Fi =
∑

k

Ai,k(u)uk − bi(u),

one gets
Ji,j =

∑
k

∂Ai,k

∂uj
uk +Ai,j −

∂bi

∂uj
.

We realize that the Jacobian needed in Newton’s method consists of A(u−) as in the Picard iteration
plus two additional terms arising from the differentiation. Using the notation A′(u) for ∂A/∂u (a
quantity with three indices: ∂Ai,k/∂uj), and b′(u) for ∂b/∂u (a quantity with two indices: ∂bi/∂uj),
we can write the linear system to be solved as

(A+A′u+ b′)δu = −Au+ b,

or
(A(u−) +A′(u−)u− + b′(u−))δu = −A(u−)u− + b(u−) .

Rearranging the terms demonstrates the difference from the system solved in each Picard iteration:

A(u−)(u− + δu)− b(u−)︸ ︷︷ ︸
Picard system

+ γ(A′(u−)u− + b′(u−))δu = 0 .

Here we have inserted a parameter γ such that γ = 0 gives the Picard system and γ = 1 gives the
Newton system. Such a parameter can be handy in software to easily switch between the methods.

482



DRAFT

5. Nonlinear Problems

ñ Combined algorithm for Picard and Newton iteration

Given A(u), b(u), and an initial guess u−, iterate until convergence:

1. solve (A+ γ(A′(u−)u− + b′(u−)))δu = −A(u−)u− + b(u−) with respect to δu
2. u = u− + ωδu
3. u− ← u

γ = 1 gives a Newton method while γ = 0 corresponds to Picard iteration.

5.16. Stopping criteria

Let || · || be the standard Euclidean vector norm. Four termination criteria are much in use:

• Absolute change in solution: ||u− u−|| ≤ ϵu
• Relative change in solution: ||u− u−|| ≤ ϵu||u0||, where u0 denotes the start value of u− in

the iteration
• Absolute residual: ||F (u)|| ≤ ϵr
• Relative residual: ||F (u)|| ≤ ϵr||F (u0)||

To prevent divergent iterations to run forever, one terminates the iterations when the current number
of iterations k exceeds a maximum value kmax.

The relative criteria are most used since they are not sensitive to the characteristic size of u.
Nevertheless, the relative criteria can be misleading when the initial start value for the iteration is
very close to the solution, since an unnecessary reduction in the error measure is enforced. In such
cases the absolute criteria work better. It is common to combine the absolute and relative measures
of the size of the residual, as in

||F (u)|| ≤ ϵrr||F (u0)||+ ϵra,

where ϵrr is the tolerance in the relative criterion and ϵra is the tolerance in the absolute criterion.
With a very good initial guess for the iteration (typically the solution of a differential equation at
the previous time level), the term ||F (u0)|| is small and ϵra is the dominating tolerance. Otherwise,
ϵrr||F (u0)|| and the relative criterion dominates.

With the change in solution as criterion we can formulate a combined absolute and relative measure
of the change in the solution:

||δu|| ≤ ϵur||u0||+ ϵua,

The ultimate termination criterion, combining the residual and the change in solution with a test
on the maximum number of iterations, can be expressed as

||F (u)|| ≤ ϵrr||F (u0)||+ ϵra or ||δu|| ≤ ϵur||u0||+ ϵua or k > kmax .

## Example: A nonlinear ODE model from epidemiology {#sec-nonlin-systems-alg-SI}

A very simple model for the spreading of a disease, such as a flu, takes the form of a 2× 2 ODE
system

483



DRAFT

5. Nonlinear Problems

S′ = −βSI, (5.19)
I ′ = βSI − νI, (5.20)

where S(t) is the number of people who can get ill (susceptibles) and I(t) is the number of people
who are ill (infected). The constants β > 0 and ν > 0 must be given along with initial conditions
S(0) and I(0).

5.16.1. Implicit time discretization

A Crank-Nicolson scheme leads to a 2× 2 system of nonlinear algebraic equations in the unknowns
Sn+1 and In+1:

Sn+1 − Sn

∆t = −β[SI]n+ 1
2 ≈ −β2 (SnIn + Sn+1In+1), (5.21)

In+1 − In

∆t = β[SI]n+ 1
2 − νIn+ 1

2 ≈ β

2 (SnIn + Sn+1In+1)− ν

2 (In + In+1) . (5.22)

Introducing S for Sn+1, S(1) for Sn, I for In+1 and I(1) for In, we can rewrite the system as

FS(S, I) = S − S(1) + 1
2∆tβ(S(1)I(1) + SI) = 0, (5.23)

FI(S, I) = I − I(1) − 1
2∆tβ(S(1)I(1) + SI) + 1

2∆tν(I(1) + I) = 0 . (5.24)

5.16.2. A Picard iteration

We assume that we have approximations S− and I− to S and I, respectively. A way of linearizing
the only nonlinear term SI is to write I−S in the FS = 0 equation and S−I in the FI = 0 equation,
which also decouples the equations. Solving the resulting linear equations with respect to the
unknowns S and I gives

S =
S(1) − 1

2∆tβS(1)I(1)

1 + 1
2∆tβI− ,

I =
I(1) + 1

2∆tβS(1)I(1) − 1
2∆tνI(1)

1− 1
2∆tβS− + 1

2∆tν
.

Before a new iteration, we must update S− ← S and I− ← I.

484



DRAFT

5. Nonlinear Problems

5.16.3. Newton’s method

The nonlinear system (5.23)-(5.24) can be written as F (u) = 0 with F = (FS , FI) and u = (S, I).
The Jacobian becomes

J =
(

∂
∂SFS

∂
∂IFS

∂
∂SFI

∂
∂IFI

)
=
(

1 + 1
2∆tβI 1

2∆tβS
+1

2∆tβI 1− 1
2∆tβS + 1

2∆tν

)
.

The Newton system J(u−)δu = −F (u−) to be solved in each iteration is then

(
1 + 1

2∆tβI− 1
2∆tβS−

−1
2∆tβI− 1− 1

2∆tβS− + 1
2∆tν

)(
δS
δI

)
=(

S− − S(1) + 1
2∆tβ(S(1)I(1) + S−I−)

I− − I(1) − 1
2∆tβ(S(1)I(1) + S−I−) + 1

2∆tν(I(1) + I−)

)

Remark. For this particular system of ODEs, explicit time integration methods work very well.
Even a Forward Euler scheme is fine, but (as also experienced more generally) the 4-th order
Runge-Kutta method is an excellent balance between high accuracy, high efficiency, and simplicity.

5.17. Nonlinear diffusion model

The attention is now turned to nonlinear partial differential equations (PDEs) and application of
the techniques explained above for ODEs. The model problem is a nonlinear diffusion equation for
u(x, t):

∂u

∂t
= ∇ · (α(u)∇u) + f(u), x ∈ Ω, t ∈ (0, T ], (5.25)

−α(u)∂u
∂n

= g, x ∈ ∂ΩN , t ∈ (0, T ], (5.26)

u = u0, x ∈ ∂ΩD, t ∈ (0, T ] . (5.27)

In the present section, our aim is to discretize this problem in time and then present techniques for
linearizing the time-discrete PDE problem “at the PDE level” such that we transform the nonlinear
stationary PDE problem at each time level into a sequence of linear PDE problems, which can be
solved using any method for linear PDEs. This strategy avoids the solution of systems of nonlinear
algebraic equations. In Section Section 5.22 we shall take the opposite (and more common) approach:
discretize the nonlinear problem in time and space first, and then solve the resulting nonlinear
algebraic equations at each time level by the methods of Section Section 5.13. Very often, the two
approaches are mathematically identical, so there is no preference from a computational efficiency
point of view. The details of the ideas sketched above will hopefully become clear through the
forthcoming examples.

485



DRAFT

5. Nonlinear Problems

5.18. Explicit time integration

The nonlinearities in the PDE are trivial to deal with if we choose an explicit time integration
method for the nonlinear diffusion equation, such as the Forward Euler method:

[D+
t u = ∇ · (α(u)∇u) + f(u)]n,

or written out,
un+1 − un

∆t = ∇ · (α(un)∇un) + f(un),

which is a linear equation in the unknown un+1 with solution

un+1 = un + ∆t∇ · (α(un)∇un) + ∆tf(un) .

The disadvantage with this discretization is the strict stability criterion ∆t ≤ h2/(6 maxα) for the
case f = 0 and a standard 2nd-order finite difference discretization in 3D space with mesh cell sizes
h = ∆x = ∆y = ∆z.

5.19. Backward Euler scheme and Picard iteration

A Backward Euler scheme for the nonlinear diffusion equation reads

[D−
t u = ∇ · (α(u)∇u) + f(u)]n .

Written out,
un − un−1

∆t = ∇ · (α(un)∇un) + f(un) . (5.28)

This is a nonlinear PDE for the unknown function un(x). Such a PDE can be viewed as a
time-independent PDE where un−1(x) is a known function.

We introduce a Picard iteration with k as iteration counter. A typical linearization of the ∇ ·
(α(un)∇un) term in iteration k + 1 is to use the previously computed un,k approximation in the
diffusion coefficient: α(un,k). The nonlinear source term is treated similarly: f(un,k). The unknown
function un,k+1 then fulfills the linear PDE

un,k+1 − un−1

∆t = ∇ · (α(un,k)∇un,k+1) + f(un,k) . (5.29)

The initial guess for the Picard iteration at this time level can be taken as the solution at the
previous time level: un,0 = un−1.

We can alternatively apply the implementation-friendly notation where u corresponds to the unknown
we want to solve for, i.e., un,k+1 above, and u− is the most recently computed value, un,k above.
Moreover, u(1) denotes the unknown function at the previous time level, un−1 above. The PDE to
be solved in a Picard iteration then looks like

u− u(1)

∆t = ∇ · (α(u−)∇u) + f(u−) . (5.30)

At the beginning of the iteration we start with the value from the previous time level: u− = u(1),
and after each iteration, u− is updated to u.

486



DRAFT

5. Nonlinear Problems

ñ Remark on notation

The previous derivations of the numerical scheme for time discretizations of PDEs have, strictly
speaking, a somewhat sloppy notation, but it is much used and convenient to read. A more
precise notation must distinguish clearly between the exact solution of the PDE problem, here
denoted ue(x, t), and the exact solution of the spatial problem, arising after time discretization
at each time level, where (5.28) is an example. The latter is here represented as un(x) and is
an approximation to ue(x, tn). Then we have another approximation un,k(x) to un(x) when
solving the nonlinear PDE problem for un by iteration methods, as in (5.29).
In our notation, u is a synonym for un,k+1 and u(1) is a synonym for un−1, inspired by what
are natural variable names in a code. We will usually state the PDE problem in terms of u and
quickly redefine the symbol u to mean the numerical approximation, while ue is not explicitly
introduced unless we need to talk about the exact solution and the approximate solution at
the same time.

5.20. Backward Euler scheme and Newton’s method

At time level n, we have to solve the stationary PDE (5.28). In the previous section, we saw how
this can be done with Picard iterations. Another alternative is to apply the idea of Newton’s method
in a clever way. Normally, Newton’s method is defined for systems of algebraic equations, but the
idea of the method can be applied at the PDE level too.

5.20.1. Linearization via Taylor expansions

Let un,k be an approximation to the unknown un. We seek a better approximation on the form

un = un,k + δu . (5.31)

The idea is to insert (5.31) in (5.28), Taylor expand the nonlinearities and keep only the terms that
are linear in δu (which makes (5.31) an approximation for un). Then we can solve a linear PDE for
the correction δu and use (5.31) to find a new approximation

un,k+1 = un,k + δu

to un. Repeating this procedure gives a sequence un,k+1, k = 0, 1, . . . that hopefully converges to
the goal un.

Let us carry out all the mathematical details for the nonlinear diffusion PDE discretized by the
Backward Euler method. Inserting (5.31) in (5.28) gives

un,k + δu− un−1

∆t = ∇ · (α(un,k + δu)∇(un,k + δu)) + f(un,k + δu) . (5.32)

We can Taylor expand α(un,k + δu) and f(un,k + δu):

487



DRAFT

5. Nonlinear Problems

α(un,k + δu) = α(un,k) + dα

du
(un,k)δu+O(δu2) ≈ α(un,k) + α′(un,k)δu,

f(un,k + δu) = f(un,k) + df

du
(un,k)δu+O(δu2) ≈ f(un,k) + f ′(un,k)δu .

Inserting the linear approximations of α and f in (5.32) results in

un,k + δu− un−1

∆t = ∇ · (α(un,k)∇un,k) + f(un,k)+

∇ · (α(un,k)∇δu) +∇ · (α′(un,k)δu∇un,k)+
∇ · (α′(un,k)δu∇δu) + f ′(un,k)δu .

(5.33)

The term α′(un,k)δu∇δu is of order δu2 and therefore omitted since we expect the correction δu to
be small (δu≫ δu2). Reorganizing the equation gives a PDE for δu that we can write in short form
as

δF (δu;un,k) = −F (un,k),

where

F (un,k) = un,k − un−1

∆t −∇ · (α(un,k)∇un,k) + f(un,k),

δF (δu;un,k) = − 1
∆tδu+∇ · (α(un,k)∇δu)+

∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu .
(5.34)

Note that δF is a linear function of δu, and F contains only terms that are known, such that the
PDE for δu is indeed linear.

ñ Observations

The notational form δF = −F resembles the Newton system Jδu = −F for systems of algebraic
equations, with δF as Jδu. The unknown vector in a linear system of algebraic equations
enters the system as a linear operator in terms of a matrix-vector product (Jδu), while at the
PDE level we have a linear differential operator instead (δF ).

5.20.2. Similarity with Picard iteration

We can rewrite the PDE for δu in a slightly different way too if we define un,k + δu as un,k+1.

un,k+1 − un−1

∆t = ∇ · (α(un,k)∇un,k+1) + f(un,k)

+∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (5.35)

Note that the first line is the same PDE as arises in the Picard iteration, while the remaining terms
arise from the differentiations that are an inherent ingredient in Newton’s method.

488



DRAFT

5. Nonlinear Problems

5.20.3. Implementation

For coding we want to introduce u for un, u− for un,k and u(1) for un−1. The formulas for F and
δF are then more clearly written as

F (u−) = u− − u(1)

∆t −∇ · (α(u−)∇u−) + f(u−),

δF (δu;u−) = − 1
∆tδu+∇ · (α(u−)∇δu)+

∇ · (α′(u−)δu∇u−) + f ′(u−)δu .
(5.36)

The form that orders the PDE as the Picard iteration terms plus the Newton method’s derivative
terms becomes

u− u(1)

∆t = ∇ · (α(u−)∇u) + f(u−)+

γ(∇ · (α′(u−)(u− u−)∇u−) + f ′(u−)(u− u−)) . (5.37)

The Picard and full Newton versions correspond to γ = 0 and γ = 1, respectively.

5.20.4. Derivation with alternative notation

Some may prefer to derive the linearized PDE for δu using the more compact notation. We start
with inserting un = u− + δu to get

u− + δu− un−1

∆t = ∇ · (α(u− + δu)∇(u− + δu)) + f(u− + δu) .

Taylor expanding,

α(u− + δu) ≈ α(u−) + α′(u−)δu,
f(u− + δu) ≈ f(u−) + f ′(u−)δu,

and inserting these expressions gives a less cluttered PDE for δu:

u− + δu− un−1

∆t = ∇ · (α(u−)∇u−) + f(u−)+

∇ · (α(u−)∇δu) +∇ · (α′(u−)δu∇u−)+
∇ · (α′(u−)δu∇δu) + f ′(u−)δu .

489



DRAFT

5. Nonlinear Problems

5.21. Crank-Nicolson discretization

A Crank-Nicolson discretization of the nonlinear diffusion equation applies a centered difference at
tn+ 1

2
:

[Dtu = ∇ · (α(u)∇u) + f(u)]n+ 1
2 .

The standard technique is to apply an arithmetic average for quantities defined between two mesh
points, e.g.,

un+ 1
2 ≈ 1

2(un + un+1) .

However, with nonlinear terms we have many choices of formulating an arithmetic mean:

[f(u)]n+ 1
2 ≈ f(1

2(un + un+1)) = [f(ut)]n+ 1
2 , (5.38)

[f(u)]n+ 1
2 ≈ 1

2(f(un) + f(un+1)) = [f(u)t]n+ 1
2 , (5.39)

[α(u)∇u]n+ 1
2 ≈ α(1

2(un + un+1))∇(1
2(un + un+1)) = [α(ut)∇ut]n+ 1

2 , (5.40)

[α(u)∇u]n+ 1
2 ≈ 1

2(α(un) + α(un+1))∇(1
2(un + un+1)) = [α(u)t∇ut]n+ 1

2 , (5.41)

[α(u)∇u]n+ 1
2 ≈ 1

2(α(un)∇un + α(un+1)∇un+1) = [α(u)∇ut]n+ 1
2 . (5.42)

A big question is whether there are significant differences in accuracy between taking the products
of arithmetic means or taking the arithmetic mean of products. Exercise Section 5.41 investigates
this question, and the answer is that the approximation is O(∆t2) in both cases.

5.22. Discretization in space and Newton’s method

Section Section 5.17 presented methods for linearizing time-discrete PDEs directly prior to dis-
cretization in space. We can alternatively carry out the discretization in space of the time-discrete
nonlinear PDE problem and get a system of nonlinear algebraic equations, which can be solved by
Picard iteration or Newton’s method as presented in Section Section 5.13. This latter approach will
now be described in detail.

We shall work with the 1D problem

−(α(u)u′)′ + au = f(u), x ∈ (0, L), α(u(0))u′(0) = C, u(L) = D . (5.43)

The problem (5.43) arises from the stationary limit of a diffusion equation,

∂u

∂t
= ∂

∂x

(
α(u)∂u

∂x

)
− au+ f(u), (5.44)

as t→∞ and ∂u/∂t→ 0. Alternatively, the problem (5.43) arises at each time level from implicit
time discretization of (5.44). For example, a Backward Euler scheme for (5.44) leads to

un − un−1

∆t = d

dx

(
α(un)du

n

dx

)
− aun + f(un) . (5.45)

490



DRAFT

5. Nonlinear Problems

Introducing u(x) for un(x), u(1) for un−1, and defining f(u) in (5.43) to be f(u) in (5.45) plus
un−1/∆t, gives (5.43) with a = 1/∆t.

5.23. Finite difference discretization

The nonlinearity in the differential equation (5.43) poses no more difficulty than a variable coefficient,
as in the term (α(x)u′)′. We can therefore use a standard finite difference approach when discretizing
the Laplace term with a variable coefficient:

[−DxαDxu+ au = f ]i .

Writing this out for a uniform mesh with points xi = i∆x, i = 0, . . . , Nx, leads to

− 1
∆x2

(
αi+ 1

2
(ui+1 − ui)− αi− 1

2
(ui − ui−1)

)
+ aui = f(ui) . (5.46)

This equation is valid at all the mesh points i = 0, 1, . . . , Nx − 1. At i = Nx we have the Dirichlet
condition ui = 0. The only difference from the case with (α(x)u′)′ and f(x) is that now α and f
are functions of u and not only of x: (α(u(x))u′)′ and f(u(x)).

The quantity αi+ 1
2
, evaluated between two mesh points, needs a comment. Since α depends on u

and u is only known at the mesh points, we need to express αi+ 1
2

in terms of ui and ui+1. For this
purpose we use an arithmetic mean, although a harmonic mean is also common in this context if α
features large jumps. There are two choices of arithmetic means:

αi+ 1
2
≈ α(1

2(ui + ui+1) = [α(ux)]i+
1
2 ,

αi+ 1
2
≈ 1

2(α(ui) + α(ui+1)) = [α(u)x]i+
1
2 (5.47)

Equation (5.46) with the latter approximation then looks like

− 1
2∆x2 ((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui = f(ui),
(5.48)

or written more compactly,
[−Dxα

xDxu+ au = f ]i .
At mesh point i = 0 we have the boundary condition α(u)u′ = C, which is discretized by

[α(u)D2xu = C]0,

meaning
α(u0)u1 − u−1

2∆x = C . (5.49)

The fictitious value u−1 can be eliminated with the aid of (5.48) for i = 0. Formally, (5.48) should
be solved with respect to ui−1 and that value (for i = 0) should be inserted in (5.49), but it is
algebraically much easier to do it the other way around. Alternatively, one can use a ghost cell
[−∆x, 0] and update the u−1 value in the ghost cell according to (5.49) after every Picard or Newton
iteration. Such an approach means that we use a known u−1 value in (5.48) from the previous
iteration.

491



DRAFT

5. Nonlinear Problems

5.24. Solution of algebraic equations

5.24.1. The structure of the equation system

The nonlinear algebraic equations (5.48) are of the form A(u)u = b(u) with

Ai,i = 1
2∆x2 (α(ui−1) + 2α(ui)α(ui+1)) + a,

Ai,i−1 = − 1
2∆x2 (α(ui−1) + α(ui)),

Ai,i+1 = − 1
2∆x2 (α(ui) + α(ui+1)),

bi = f(ui) .

The matrix A(u) is tridiagonal: Ai,j = 0 for j > i+ 1 and j < i− 1.

The above expressions are valid for internal mesh points 1 ≤ i ≤ Nx − 1. For i = 0 we need to
express ui−1 = u−1 in terms of u1 using (5.49):

u−1 = u1 −
2∆x
α(u0)C . (5.50)

This value must be inserted in A0,0. The expression for Ai,i+1 applies for i = 0, and Ai,i−1 does not
enter the system when i = 0.

Regarding the last equation, its form depends on whether we include the Dirichlet condition
u(L) = D, meaning uNx = D, in the nonlinear algebraic equation system or not. Suppose we choose
(u0, u1, . . . , uNx−1) as unknowns, later referred to as systems without Dirichlet conditions. The last
equation corresponds to i = Nx − 1. It involves the boundary value uNx , which is substituted by D.
If the unknown vector includes the boundary value, (u0, u1, . . . , uNx), later referred to as system
including Dirichlet conditions, the equation for i = Nx − 1 just involves the unknown uNx , and the
final equation becomes uNx = D, corresponding to Ai,i = 1 and bi = D for i = Nx.

5.24.2. Picard iteration

The obvious Picard iteration scheme is to use previously computed values of ui in A(u) and b(u),
as described more in detail in Section Section 5.13. With the notation u− for the most recently
computed value of u, we have the system F (u) ≈ F̂ (u) = A(u−)u−b(u−), with F = (F0, F1, . . . , Fm),
u = (u0, u1, . . . , um). The index m is Nx if the system includes the Dirichlet condition as a separate
equation and Nx − 1 otherwise. The matrix A(u−) is tridiagonal, so the solution procedure is to fill
a tridiagonal matrix data structure and the right-hand side vector with the right numbers and call
a Gaussian elimination routine for tridiagonal linear systems.

492



DRAFT

5. Nonlinear Problems

5.24.3. Mesh with two cells

It helps on the understanding of the details to write out all the mathematics in a specific case with
a small mesh, say just two cells (Nx = 2). We use u−

i for the i-th component in u−.

The starting point is the basic expressions for the nonlinear equations at mesh point i = 0 and
i = 1:

A0,−1u−1 +A0,0u0 +A0,1u1 = b0, (5.51)

A1,0u0 +A1,1u1 +A1,2u2 = b1 . (5.52)

Equation (5.51) written out reads

1
2∆x2 (− (α(u−1) + α(u0))u−1 +

(α(u−1) + 2α(u0) + α(u1))u0−
(α(u0) + α(u1)))u1 + au0 = f(u0) .

We must then replace u−1 by (5.50). With Picard iteration we get

1
2∆x2 (− (α(u− ∗ ∗−1) + 2α(u− ∗ ∗0) + α(u−

1 ))u1 +

(α(u− ∗ ∗−1) + 2α(u− ∗ ∗0) + α(u−
1 ))u0 + au0

= f(u−
0 )− 1

α(u− ∗ ∗0)∆x(α(u− ∗ ∗−1) + α(u−
0 ))C,

where
u−

−1 = u−
1 −

2∆x
α(u−

0 )
C .

Equation (5.52) contains the unknown u2 for which we have a Dirichlet condition. In case we omit
the condition as a separate equation, (5.52) with Picard iteration becomes

1
2∆x2 (− (α(u− ∗ ∗0) + α(u− ∗ ∗1))u0 +

(α(u− ∗ ∗0) + 2α(u− ∗ ∗1) + α(u−
2 ))u1−

(α(u− ∗ ∗1) + α(u− ∗ ∗2)))u2 + au1 = f(u−
1 ) .

We must now move the u2 term to the right-hand side and replace all occurrences of u2 by D:

1
2∆x2 (− (α(u− ∗ ∗0) + α(u− ∗ ∗1))u0 +

(α(u− ∗ ∗0) + 2α(u− ∗ ∗1) + α(D)))u1 + au1

= f(u− ∗ ∗1) + 1
2∆x2 (α(u− ∗ ∗1) + α(D))D .

493



DRAFT

5. Nonlinear Problems

The two equations can be written as a 2× 2 system:(
B0,0 B0,1
B1,0 B1,1

)(
u0
u1

)
=
(
d0
d1

)
,

where

B0,0 = 1
2∆x2 (α(u− ∗ ∗−1) + 2α(u− ∗ ∗0) + α(u−

1 )) + a, (5.53)

B0,1 = − 1
2∆x2 (α(u− ∗ ∗−1) + 2α(u− ∗ ∗0) + α(u−

1 )), (5.54)

B1,0 = − 1
2∆x2 (α(u− ∗ ∗0) + α(u− ∗ ∗1)), (5.55)

B1,1 = 1
2∆x2 (α(u− ∗ ∗0) + 2α(u− ∗ ∗1) + α(D)) + a, (5.56)

d0 = f(u−
0 )− 1

α(u− ∗ ∗0)∆x(α(u− ∗ ∗−1) + α(u−
0 ))C, (5.57)

d1 = f(u− ∗ ∗1) + 1
2∆x2 (α(u− ∗ ∗1) + α(D))D . (5.58)

The system with the Dirichlet condition becomes B0,0 B0,1 0
B1,0 B1,1 B1,2

0 0 1


 u0
u1
u2

 =

 d0
d1
D

 ,
with

B1,1 = 1
2∆x2 (α(u− ∗ ∗0) + 2α(u− ∗ ∗1) + α(u2)) + a, (5.59)

B1,2 = − 1
2∆x2 (α(u−

1 ) + α(u2))), (5.60)

d1 = f(u−
1 ) . (5.61)

Other entries are as in the 2× 2 system.

5.24.4. Newton’s method

The Jacobian must be derived in order to use Newton’s method. Here it means that we need to
differentiate F (u) = A(u)u− b(u) with respect to the unknown parameters u0, u1, . . . , um (m = Nx

or m = Nx − 1, depending on whether the Dirichlet condition is included in the nonlinear system
F (u) = 0 or not). Nonlinear equation number i has the structure

Fi = Ai,i−1(ui−1, ui)ui−1 +Ai,i(ui−1, ui, ui+1)ui +Ai,i+1(ui, ui+1)ui+1 − bi(ui) .

Computing the Jacobian requires careful differentiation. For example,

494



DRAFT

5. Nonlinear Problems

∂

∂ui
(Ai,i(ui−1, ui, ui+1)ui) = ∂Ai,i

∂ui
ui +Ai,i

∂ui

∂ui

= ∂

∂ui
( 1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a)ui+

1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a

= 1
2∆x2 (2α′(ui)ui + α(ui−1) + 2α(ui) + α(ui+1)) + a .

The complete Jacobian becomes

Ji,i = ∂Fi

∂ui
= ∂Ai,i−1

∂ui
ui−1 + ∂Ai,i

∂ui
ui +Ai,i + ∂Ai,i+1

∂ui
ui+1 −

∂bi

∂ui

= 1
2∆x2 (−α′(ui)ui−1 + 2α′(ui)ui + α(ui−1) + 2α(ui) + α(ui+1))+

a− 1
2∆x2α

′(ui)ui+1 − b′(ui),

Ji,i−1 = ∂Fi

∂ui−1
= ∂Ai,i−1

∂ui−1
ui−1 +Ai−1,i + ∂Ai,i

∂ui−1
ui −

∂bi

∂ui−1

= 1
2∆x2 (−α′(ui−1)ui−1 − (α(ui−1) + α(ui)) + α′(ui−1)ui),

Ji,i+1 = ∂Ai,i+1
∂ui−1

ui+1 +Ai+1,i + ∂Ai,i

∂ui+1
ui −

∂bi

∂ui+1

= 1
2∆x2 (−α′(ui+1)ui+1 − (α(ui) + α(ui+1)) + α′(ui+1)ui)

.The explicit expression for nonlinear equation number i, Fi(u0, u1, . . .), arises from moving the
f(ui) term in (5.48) to the left-hand side:

Fi = − 1
2∆x2 ((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui − f(ui) = 0 .
(5.62)

At the boundary point i = 0, u−1 must be replaced using the formula (5.50). When the Dirichlet
condition at i = Nx is not a part of the equation system, the last equation Fm = 0 for m = Nx − 1
involves the quantity uNx−1 which must be replaced by D. If uNx is treated as an unknown in the
system, the last equation Fm = 0 has m = Nx and reads

FNx(u0, . . . , uNx) = uNx −D = 0 .
Similar replacement of u−1 and uNx must be done in the Jacobian for the first and last row. When
uNx is included as an unknown, the last row in the Jacobian must help implement the condition
δuNx = 0, since we assume that u contains the right Dirichlet value at the beginning of the iteration
(uNx = D), and then the Newton update should be zero for i = 0, i.e., δuNx = 0. This also forces
the right-hand side to be bi = 0, i = Nx.

We have seen, and can see from the present example, that the linear system in Newton’s method
contains all the terms present in the system that arises in the Picard iteration method. The extra
terms in Newton’s method can be multiplied by a factor such that it is easy to program one linear
system and set this factor to 0 or 1 to generate the Picard or Newton system.

495



DRAFT

5. Nonlinear Problems

5.25. Solving Nonlinear PDEs with Devito

Having established the finite difference discretization of nonlinear PDEs, we now implement several
solvers using Devito. The symbolic approach allows us to express nonlinear equations and handle
the time-lagged coefficients naturally.

5.25.1. Nonlinear Diffusion: The Explicit Scheme

The nonlinear diffusion equation
ut = ∇ · (D(u)∇u)

with solution-dependent diffusivity D(u) requires special treatment. In 1D, the equation becomes:

ut = ∂

∂x

(
D(u)∂u

∂x

)

For explicit time stepping, we evaluate D at the previous time level:

un+1
i = un

i + ∆t
∆x2

[
Dn

i+1/2(un
i+1 − un

i )−Dn
i−1/2(un

i − un
i−1)

]

where Dn
i+1/2 = 1

2(D(un
i ) +D(un

i+1)).

5.25.2. The Devito Implementation

from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np

# Domain and discretization
L = 1.0 # Domain length
Nx = 100 # Grid points
T = 0.1 # Final time
F = 0.4 # Target Fourier number

dx = L / Nx
D_max = 1.0 # Maximum diffusion coefficient
dt = F * dx**2 / D_max # Time step from stability

# Create Devito grid
grid = Grid(shape=(Nx + 1,), extent=(L,))

# Time-varying field with space_order=2 for halo access
u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)

496



DRAFT

5. Nonlinear Problems

5.25.3. Handling the Nonlinear Diffusion Coefficient

For nonlinear diffusion, the diffusivity depends on the solution. Common forms include:

Type D(u) Application
Constant D0 Linear heat conduction
Linear D0(1 + αu) Temperature-dependent conductivity
Porous medium D0mu

m−1 Flow in porous media

The src.nonlin module provides several diffusion coefficient functions:

from src.nonlin import (
constant_diffusion,
linear_diffusion,
porous_medium_diffusion,

)

# Constant D(u) = 1.0
D_const = lambda u: constant_diffusion(u, D0=1.0)

# Linear D(u) = 1 + 0.5*u
D_linear = lambda u: linear_diffusion(u, D0=1.0, alpha=0.5)

# Porous medium D(u) = 2*u (m=2)
D_porous = lambda u: porous_medium_diffusion(u, m=2.0, D0=1.0)

5.25.4. Complete Nonlinear Diffusion Solver

The src.nonlin module provides solve_nonlinear_diffusion_explicit:

from src.nonlin import solve_nonlinear_diffusion_explicit
import numpy as np

# Initial condition: smooth bump
def I(x):

return np.sin(np.pi * x)

result = solve_nonlinear_diffusion_explicit(
L=1.0, # Domain length
Nx=100, # Grid points
T=0.1, # Final time
F=0.4, # Fourier number
I=I, # Initial condition
D_func=lambda u: linear_diffusion(u, D0=1.0, alpha=0.5),

)

497



DRAFT

5. Nonlinear Problems

print(f"Final time: {result.t:.4f}")
print(f"Max solution: {result.u.max():.6f}")

5.25.5. Reaction-Diffusion with Operator Splitting

The reaction-diffusion equation
ut = auxx +R(u)

combines diffusion with a nonlinear reaction term. Operator splitting separates these effects:

Lie Splitting (first-order): 1. Solve ut = auxx for time ∆t 2. Solve ut = R(u) for time ∆t

Strang Splitting (second-order): 1. Solve ut = R(u) for time ∆t/2 2. Solve ut = auxx for time
∆t 3. Solve ut = R(u) for time ∆t/2

5.25.6. Reaction Terms

The module provides common reaction terms:

from src.nonlin import (
logistic_reaction,
fisher_reaction,
allen_cahn_reaction,

)

# Logistic growth: R(u) = r*u*(1 - u/K)
R_logistic = lambda u: logistic_reaction(u, r=1.0, K=1.0)

# Fisher-KPP: R(u) = r*u*(1 - u)
R_fisher = lambda u: fisher_reaction(u, r=1.0)

# Allen-Cahn: R(u) = u - uˆ3
R_allen_cahn = lambda u: allen_cahn_reaction(u, epsilon=1.0)

5.25.7. Reaction-Diffusion Solver

from src.nonlin import solve_reaction_diffusion_splitting

# Initial condition with small perturbation
def I(x):

return 0.5 * np.sin(np.pi * x)

# Strang splitting (second-order)
result = solve_reaction_diffusion_splitting(

498



DRAFT

5. Nonlinear Problems

L=1.0,
a=0.1, # Diffusion coefficient
Nx=100,
T=0.5,
F=0.4,
I=I,
R_func=lambda u: fisher_reaction(u, r=1.0),
splitting="strang",

)

The Strang splitting achieves second-order accuracy in time, while Lie splitting is only first-order.
For problems with fast reactions or long simulation times, the higher accuracy of Strang splitting is
beneficial.

5.25.8. Burgers’ Equation

The viscous Burgers’ equation
ut + uux = νuxx

is a prototype for nonlinear advection with viscous dissipation. The nonlinear term uux can cause
shock formation for small ν.

We use the conservative form (u2/2)x with centered differences:

from src.nonlin import solve_burgers_equation

result = solve_burgers_equation(
L=2.0, # Domain length
nu=0.01, # Viscosity
Nx=100, # Grid points
T=0.5, # Final time
C=0.5, # Target CFL number

)

5.25.9. Stability for Burgers’ Equation

The time step must satisfy both the CFL condition for advection:

C = |u|max∆t
∆x ≤ 1

and the diffusion stability condition:
F = ν∆t

∆x2 ≤ 0.5

The solver automatically chooses ∆t to satisfy both conditions with a safety factor.

499



DRAFT

5. Nonlinear Problems

5.25.10. The Effect of Viscosity

import matplotlib.pyplot as plt

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

for ax, nu in zip(axes, [0.1, 0.01]):
result = solve_burgers_equation(

L=2.0, nu=nu, Nx=100, T=0.5, C=0.3,
I=lambda x: np.sin(np.pi * x),
save_history=True,

)

for i in range(0, len(result.t_history), len(result.t_history)//5):
ax.plot(result.x, result.u_history[i],

label=f't = {result.t_history[i]:.2f}')

ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(f'Burgers, nu = {nu}')
ax.legend()

Higher viscosity (ν = 0.1) smooths the solution, while lower viscosity (ν = 0.01) allows steeper
gradients to develop.

5.25.11. Picard Iteration for Implicit Schemes

For stiff nonlinear problems, implicit time stepping may be necessary. Picard iteration solves the
nonlinear system by repeated linearization:

1. Guess un+1,(0) = un

2. For k = 0, 1, 2, . . .:

• Evaluate D(k) = D(un+1,(k))
• Solve the linear system for un+1,(k+1)

• Check convergence: ∥un+1,(k+1) − un+1,(k)∥ < ϵ

from src.nonlin import solve_nonlinear_diffusion_picard

result = solve_nonlinear_diffusion_picard(
L=1.0,
Nx=50,
T=0.05,
dt=0.001, # Can use larger dt than explicit

)

500



DRAFT

5. Nonlinear Problems

The implicit scheme removes the time step restriction but requires solving a linear system at each
iteration.

5.25.12. Summary

Key points for nonlinear PDEs with Devito:

1. Nonlinear diffusion: Use explicit scheme with lagged coefficient evaluation and Fourier
number F ≤ 0.5

2. Operator splitting: Separates diffusion and reaction for reaction-diffusion equations; Strang
is second-order

3. Burgers’ equation: Requires both CFL and diffusion stability conditions; viscosity controls
smoothness

4. Picard iteration: Enables implicit schemes for stiff problems at the cost of solving linear
systems

The src.nonlin module provides: - solve_nonlinear_diffusion_explicit - solve_reaction_diffusion_splitting
- solve_burgers_equation - solve_nonlinear_diffusion_picard - Diffusion coefficients:
constant_diffusion, linear_diffusion, porous_medium_diffusion - Reaction terms:
logistic_reaction, fisher_reaction, allen_cahn_reaction

The fundamental ideas in the derivation of Fi and Ji,j in the 1D model problem are easily generalized
to multi-dimensional problems. Nevertheless, the expressions involved are slightly different, with
derivatives in x replaced by ∇, so we present some examples below in detail.

5.26. Finite difference discretization

A typical diffusion equation
ut = ∇ · (α(u)∇u) + f(u),

can be discretized by (e.g.) a Backward Euler scheme, which in 2D can be written

[D−
t u = Dxα(u)x

Dxu+Dyα(u)y
Dyu+ f(u)]ni,j .

We do not dive into the details of handling boundary conditions now. Dirichlet and Neumann
conditions are handled as in corresponding linear, variable-coefficient diffusion problems.

Writing the scheme out, putting the unknown values on the left-hand side and known values on the
right-hand side, and introducing ∆x = ∆y = h to save some writing, one gets

un
i,j −

∆t
h2 (1

2(α(un
i,j) + α(un

i+1,j))(un
i+1,j − un

i,j)

− 1
2(α(un

i−1,j) + α(un
i,j))(un

i,j − un
i−1,j)

+ 1
2(α(un

i,j) + α(un
i,j+1))(un

i,j+1 − un
i,j)

− 1
2(α(un

i,j−1) + α(un
i,j))(un

i,j − un
i−1,j−1))−∆tf(un

i,j) = un−1
i,j

This defines a nonlinear algebraic system on the form A(u)u = b(u).

501



DRAFT

5. Nonlinear Problems

5.26.1. Picard iteration

The most recently computed values u− of un can be used in α and f for a Picard iteration, or
equivalently, we solve A(u−)u = b(u−). The result is a linear system of the same type as arising
from ut = ∇ · (α(x)∇u) + f(x, t).

The Picard iteration scheme can also be expressed in operator notation:

[D−
t u = Dxα(u−)x

Dxu+Dyα(u−)y
Dyu+ f(u−)]ni,j .

### Newton’s method

As always, Newton’s method is technically more involved than Picard iteration. We first define the
nonlinear algebraic equations to be solved, drop the superscript n (use u for un), and introduce u(1)

for un−1:

Fi,j = ui,j −
∆t
h2 (

1
2(α(ui,j) + α(ui+1,j))(ui+1,j − ui,j)−
1
2(α(ui−1,j) + α(ui,j))(ui,j − ui−1,j)+
1
2(α(ui,j) + α(ui,j+1))(ui,j+1 − ui,j)−
1
2(α(ui,j−1) + α(ui,j))(ui,j − ui−1,j−1))−∆t f(ui,j)− u(1)

i,j = 0 .

It is convenient to work with two indices i and j in 2D finite difference discretizations, but it
complicates the derivation of the Jacobian, which then gets four indices. (Make sure you really
understand the 1D version of this problem as treated in Section Section 5.23.) The left-hand
expression of an equation Fi,j = 0 is to be differentiated with respect to each of the unknowns ur,s

(recall that this is short notation for un
r,s), r ∈ Ix, s ∈ Iy:

Ji,j,r,s = ∂Fi,j

∂ur,s
.

The Newton system to be solved in each iteration can be written as∑
r∈Ix

∑
s∈Iy

Ji,j,r,sδur,s = −Fi,j , i ∈ Ix, j ∈ Iy .

Given i and j, only a few r and s indices give nonzero contribution to the Jacobian since Fi,j

contains ui±1,j , ui,j±1, and ui,j . This means that Ji,j,r,s has nonzero contributions only if r = i± 1,
s = j ± 1, as well as r = i and s = j. The corresponding terms in Ji,j,r,s are Ji,j,i−1,j , Ji,j,i+1,j ,
Ji,j,i,j−1, Ji,j,i,j+1 and Ji,j,i,j . Therefore, the left-hand side of the Newton system, ∑r

∑
s Ji,j,r,sδur,s

collapses to

Ji,j,r,sδur,s = Ji,j,i,jδui,j + Ji,j,i−1,jδui−1,j + Ji,j,i+1,jδui+1,j + Ji,j,i,j−1δui,j−1

+ Ji,j,i,j+1δui,j+1

502



DRAFT

5. Nonlinear Problems

The specific derivatives become

Ji,j,i−1,j = ∂Fi,j

∂ui−1,j

= ∆t
h2 (α′(ui−1,j)(ui,j − ui−1,j)− α(ui−1,j)(−1)),

Ji,j,i+1,j = ∂Fi,j

∂ui+1,j

= ∆t
h2 (−α′(ui+1,j)(ui+1,j − ui,j)− α(ui−1,j)),

Ji,j,i,j−1 = ∂Fi,j

∂ui,j−1

= ∆t
h2 (α′(ui,j−1)(ui,j − ui,j−1)− α(ui,j−1)(−1)),

Ji,j,i,j+1 = ∂Fi,j

∂ui,j+1

= ∆t
h2 (−α′(ui,j+1)(ui,j+1 − ui,j)− α(ui,j−1)) .

The Ji,j,i,j entry has a few more terms and is left as an exercise. Inserting the most recent
approximation u− for u in the J and F formulas and then forming Jδu = −F gives the linear
system to be solved in each Newton iteration. Boundary conditions will affect the formulas when
any of the indices coincide with a boundary value of an index.

5.27. Continuation methods

Picard iteration or Newton’s method may diverge when solving PDEs with severe nonlinearities.
Relaxation with ω < 1 may help, but in highly nonlinear problems it can be necessary to introduce a
continuation parameter Λ in the problem: Λ = 0 gives a version of the problem that is easy to solve,
while Λ = 1 is the target problem. The idea is then to increase Λ in steps, Λ0 = 0,Λ1 < · · · < Λn = 1,
and use the solution from the problem with Λi−1 as initial guess for the iterations in the problem
corresponding to Λi.

The continuation method is easiest to understand through an example. Suppose we intend to solve

−∇ · (||∇u||q∇u) = f,

which is an equation modeling the flow of a non-Newtonian fluid through a channel or pipe. For
q = 0 we have the Poisson equation (corresponding to a Newtonian fluid) and the problem is linear.
A typical value for pseudo-plastic fluids may be qn = −0.8. We can introduce the continuation
parameter Λ ∈ [0, 1] such that q = qnΛ. Let {Λℓ}nℓ=0 be the sequence of Λ values in [0, 1], with
corresponding q values {qℓ}nℓ=0. We can then solve a sequence of problems

−∇ ·
(
||∇uℓ||qℓ∇u

ℓ
)

= f, ℓ = 0, . . . , n,

where the initial guess for iterating on uℓ is the previously computed solution uℓ−1. If a particular
Λℓ leads to convergence problems, one may try a smaller increase in Λ: Λ∗ = 1

2(Λℓ−1 + Λℓ), and
repeat halving the step in Λ until convergence is reestablished.

503



DRAFT

5. Nonlinear Problems

5.28. Operator splitting methods

Operator splitting is a natural and old idea. When a PDE or system of PDEs contains different
terms expressing different physics, it is natural to use different numerical methods for different
physical processes. This can optimize and simplify the overall solution process. The idea was
especially popularized in the context of the Navier-Stokes equations and reaction-diffusion PDEs.
Common names for the technique are operator splitting, fractional step methods, and split-step
methods. We shall stick to the former name. In the context of nonlinear differential equations,
operator splitting can be used to isolate nonlinear terms and simplify the solution methods.

A related technique, often known as dimensional splitting or alternating direction implicit (ADI)
methods, is to split the spatial dimensions and solve a 2D or 3D problem as two or three consecutive
1D problems, but this type of splitting is not to be further considered here.

5.29. Ordinary operator splitting for ODEs

Consider first an ODE where the right-hand side is split into two terms:

u′ = f0(u) + f1(u) .

In case f0 and f1 are linear functions of u, f0 = au and f1 = bu, we have u(t) = Ie(a+b)t, if u(0) = I.
When going one time step of length ∆t from tn to tn+1, we have

u(tn+1) = u(tn)e(a+b)∆t .

This expression can be also be written as

u(tn+1) = u(tn)ea∆teb∆t,

or

u∗ = u(tn)ea∆t, (5.63)

u(tn+1) = u∗eb∆t (5.64)

The first step (5.63) means solving u′ = f0 over a time interval ∆t with u(tn) as start value. The
second step (5.64) means solving u′ = f1 over a time interval ∆t with the value at the end of the
first step as start value. That is, we progress the solution in two steps and solve two ODEs u′ = f0
and u′ = f1. The order of the equations is not important. From the derivation above we see that
solving u′ = f1 prior to u′ = f0 can equally well be done.

The technique is exact if the ODEs are linear. For nonlinear ODEs it is only an approximate method
with error ∆t. The technique can be extended to an arbitrary number of steps; i.e., we may split
the PDE system into any number of subsystems. Examples will illuminate this principle.

504



DRAFT

5. Nonlinear Problems

5.30. Strange splitting for ODEs

The accuracy of the splitting method in Section Section 5.29 can be improved from O(∆t) to O(∆t2)
using so-called Strange splitting, where we take half a step with the f0 operator, a full step with
the f1 operator, and finally half another step with the f0 operator. During a time interval ∆t the
algorithm can be written as follows.

du∗

dt
= f0(u∗), u∗(tn) = u(tn), t ∈ [tn, tn + 1

2∆t],
du∗∗∗

dt
= f1(u∗∗∗), u∗∗∗(tn) = u∗(tn+ 1

2
), t ∈ [tn, tn + ∆t],

du∗∗

dt
= f0(u∗∗), u∗∗(tn+ 1

2
) = u∗∗∗(tn+1), t ∈ [tn + 1

2∆t, tn + ∆t] .

The global solution is set as u(tn+1) = u∗∗(tn+1).

There is no use in combining higher-order methods with ordinary splitting since the error due to
splitting is O(∆t), but for Strange splitting it makes sense to use schemes of order O(∆t2).

With the notation introduced for Strange splitting, we may express ordinary first-order splitting
as

du∗

dt
= f0(u∗), u∗(tn) = u(tn), t ∈ [tn, tn + ∆t],

du∗∗

dt
= f1(u∗∗), u∗∗(tn) = u∗(tn+1), t ∈ [tn, tn + ∆t],

with global solution set as u(tn+1) = u∗∗(tn+1).

5.31. Example: Logistic growth

Let us split the (scaled) logistic equation

u′ = u(1− u), u(0) = 0.1,

with solution u = (9e−t + 1)−1, into

u′ = u− u2 = f0(u) + f1(u), f0(u) = u, f1(u) = −u2 .

We solve u′ = f0(u) and u′ = f1(u) by a Forward Euler step. In addition, we add a method where
we solve u′ = f0(u) analytically, since the equation is actually u′ = u with solution et. The software
that accompanies the following methods is the file split_logistic.py.

505

https://github.com/devitocodes/devito_book/tree/main/src/nonlin/split_logistic.py


DRAFT

5. Nonlinear Problems

5.31.1. Splitting techniques

Ordinary splitting takes a Forward Euler step for each of the ODEs according to

u∗,n+1 − u∗,n

∆t = f0(u∗,n), u∗,n = u(tn), t ∈ [tn, tn + ∆t], (5.65)

u∗∗,n+1 − u∗∗,n

∆t = f1(u∗∗,n), u∗∗,n = u∗,n+1, t ∈ [tn, tn + ∆t], (5.66)

with u(tn+1) = u∗∗,n+1.

Strange splitting takes the form

u∗,n+ 1
2 − u∗,n

1
2∆t

= f0(u∗,n), u∗,n = u(tn), t ∈ [tn, tn + 1
2∆t], (5.67)

u∗∗∗,n+1 − u∗∗∗,n

∆t = f1(u∗∗∗,n), u∗∗∗,n = u∗,n+ 1
2 , t ∈ [tn, tn + ∆t], (5.68)

u∗∗,n+1 − u∗∗,n+ 1
2

1
2∆t

= f0(u∗∗,n+ 1
2 ), u∗∗,n+ 1

2 = u∗∗∗,n+1, t ∈ [tn + 1
2∆t, tn + ∆t] . (5.69)

5.31.2. Verbose implementation

The following function computes four solutions arising from the Forward Euler method, ordinary
splitting, Strange splitting, as well as Strange splitting with exact treatment of u′ = f0(u):

import numpy as np

def solver(dt, T, f, f_0, f_1):
"""
Solve u'=f by the Forward Euler method and by ordinary and
Strange splitting: f(u) = f_0(u) + f_1(u).
"""
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1)
u_FE = np.zeros(len(t))
u_split1 = np.zeros(len(t)) # 1st-order splitting
u_split2 = np.zeros(len(t)) # 2nd-order splitting
u_split3 = np.zeros(len(t)) # 2nd-order splitting w/exact f_0

u_FE[0] = 0.1
u_split1[0] = 0.1
u_split2[0] = 0.1
u_split3[0] = 0.1

506



DRAFT

5. Nonlinear Problems

for n in range(len(t) - 1):
u_FE[n + 1] = u_FE[n] + dt * f(u_FE[n])

u_s_n = u_split1[n]
u_s = u_s_n + dt * f_0(u_s_n)
u_ss_n = u_s
u_ss = u_ss_n + dt * f_1(u_ss_n)
u_split1[n + 1] = u_ss

u_s_n = u_split2[n]
u_s = u_s_n + dt / 2.0 * f_0(u_s_n)
u_sss_n = u_s
u_sss = u_sss_n + dt * f_1(u_sss_n)
u_ss_n = u_sss
u_ss = u_ss_n + dt / 2.0 * f_0(u_ss_n)
u_split2[n + 1] = u_ss

u_s_n = u_split3[n]
u_s = u_s_n * np.exp(dt / 2.0) # exact
u_sss_n = u_s
u_sss = u_sss_n + dt * f_1(u_sss_n)
u_ss_n = u_sss
u_ss = u_ss_n * np.exp(dt / 2.0) # exact
u_split3[n + 1] = u_ss

return u_FE, u_split1, u_split2, u_split3, t

5.31.3. Compact implementation

We have used quite many lines for the steps in the splitting methods. Many will prefer to condense
the code a bit, as done here:

5.31.4. Results

Figure Figure 5.3 shows that the impact of splitting is significant. Interestingly, however, the
Forward Euler method applied to the entire problem directly is much more accurate than any of
the splitting schemes. We also see that Strange splitting is definitely more accurate than ordinary
splitting and that it helps a bit to use an exact solution of u′ = f0(u). With a large time step
(∆t = 0.2, left plot in Figure Figure 5.3), the asymptotic values are off by 20-30%. A more reasonable
time step (∆t = 0.05, right plot in Figure Figure 5.3) gives better results, but still the asymptotic
values are up to 10% wrong.

As technique for solving nonlinear ODEs, we realize that the present case study is not particularly
promising, as the Forward Euler method both linearizes the original problem and provides a solution

507



DRAFT

5. Nonlinear Problems

that is much more accurate than any of the splitting techniques. In complicated multi-physics
settings, on the other hand, splitting may be the only feasible way to go, and sometimes you really
need to apply different numerics to different parts of a PDE problem. But in very simple problems,
like the logistic ODE, splitting is just an inferior technique. Still, the logistic ODE is ideal for
introducing all the mathematical details and for investigating the behavior.

Figure 5.3.: Effect of ordinary and Strange splitting for the logistic equation.

5.32. Reaction-diffusion equation

Consider a diffusion equation coupled to chemical reactions modeled by a nonlinear term f(u):

∂u

∂t
= α∇2u+ f(u) .

This is a physical process composed of two individual processes: u is the concentration of a substance
that is locally generated by a chemical reaction f(u), while u is spreading in space because of
diffusion. There are obviously two time scales: one for the chemical reaction and one for diffusion.
Typically, fast chemical reactions require much finer time stepping than slower diffusion processes.
It could therefore be advantageous to split the two physical effects in separate models and use
different numerical methods for the two.

A natural spitting in the present case is

∂u∗

∂t
= α∇2u∗,

∂u∗∗

∂t
= f(u∗∗) . (5.70)

Looking at these familiar problems, we may apply a θ rule (implicit) scheme for (5.70) over one
time step and avoid dealing with nonlinearities by applying an explicit scheme for (5.70) over the
same time step.

Suppose we have some solution u at time level tn. For flexibility, we define a θ method for the
diffusion part (5.70) by

[Dtu
∗ = α(DxDxu

∗ +DyDyu
∗)]n+θ .

508



DRAFT

5. Nonlinear Problems

We use un as initial condition for u∗.

The reaction part, which is defined at each mesh point (without coupling values in different mesh
points), can employ any scheme for an ODE. Here we use an Adams-Bashforth method of order 2.
Recall that the overall accuracy of the splitting method is maximum O(∆t2) for Strange splitting,
otherwise it is just O(∆t). Higher-order methods for ODEs will therefore be a waste of work. The
2nd-order Adams-Bashforth method reads

u∗∗,n+1 ∗ ∗i, j = u∗∗,n ∗ ∗i, j + 1
2∆t

(
3f(u∗∗,n

i,j , tn)− f(u∗∗,n−1 ∗ ∗i, j, t ∗ ∗n− 1)
)
.

We can use a Forward Euler step to start the method, i.e, compute u∗∗,1
i,j .

The algorithm goes like this:

1. Solve the diffusion problem for one time step as usual.
2. Solve the reaction ODEs at each mesh point in [tn, tn + ∆t], using the diffusion solution in 1.

as initial condition. The solution of the ODEs constitutes the solution of the original problem
at the end of each time step.

We may use a much smaller time step when solving the reaction part, adapted to the dynamics of
the problem u′ = f(u). This gives great flexibility in splitting methods.

5.33. Example: Reaction-Diffusion with linear reaction term

The methods above may be explored in detail through a specific computational example in which
we compute the convergence rates associated with four different solution approaches for the reaction-
diffusion equation with a linear reaction term, i.e. f(u) = −bu. The methods comprise solving
without splitting (just straight Forward Euler), ordinary splitting, first order Strange splitting, and
second order Strange splitting. In all four methods, a standard centered difference approximation is
used for the spatial second derivative. The methods share the error model E = Chr, while differing
in the step h (being either ∆x2 or ∆x) and the convergence rate r (being either 1 or 2).

All code commented below is found in the file split_diffu_react.py. When executed, a function
convergence_rates is called, from which all convergence rate computations are handled:

def convergence_rates(scheme="diffusion"):
"""Computes empirical conv. rates for the different
splitting schemes"""

F = 0.5
T = 1.2
a = 3.5
b = 1
L = 1.5
k = np.pi / L

def exact(x, t):
"""exact sol. to: du/dt = a*dˆ2u/dxˆ2 - b*u"""

509

https://github.com/devitocodes/devito_book/tree/main/src/nonlin/split_diffu_react.py


DRAFT

5. Nonlinear Problems

return np.exp(-(a * k**2 + b) * t) * np.sin(k * x)

def f(u, t):
return -b * u

def I(x):
return exact(x, 0)

global error # error computed in the user action function
error = 0

def action(u, x, t, n):
global error
if n == 1: # New simulation, - reset error

error = 0
else:

error = max(error, np.abs(u - exact(x, t[n])).max())

E = []
h = []
Nx_values = [10, 20, 40, 80, 160]
for Nx in Nx_values:

dx = L / Nx
dt = F / a * dx**2
Nt = int(round(T / float(dt)))
t = np.linspace(0, Nt * dt, Nt + 1) # Mesh points, global time

if scheme == "diffusion":
print("Running FE on whole eqn...")
diffusion_FE(I, a, f, L, dt, F, t, T, step_no=0, user_action=action)

elif scheme == "ordinary_splitting":
print("Running ordinary splitting...")
ordinary_splitting(

I=I,
a=a,
b=b,
f=f,
L=L,
dt=dt,
dt_Rfactor=1,
F=F,
t=t,
T=T,
user_action=action,

)
elif scheme == "Strange_splitting_1stOrder":

print("Running Strange splitting with 1st order schemes...")

510



DRAFT

5. Nonlinear Problems

Strange_splitting_1stOrder(
I=I,
a=a,
b=b,
f=f,
L=L,
dt=dt,
dt_Rfactor=1,
F=F,
t=t,
T=T,
user_action=action,

)
elif scheme == "Strange_splitting_2andOrder":

print("Running Strange splitting with 2nd order schemes...")
Strange_splitting_2andOrder(

I=I,
a=a,
b=b,
f=f,
L=L,
dt=dt,
dt_Rfactor=1,
F=F,
t=t,
T=T,
user_action=action,

)
else:

print("Unknown scheme requested!")
sys.exit(0)

h.append(dt)
E.append(error)

print("E:", E)
print("h:", h)

r = [
np.log(E[i] / E[i - 1]) / np.log(h[i] / h[i - 1])
for i in range(1, len(Nx_values))

]
print("Computed rates:", r)

if __name__ == "__main__":
schemes = [

511



DRAFT

5. Nonlinear Problems

"diffusion",
"ordinary_splitting",
"Strange_splitting_1stOrder",
"Strange_splitting_2andOrder",

]

for scheme in schemes:
convergence_rates(scheme=scheme)

Now, with respect to the error (E = Chr), the Forward Euler scheme, the ordinary splitting scheme
and first order Strange splitting scheme are all first order (r = 1), with a step h = ∆x2 = K−1∆t,
where K is some constant. This implies that the ratio ∆t

∆x2 must be held constant during convergence
rate calculations. Furthermore, the Fourier number F = α∆t

∆x2 is upwards limited to F = 0.5, being
the stability limit with explicit schemes. Thus, in these cases, we use the fixed value of F and a
given (but changing) spatial resolution ∆x to compute the corresponding value of ∆t according to
the expression for F . This assures that ∆t

∆x2 is kept constant. The loop in convergence_rates runs
over a chosen set of grid points (Nx_values) which gives a doubling of spatial resolution with each
iteration (∆x is halved).

For the second order Strange splitting scheme, we have r = 2 and a step h = ∆x = K−1∆t, where
K again is some constant. In this case, it is thus the ratio ∆t

∆x that must be held constant during the
convergence rate calculations. From the expression for F , it is clear then that F must change with
each halving of ∆x. In fact, if F is doubled each time ∆x is halved, the ratio ∆t

∆x will be constant
(this follows, e.g., from the expression for F ). This is utilized in our code.

A solver diffusion_theta is used in each of the four solution approaches:

def diffusion_theta(
I, a, f, L, dt, F, t, T, step_no, theta=0.5, u_L=0, u_R=0, user_action=None

):
"""
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5).
Vectorized implementation and sparse (tridiagonal)
coefficient matrix.
"""

Nt = int(round(T / float(dt)))
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx + 1) # solution array at t[n+1]
u_1 = np.zeros(Nx + 1) # solution at t[n]

512



DRAFT

5. Nonlinear Problems

diagonal = np.zeros(Nx + 1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx + 1)

Fl = F * theta
Fr = F * (1 - theta)
diagonal[:] = 1 + 2 * Fl
lower[:] = -Fl # 1
upper[:] = -Fl # 1
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

diags = [0, -1, 1]
A = scipy.sparse.diags(

diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx + 1, Nx + 1),
format="csr",

)

if f is None or f == 0:
f = lambda x, t: np.zeros(x.size) if isinstance(x, np.ndarray) else 0

if isinstance(I, np.ndarray): # I is an array
u_1 = np.copy(I)

else: # I is a function
for i in range(0, Nx + 1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, step_no + 0)

for n in range(0, Nt):
b[1:-1] = (

u_1[1:-1]
+ Fr * (u_1[:-2] - 2 * u_1[1:-1] + u_1[2:])
+ dt * theta * f(u_1[1:-1], t[step_no + n + 1])
+ dt * (1 - theta) * f(u_1[1:-1], t[step_no + n])

)
b[0] = u_L
b[-1] = u_R # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:

513



DRAFT

5. Nonlinear Problems

user_action(u, x, t, step_no + (n + 1))

u_1, u = u, u_1

return u_1

For the no splitting approach with Forward Euler in time, this solver handles both the diffusion and
the reaction term. When splitting, diffusion_theta takes care of the diffusion term only, while
the reaction term is handled either by a Forward Euler scheme in reaction_FE, or by a second
order Adams-Bashforth scheme from Odespy. The reaction_FE function covers one complete time
step dt during ordinary splitting, while Strange splitting (both first and second order) applies it
with dt/2 twice during each time step dt. Since the reaction term typically represents a much
faster process than the diffusion term, a further refinement of the time step is made possible in
reaction_FE. It was implemented as

def reaction_FE(I, f, L, Nx, dt, dt_Rfactor, t, step_no, user_action=None):
"""Reaction solver, Forward Euler method.
Note that t covers the whole global time interval.
dt is the step of the diffustion part, i.e. there
is a local time interval [0, dt] the reaction_FE
deals with each time it is called. step_no keeps
track of the (global) time step number (required
for lookup in t).
"""

u = np.copy(I)
dt_local = dt / float(dt_Rfactor)
Nt_local = int(round(dt / float(dt_local)))
x = np.linspace(0, L, Nx + 1)

for n in range(Nt_local):
time = t[step_no] + n * dt_local
u[1:Nx] = u[1:Nx] + dt_local * f(u[1:Nx], time)

return u

With the ordinary splitting approach, each time step dt is covered twice. First computing the
impact of the reaction term, then the contribution from the diffusion term:

def ordinary_splitting(I, a, b, f, L, dt, dt_Rfactor, F, t, T, user_action=None):
"""1st order scheme, i.e. Forward Euler is enough for both
the diffusion and the reaction part. The time step dt is
given for the diffusion step, while the time step for the
reaction part is found as dt/dt_Rfactor, where dt_Rfactor >= 1.

514



DRAFT

5. Nonlinear Problems

"""
Nt = int(round(T / float(dt)))
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1) # Mesh points in space
u = np.zeros(Nx + 1)

for i in range(0, Nx + 1):
u[i] = I(x[i])

for n in range(0, Nt):

u_s = diffusion_FE(
I=u, a=a, f=0, L=L, dt=dt, F=F, t=t, T=dt, step_no=n, user_action=None

)
u = reaction_FE(

I=u_s,
f=f,
L=L,
Nx=Nx,
dt=dt,
dt_Rfactor=dt_Rfactor,
t=t,
step_no=n,
user_action=None,

)

if user_action is not None:
user_action(u, x, t, n + 1)

For the two Strange splitting approaches, each time step dt is handled by first computing the
reaction step for (the first) dt/2, followed by a diffusion step dt, before the reaction step is treated
once again for (the remaining) dt/2. Since first order Strange splitting is no better than first order
accurate, both the reaction and diffusion steps are computed explicitly. The solver was implemented
as

def Strange_splitting_1stOrder(I, a, b, f, L, dt, dt_Rfactor, F, t, T, user_action=None):
"""Strange splitting while still using FE for the diffusion
step and for the reaction step. Gives 1st order scheme.
Introduce an extra time mesh t2 for the diffusion part,
since it steps dt/2.
"""
Nt = int(round(T / float(dt)))
t2 = np.linspace(0, Nt * dt, (Nt + 1) + Nt) # Mesh points in diff
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1)

515



DRAFT

5. Nonlinear Problems

u = np.zeros(Nx + 1)

for i in range(0, Nx + 1):
u[i] = I(x[i])

for n in range(0, Nt):
u_s = diffusion_FE(

I=u,
a=a,
f=0,
L=L,
dt=dt / 2.0,
F=F / 2.0,
t=t2,
T=dt / 2.0,
step_no=2 * n,
user_action=None,

)

u_sss = reaction_FE(
I=u_s,
f=f,
L=L,
Nx=Nx,
dt=dt,
dt_Rfactor=dt_Rfactor,
t=t,
step_no=n,
user_action=None,

)

u = diffusion_FE(
I=u_sss,
a=a,
f=0,
L=L,
dt=dt / 2.0,
F=F / 2.0,
t=t2,
T=dt / 2.0,
step_no=2 * n + 1,
user_action=None,

)

if user_action is not None:
user_action(u, x, t, n + 1)

516



DRAFT

5. Nonlinear Problems

The second order version of the Strange splitting approach utilizes a second order Adams-Bashforth
solver for the reaction part and a Crank-Nicolson scheme for the diffusion part. The solver has the
same structure as the one for first order Strange splitting and was implemented as

def Strange_splitting_2andOrder(I, a, b, f, L, dt, dt_Rfactor, F, t, T, user_action=None):
"""Strange splitting using Crank-Nicolson for the diffusion
step (theta-rule) and Adams-Bashforth 2 for the reaction step.
Gives 2nd order scheme. Introduce an extra time mesh t2 for
the diffusion part, since it steps dt/2.
"""
import odespy

Nt = int(round(T / float(dt)))
t2 = np.linspace(0, Nt * dt, (Nt + 1) + Nt) # Mesh points in diff
dx = np.sqrt(a * dt / F)
Nx = int(round(L / dx))
x = np.linspace(0, L, Nx + 1)
u = np.zeros(Nx + 1)

for i in range(0, Nx + 1):
u[i] = I(x[i])

reaction_solver = odespy.AdamsBashforth2(f)

for n in range(0, Nt):
u_s = diffusion_theta(

I=u,
a=a,
f=0,
L=L,
dt=dt / 2.0,
F=F / 2.0,
t=t2,
T=dt / 2.0,
step_no=2 * n,
theta=0.5,
u_L=0,
u_R=0,
user_action=None,

)

reaction_solver.set_initial_condition(u_s)
t_points = np.linspace(0, dt, dt_Rfactor + 1)
u_AB2, t_ = reaction_solver.solve(t_points) # t_ not needed
u_sss = u_AB2[-1, :] # pick sol at last point in time

517



DRAFT

5. Nonlinear Problems

u = diffusion_theta(
I=u_sss,
a=a,
f=0,
L=L,
dt=dt / 2.0,
F=F / 2.0,
t=t2,
T=dt / 2.0,
step_no=2 * n + 1,
theta=0.5,
u_L=0,
u_R=0,
user_action=None,

)

if user_action is not None:
user_action(u, x, t, n + 1)

When executing split_diffu_react.py, we find that the estimated convergence rates are as
expected. The second order Strange splitting gives the least error (about 4e−5) and has second order
convergence (r = 2), while the remaining three approaches have first order convergence (r = 1).

5.34. Analysis of the splitting method

Let us address a linear PDE problem for which we can develop analytical solutions of the discrete
equations, with and without splitting, and discuss these. Choosing f(u) = −βu for a constant β
gives a linear problem. We use the Forward Euler method for both the PDE and ODE problems.

We seek a 1D Fourier wave component solution of the problem, assuming homogeneous Dirichlet
conditions at x = 0 and x = L:

u = e−αk2t−βt sin kx, k = π

L
.

This component fits the 1D PDE problem (f = 0). On complex form we can write

u = e−αk2t−βt+ikx,

where i =
√
−1 and the imaginary part is taken as the physical solution.

We refer to Section 3.15 and to the book (Langtangen 2016b) for a discussion of exact numerical
solutions to diffusion and decay problems, respectively. The key idea is to search for solutions
Aneikx and determine A. For the diffusion problem solved by a Forward Euler method one has

A = 1− 4F sinp,

518



DRAFT

5. Nonlinear Problems

where F = α∆t/∆x2 is the mesh Fourier number and p = k∆x/2 is a dimensionless number
reflecting the spatial resolution (number of points per wave length in space). For the decay problem
u′ = −βu, we have A = 1− q, where q is a dimensionless parameter for the resolution in the decay
problem: q = β∆t.

The original model problem can also be discretized by a Forward Euler scheme,

[D+
t u = αDxDxu− βu]ni .

Assuming Aneikx we find that

un
i = (1− 4F sinp−q)n sin kx .

We are particularly interested in what happens at one time step. That is,

un
i = (1− 4F sin2 p)un−1

i .

In the two stage algorithm, we first compute the diffusion step

u∗,n+1
i = (1− 4F sin2 p)un−1

i .

Then we use this as input to the decay algorithm and arrive at

u∗∗,n+1 = (1− q)u∗,n+1 = (1− q)(1− 4F sin2 p)un−1
i .

The splitting approximation over one step is therefore

E = 1− 4F sinp−q − (1− q)(1− 4F sin2 p) = −q(2− F sin2 p)) .

5.35. Problem: Determine if equations are nonlinear or not

Classify each term in the following equations as linear or nonlinear. Assume that u, u, and p are
unknown functions and that all other symbols are known quantities.

1. mu′′ + β|u′|u′ + cu = F (t)
2. ut = αuxx

3. utt = c2∇2u
4. ut = ∇ · (α(u)∇u) + f(x, y)
5. ut + f(u)x = 0
6. ut + u · ∇u = −∇p+ r∇2u, ∇ · u = 0 (u is a vector field)
7. u′ = f(u, t)
8. ∇2u = λeu

� Solution

1. mu′′ is linear; β|u′|u′ is nonlinear; cu is linear; F (t) does not contain the unknown u and
is hence constant in u, so the term is linear.

2. ut is linear; αuxx is linear.
3. utt is linear; c2∇2u is linear.

519



DRAFT

5. Nonlinear Problems

4. ut is linear; ∇ · (α(u)∇u) is nonlinear; f(x, y) is constant in u and hence linear.
5. ut is linear; f(u)x is nonlinear if f is nonlinear in u.
6. ut is linear; u · ∇u is nonlinear; −∇p is linear (in p); r∇2u is linear; ∇ · u is linear.
7. u′ is linear; f(u, t) is nonlinear if f is nonlinear in u.
8. ∇2u is linear; λeu is nonlinear.

5.36. Exercise: Derive a relaxation formula

Derive (5.9) in Section Section 5.9.

5.37. Problem: Derive and investigate a generalized logistic model

The logistic model for population growth is derived by assuming a nonlinear growth rate,

u′ = a(u)u, u(0) = I, (5.71)

and the logistic model arises from the simplest possible choice of a(u): r(u) = ϱ(1−u/M), where M
is the maximum value of u that the environment can sustain, and ϱ is the growth under unlimited
access to resources (as in the beginning when u is small). The idea is that a(u) ∼ ϱ when u is small
and that a(t)→ 0 as u→M .

An a(u) that generalizes the linear choice is the polynomial form

a(u) = ϱ(1− u/M)p, (5.72)

where p > 0 is some real number.

a)

Formulate a Forward Euler, Backward Euler, and a Crank-Nicolson scheme for (5.71).

� Use a geometric mean approximation in the Crank-Nicolson scheme:

[a(u)u]n+1/2 ≈ a(un)un+1.

� Solution

The Forward Euler scheme reads
[D+

t u = a(u)u]n,

or written out,
un+1 − un

∆t = a(un)un .

The scheme is linear in the unknown un+1:

un+1 = un + ∆ta(un)un .

520



DRAFT

5. Nonlinear Problems

The Backward Euler scheme,
[D−

t u = a(u)u]n,

becomes
un − un−1

∆t = a(un)un,

which is a nonlinear equation in the unknown u, here expressed as un+1:

un+1 −∆ta(un+1)un+1 = un .

The standard Crank-Nicolson scheme,

Dtu = a(u)ut]n+ 1
2 ,

takes the form
un+1 − un

∆t = 1
2a(un)un + 1

2a(un+1)un+1 .

This is a nonlinear equation in the unknown un+1,

un+1 − 1
2∆ta(un+1)un+1 = un + 1

2∆ta(un)un .

However, with the suggested geometric mean, the a(u)u term is linearized:

un+1 − un

∆t = a(un)un+1,

leading to a linear equation in un+1:

(1−∆ta(un))un+1 = un .

b)

Formulate Picard and Newton iteration for the Backward Euler scheme in a).

� Solution

A Picard iteration for
un+1 −∆ta(un+1)un+1 = un .

applies old values in for un+1 in a(un+1). If u− is the most recently computed approximation
to un+1, we can write the Picard linearization as

(1−∆ta(u−))un+1 = un .

Alternatively, with an iteration index k,

(1−∆ta(un+1,k))un+1,k+1 = un .

Newton’s method starts with identifying the nonlinear equation as F (u) = 0, and here

F (u) = u−∆ta(u)u− un .

521



DRAFT

5. Nonlinear Problems

The Jacobian is
J(u) = F (u)

du
= 1−∆t(a′(u)u+ a(u)) .

The key equation in Newton’s method is then

J(u−)δu = −F (u−), u← u− δu .

c)

Implement the numerical solution methods from a) and b). Use logistic.py to compare the case
p = 1 and the choice (5.72).

� Solution

We specialize the code for a(u) to (5.72) since the code was developed from logistic.py. It
is convenient to work with a dimensionless form of the problem. Choosing a time scale tc = 1ϱ
and a scale for u, uc = M , leads to

u′ = ϱ(1− u)pu, u(0) = α,

where α is a dimensionless number
α = I

M
.

The three schemes can be implemented as follows.

522

https://github.com/devitocodes/devito_book/tree/main/src/nonlin/logistic.py


DRAFT

5. Nonlinear Problems

import numpy as np

def FE_logistic(p, u0, dt, Nt):
u = np.zeros(Nt + 1)
u[0] = u0
for n in range(Nt):

u[n + 1] = u[n] + dt * (1 - u[n]) ** p * u[n]
return u

def BE_logistic(p, u0, dt, Nt, choice="Picard", eps_r=1e-3, omega=1, max_iter=1000):
if choice == "Picard1":

choice = "Picard"
max_iter = 1

u = np.zeros(Nt + 1)
iterations = []
u[0] = u0
for n in range(1, Nt + 1):

c = -u[n - 1]
if choice == "Picard":

def F(u):
return -dt * (1 - u) ** p * u + u + c

u_ = u[n - 1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega * (-c / (1 - dt * (1 - u_) ** p)) + (1 - omega) * u_
k += 1

u[n] = u_
iterations.append(k)

elif choice == "Newton":

def F(u):
return -dt * (1 - u) ** p * u + u + c

def dF(u):
return dt * p * (1 - u) ** (p - 1) * u - dt * (1 - u) ** p + 1

u_ = u[n - 1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_) / dF(u_)
k += 1

u[n] = u_
iterations.append(k)

return u, iterations

def CN_logistic(p, u0, dt, Nt):
u = np.zeros(Nt + 1)
u[0] = u0
for n in range(0, Nt):

u[n + 1] = u[n] / (1 - dt * (1 - u[n]) ** p)
return u

523



DRAFT

5. Nonlinear Problems

A first verification is to choose p = 1 and compare the results with those from logistic.py.
The number of iterations and the final numerical answers should be identical.

d)

Implement unit tests that check the asymptotic limit of the solutions: u→M as t→∞.

� You need to experiment to find what “infinite time” is

(increases substantially with p) and what the appropriate tolerance is for testing the asymptotic
limit.

� Solution

The test function may look like

def test_asymptotic_value():
T = 100
dt = 0.1
Nt = int(round(T / float(dt)))
u0 = 0.1
p = 1.8

u_CN = CN_logistic(p, u0, dt, Nt)
u_BE_Picard, iter_Picard = BE_logistic(

p, u0, dt, Nt, choice="Picard", eps_r=1e-5, omega=1, max_iter=1000
)
u_BE_Newton, iter_Newton = BE_logistic(

p, u0, dt, Nt, choice="Newton", eps_r=1e-5, omega=1, max_iter=1000
)
u_FE = FE_logistic(p, u0, dt, Nt)

for arr in u_CN, u_BE_Picard, u_BE_Newton, u_FE:
expected = 1
computed = arr[-1]
tol = 0.01
msg = f"expected={expected}, computed={computed}"
print(msg)
assert abs(expected - computed) < tol

It is important with a sufficiently small eps_r tolerance for the asymptotic value to be accurate
(using eps_r=1E-3 leads to a value 0.92 at t = T instead of 0.994 when eps_r=1E-5).

e)

Perform experiments with Newton and Picard iteration for the model (5.72). See how sensitive the
number of iterations is to ∆t and p.

524



DRAFT

5. Nonlinear Problems

� Solution

Appropriate code is

525



DRAFT

5. Nonlinear Problems

import matplotlib.pyplot as plt

def demo():
T = 12
p = 1.2
try:

dt = float(sys.argv[1])
eps_r = float(sys.argv[2])
omega = float(sys.argv[3])

except:
dt = 0.8
eps_r = 1e-3
omega = 1

N = int(round(T / float(dt)))

u_FE = FE_logistic(p, 0.1, dt, N)
u_BE31, iter_BE31 = BE_logistic(p, 0.1, dt, N, "Picard1", eps_r, omega)
u_BE3, iter_BE3 = BE_logistic(p, 0.1, dt, N, "Picard", eps_r, omega)
u_BE4, iter_BE4 = BE_logistic(p, 0.1, dt, N, "Newton", eps_r, omega)
u_CN = CN_logistic(p, 0.1, dt, N)

print(f"Picard mean no of iterations (dt={dt:g}):", int(round(np.mean(iter_BE3))))
print(f"Newton mean no of iterations (dt={dt:g}):", int(round(np.mean(iter_BE4))))

t = np.linspace(0, dt * N, N + 1)
plt.figure()
plt.plot(t, u_FE, label="FE")
plt.plot(t, u_BE3, label="BE Picard")
plt.plot(t, u_BE31, label="BE Picard1")
plt.plot(t, u_BE4, label="BE Newton")
plt.plot(t, u_CN, label="CN gm")
plt.legend(loc="lower right")
plt.title(f"dt={dt:g}, eps={eps_r:.0E}")
plt.xlabel("t")
plt.ylabel("u")
filestem = "logistic_N%d_eps%03d" % (N, np.log10(eps_r))
plt.savefig(filestem + "_u.png")
plt.savefig(filestem + "_u.pdf")

plt.figure()
plt.plot(range(1, len(iter_BE3) + 1), iter_BE3, "r-o", label="Picard")
plt.plot(range(1, len(iter_BE4) + 1), iter_BE4, "b-o", label="Newton")
plt.legend()
plt.title(f"dt={dt:g}, eps={eps_r:.0E}")
plt.axis([1, N + 1, 0, max(iter_BE3 + iter_BE4) + 1])
plt.xlabel("Time level")
plt.ylabel("No of iterations")
plt.savefig(filestem + "_iter.png")
plt.savefig(filestem + "_iter.pdf")

526



DRAFT

5. Nonlinear Problems

5.38. Problem: Experience the behavior of Newton’s method

The program Newton_demo.py illustrates graphically each step in Newton’s method and is run
like

Terminal> python Newton_demo.py f dfdx x0 xmin xmax

Use this program to investigate potential problems with Newton’s method when solving
e−0.5x2 cos(πx) = 0. Try a starting point x0 = 0.8 and x0 = 0.85 and watch the different behavior.
Just run

Terminal> python Newton_demo.py '0.2 + exp(-0.5*x**2)*cos(pi*x)' \
'-x*exp(-x**2)*cos(pi*x) - pi*exp(-x**2)*sin(pi*x)' \
0.85 -3 3

and repeat with 0.85 replaced by 0.8.

5.39. Exercise: Compute the Jacobian of a 2× 2 system

Write up the system (5.17)-(5.18) in the form F (u) = 0, F = (F0, F1), u = (u0, u1), and compute
the Jacobian Ji,j = ∂Fi/∂uj .

5.40. Problem: Solve nonlinear equations arising from a vibration ODE

Consider a nonlinear vibration problem

mu′′ + bu′|u′|+ s(u) = F (t),

where m > 0 is a constant, b ≥ 0 is a constant, s(u) a possibly nonlinear function of u, and F (t)
is a prescribed function. Such models arise from Newton’s second law of motion in mechanical
vibration problems where s(u) is a spring or restoring force, mu′′ is mass times acceleration, and
bu′|u′| models water or air drag.

a)

Rewrite the equation for u as a system of two first-order ODEs, and discretize this system by a
Crank-Nicolson (centered difference) method. With v = u′, we get a nonlinear term vn+ 1

2 |vn+ 1
2 |.

Use a geometric average for vn+ 1
2 .

b)

Formulate a Picard iteration method to solve the system of nonlinear algebraic equations.

c)

Explain how to apply Newton’s method to solve the nonlinear equations at each time level. Derive
expressions for the Jacobian and the right-hand side in each Newton iteration.

527

https://github.com/devitocodes/devito_book/tree/main/src/nonlin/Newton_demo.py


DRAFT

5. Nonlinear Problems

5.41. Exercise: Find the truncation error of arithmetic mean of products

In Section Section 5.21 we introduce alternative arithmetic means of a product. Say the product is
P (t)Q(t) evaluated at t = tn+ 1

2
. The exact value is

[PQ]n+ 1
2 = Pn+ 1

2Qn+ 1
2

There are two obvious candidates for evaluating [PQ]n+ 1
2 as a mean of values of P and Q at tn and

tn+1. Either we can take the arithmetic mean of each factor P and Q,

[PQ]n+ 1
2 ≈ 1

2(Pn + Pn+1)1
2(Qn +Qn+1), (5.73)

or we can take the arithmetic mean of the product PQ:

[PQ]n+ 1
2 ≈ 1

2(PnQn + Pn+1Qn+1) . (5.74)

The arithmetic average of P (tn+ 1
2
) is O(∆t2):

P (tn+ 1
2
) = 1

2(Pn + Pn+1) +O(∆t2) .

A fundamental question is whether (5.73) and (5.74) have different orders of accuracy in ∆t =
tn+1 − tn. To investigate this question, expand quantities at tn+1 and tn in Taylor series around
tn+ 1

2
, and subtract the true value [PQ]n+ 1

2 from the approximations (5.73) and (5.74) to see what
the order of the error terms are.

� You may explore sympy for carrying out the tedious calculations.

A general Taylor series expansion of P (t + 1
2∆t) around t involving just a general function

P (t) can be created as follows:

>>> from sympy import *
>>> t, dt = symbols('t dt')
>>> P = symbols('P', cls=Function)
>>> P(t).series(t, 0, 4)
P(0) + t*Subs(Derivative(P(_x), _x), (_x,), (0,)) +
t**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/2 +
t**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/6 + O(t**4)
>>> P_p = P(t).series(t, 0, 4).subs(t, dt/2)
>>> P_p
P(0) + dt*Subs(Derivative(P(_x), _x), (_x,), (0,))/2 +
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 +
dt**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/48 + O(dt**4)

The error of the arithmetic mean, 1
2(P (−1

2∆t) + P (−1
2∆t)) for t = 0 is then

528



DRAFT

5. Nonlinear Problems

>>> P_m = P(t).series(t, 0, 4).subs(t, -dt/2)
>>> mean = Rational(1,2)*(P_m + P_p)
>>> error = simplify(expand(mean) - P(0))
>>> error
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 + O(dt**4)

Use these examples to investigate the error of (5.73) and (5.74) for n = 0. (Choosing n = 0 is
necessary for not making the expressions too complicated for sympy, but there is of course no
lack of generality by using n = 0 rather than an arbitrary n - the main point is the product
and addition of Taylor series.)

5.42. Problem: Newton’s method for linear problems

Suppose we have a linear system F (u) = Au− b = 0. Apply Newton’s method to this system, and
show that the method converges in one iteration.

5.43. Problem: Discretize a 1D problem with a nonlinear coefficient

We consider the problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (5.75)

Discretize (5.75) by a centered finite difference method on a uniform mesh.

5.44. Problem: Linearize a 1D problem with a nonlinear coefficient

We have a two-point boundary value problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (5.76)

a)

Construct a Picard iteration method for (5.76) without discretizing in space.

b)

Apply Newton’s method to (5.76) without discretizing in space.

c)

Discretize (5.76) by a centered finite difference scheme. Construct a Picard method for the resulting
system of nonlinear algebraic equations.

d)

Discretize (5.76) by a centered finite difference scheme. Define the system of nonlinear algebraic
equations, calculate the Jacobian, and set up Newton’s method for solving the system.

529



DRAFT

5. Nonlinear Problems

5.45. Problem: Finite differences for the 1D Bratu problem

5.46. Good: http://faculty.oxy.edu/ron/research/bratu/bratu.pdf

5.47. It has a collocation method too

We address the so-called Bratu problem

u′′ + λeu = 0, x ∈ (0, 1), u(0) = u(1) = 0, (5.77)

where λ is a given parameter and u is a function of x. This is a widely used model problem for
studying numerical methods for nonlinear differential equations. The problem (5.77) has an exact
solution

ue(x) = −2 ln
(

cosh((x− 1
2)θ/2)

cosh(θ/4)

)
,

where θ solves
θ =
√

2λ cosh(θ/4) .

There are two solutions of (5.77) for 0 < λ < λc and no solution for λ > λc. For λ = λc there is one
unique solution. The critical value λc solves

1 =
√

2λc
1
4 sinh(θ(λc)/4) .

A numerical value is λc = 3.513830719.

a)

Discretize (5.77) by a centered finite difference method.

b)

Set up the nonlinear equations Fi(u0, u1, . . . , uNx) = 0 from a). Calculate the associated Jacobian.

c)

Implement a solver that can compute u(x) using Newton’s method. Plot the error as a function of
x in each iteration.

d)

Investigate whether Newton’s method gives second-order convergence by computing ||ue−u||/||ue−
u−||2 in each iteration, where u is solution in the current iteration and u− is the solution in the
previous iteration.

530



DRAFT

5. Nonlinear Problems

5.48. Problem: Discretize a nonlinear 1D heat conduction PDE by finite
differences

We address the 1D heat conduction PDE

ϱc(T )Tt = (k(T )Tx)x,

for x ∈ [0, L], where ϱ is the density of the solid material, c(T ) is the heat capacity, T is the
temperature, and k(T ) is the heat conduction coefficient. T (x, 0) = I(x), and ends are subject to a
cooling law:

k(T )Tx|x=0 = h(T )(T − Ts), −k(T )Tx|x=L = h(T )(T − Ts),

where h(T ) is a heat transfer coefficient and Ts is the given surrounding temperature.

a)

Discretize this PDE in time using either a Backward Euler or Crank-Nicolson scheme.

b)

Formulate a Picard iteration method for the time-discrete problem (i.e., an iteration method before
discretizing in space).

c)

Formulate a Newton method for the time-discrete problem in b).

d)

Discretize the PDE by a finite difference method in space. Derive the matrix and right-hand side of
a Picard iteration method applied to the space-time discretized PDE.

e)

Derive the matrix and right-hand side of a Newton method applied to the discretized PDE in d).

5.49. Problem: Differentiate a highly nonlinear term

The operator ∇ · (α(u)∇u) with α(u) = |∇u|q appears in several physical problems, especially
flow of Non-Newtonian fluids. The expression |∇u| is defined as the Euclidean norm of a vector:
|∇u|2 = ∇u · ∇u. In a Newton method one has to carry out the differentiation ∂α(u)/∂cj , for
u = ∑

k ckψk. Show that
∂

∂uj
|∇u|q = q|∇u|q−2∇u · ∇ψj .

531



DRAFT

5. Nonlinear Problems

� Solution

∂

∂cj
|∇u|q = ∂

∂cj
(∇u · ∇u)

q
2 = q

2(∇u · ∇u)
q
2 −1 ∂

∂cj
(∇u · ∇u)

= q

2 |∇u|
q−2( ∂

∂cj
(∇u) · ∇u+∇u · ∂

∂cj
(∇u))

= q|∇u|q−2(∇u · ∇ ∂u

∂cj
) = q|∇u|q−2(∇u · ∇ψj)

5.50. Exercise: Crank-Nicolson for a nonlinear 3D diffusion equation

Redo Section Section 5.26 when a Crank-Nicolson scheme is used to discretize the equations in time
and the problem is formulated for three spatial dimensions.

� Express the Jacobian as Ji,j,k,r,s,t = ∂Fi,j,k/∂ur,s,t and observe, as in the 2D case, that
Ji,j,k,r,s,t is very sparse:

Ji,j,k,r,s,t ̸= 0 only for r = i± i, s = j ± 1, and t = k ± 1 as well as r = i, s = j, and t = k.

5.51. Problem: Find the sparsity of the Jacobian

Consider a typical nonlinear Laplace term like ∇ · α(u)∇u discretized by centered finite differences.
Explain why the Jacobian corresponding to this term has the same sparsity pattern as the matrix
associated with the corresponding linear term α∇2u.

� Set up the unknowns that enter the difference equation at a

point (i, j) in 2D or (i, j, k) in 3D, and identify the nonzero entries of the Jacobian that can
arise from such a type of difference equation.

5.52. Problem: Investigate a 1D problem with a continuation method

Flow of a pseudo-plastic power-law fluid between two flat plates can be modeled by

d

dx

(
µ0

∣∣∣∣dudx
∣∣∣∣n−1 du

dx

)
= −β, u′(0) = 0, u(H) = 0,

where β > 0 and µ0 > 0 are constants. A target value of n may be n = 0.2.

a)

Formulate a Picard iteration method directly for the differential equation problem.

532



DRAFT

5. Nonlinear Problems

b)

Perform a finite difference discretization of the problem in each Picard iteration. Implement a solver
that can compute u on a mesh. Verify that the solver gives an exact solution for n = 1 on a uniform
mesh regardless of the cell size.

c)

Given a sequence of decreasing n values, solve the problem for each n using the solution for the
previous n as initial guess for the Picard iteration. This is called a continuation method. Experiment
with n = (1, 0.6, 0.2) and n = (1, 0.9, 0.8, . . . , 0.2) and make a table of the number of Picard iterations
versus n.

d)

Derive a Newton method at the differential equation level and discretize the resulting linear equations
in each Newton iteration with the finite difference method.

e)

Investigate if Newton’s method has better convergence properties than Picard iteration, both in
combination with a continuation method.

5.53. Exercises: Nonlinear PDEs with Devito

These exercises explore nonlinear PDEs using Devito’s symbolic finite difference framework.

5.53.1. Exercise 1: Nonlinear Diffusion Stability

The explicit scheme for nonlinear diffusion requires F ≤ 0.5 where F = Dmax∆t/∆x2.

a) Use solve_nonlinear_diffusion_explicit with F = 0.4 and verify stability.
b) Observe the solution behavior as F approaches 0.5.
c) Compare the decay rate for constant D(u) = 1 vs linear D(u) = 1 + u.

533



DRAFT

5. Nonlinear Problems

ñ Solution

534



DRAFT

5. Nonlinear Problems

from src.nonlin import (
solve_nonlinear_diffusion_explicit,
constant_diffusion,
linear_diffusion,

)
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(np.pi * x)

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

# Constant diffusion
result_const = solve_nonlinear_diffusion_explicit(

L=1.0, Nx=50, T=0.2, F=0.4, I=I,
D_func=lambda u: constant_diffusion(u, D0=1.0),
save_history=True,

)

# Linear diffusion
result_linear = solve_nonlinear_diffusion_explicit(

L=1.0, Nx=50, T=0.2, F=0.4, I=I,
D_func=lambda u: linear_diffusion(u, D0=1.0, alpha=0.5),
save_history=True,

)

# Plot
for ax, result, title in [

(axes[0], result_const, 'Constant D(u) = 1'),
(axes[1], result_linear, 'Linear D(u) = 1 + 0.5u')

]:
for i in range(0, len(result.t_history), len(result.t_history)//5):

ax.plot(result.x, result.u_history[i],
label=f't = {result.t_history[i]:.3f}')

ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(title)
ax.legend()

plt.tight_layout()

# The linear diffusion case diffuses faster because D increases with u
print(f"Constant D: final max = {result_const.u.max():.4f}")
print(f"Linear D: final max = {result_linear.u.max():.4f}")

535



DRAFT

5. Nonlinear Problems

5.53.2. Exercise 2: Porous Medium Equation

The porous medium equation has D(u) = mum−1, giving:

ut = ∇ · (mum−1∇u) = ∇ · ∇(um)

a) Simulate with m = 2 (nonlinear diffusion).
b) Compare with m = 1 (linear diffusion).
c) Observe the “finite speed of propagation” for m > 1.

ñ Solution

from src.nonlin import solve_nonlinear_diffusion_explicit, porous_medium_diffusion
import numpy as np
import matplotlib.pyplot as plt

# Compactly supported initial condition
def I(x):

return np.maximum(0, 1 - 4*(x - 0.5)**2)

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

for ax, m, title in [
(axes[0], 1.0, 'm = 1 (linear)'),
(axes[1], 2.0, 'm = 2 (porous medium)')

]:
result = solve_nonlinear_diffusion_explicit(

L=1.0, Nx=100, T=0.1, F=0.3, I=I,
D_func=lambda u, m=m: porous_medium_diffusion(u, m=m, D0=1.0),
save_history=True,

)

for i in range(0, len(result.t_history), max(1, len(result.t_history)//5)):
ax.plot(result.x, result.u_history[i],

label=f't = {result.t_history[i]:.3f}')
ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(title)
ax.legend()

plt.tight_layout()

For m > 1, the solution maintains compact support (finite speed of propagation), unlike linear
diffusion which spreads instantly.

5.53.3. Exercise 3: Fisher-KPP Equation

The Fisher-KPP equation ut = Duxx +ru(1−u) models population dynamics with logistic growth.

536



DRAFT

5. Nonlinear Problems

a) Simulate with a localized initial condition.
b) Observe the traveling wave behavior.
c) Measure the wave speed and compare with theory: c = 2

√
Dr.

537



DRAFT

5. Nonlinear Problems

ñ Solution

538



DRAFT

5. Nonlinear Problems

from src.nonlin import solve_reaction_diffusion_splitting, fisher_reaction
import numpy as np
import matplotlib.pyplot as plt

# Initial condition: localized population
def I(x):

return np.where(x < 0.2, 1.0, 0.0)

D = 0.1
r = 1.0

result = solve_reaction_diffusion_splitting(
L=5.0, a=D, Nx=200, T=5.0, F=0.3, I=I,
R_func=lambda u: fisher_reaction(u, r=r),
splitting="strang",
save_history=True,

)

# Plot traveling wave
plt.figure(figsize=(10, 6))
for i in range(0, len(result.t_history), len(result.t_history)//10):

plt.plot(result.x, result.u_history[i],
label=f't = {result.t_history[i]:.1f}')

plt.xlabel('x')
plt.ylabel('u')
plt.title('Fisher-KPP Traveling Wave')
plt.legend()

# Theoretical wave speed
c_theory = 2 * np.sqrt(D * r)
print(f"Theoretical wave speed: {c_theory:.3f}")

# Estimate numerical wave speed from front position
threshold = 0.5
front_positions = []
for i, u in enumerate(result.u_history):

idx = np.argmax(u < threshold)
if idx > 0:

front_positions.append((result.t_history[i], result.x[idx]))

if len(front_positions) > 2:
t_vals = [p[0] for p in front_positions]
x_vals = [p[1] for p in front_positions]
c_numerical = np.polyfit(t_vals, x_vals, 1)[0]
print(f"Numerical wave speed: {c_numerical:.3f}")

539



DRAFT

5. Nonlinear Problems

5.53.4. Exercise 4: Strang vs Lie Splitting

Compare the accuracy of Strang and Lie splitting.

a) Solve the reaction-diffusion equation with both methods.
b) Use a fine time step as reference solution.
c) Plot error vs time step size on a log-log scale.
d) Verify that Strang is second-order and Lie is first-order.

540



DRAFT

5. Nonlinear Problems

ñ Solution

from src.nonlin import solve_reaction_diffusion_splitting, logistic_reaction
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return 0.5 * np.sin(np.pi * x)

# Reference solution with very fine time step
ref = solve_reaction_diffusion_splitting(

L=1.0, a=0.1, Nx=100, T=0.1, F=0.1, I=I,
R_func=lambda u: logistic_reaction(u, r=1.0, K=1.0),
splitting="strang",

)

# Test different Fourier numbers (time step sizes)
F_values = [0.4, 0.3, 0.2, 0.1]
errors_lie = []
errors_strang = []

for F in F_values:
for splitting, errors in [("lie", errors_lie), ("strang", errors_strang)]:

result = solve_reaction_diffusion_splitting(
L=1.0, a=0.1, Nx=100, T=0.1, F=F, I=I,
R_func=lambda u: logistic_reaction(u, r=1.0, K=1.0),
splitting=splitting,

)
error = np.max(np.abs(result.u - ref.u))
errors.append(error)

# Plot
dt_values = [F * (1.0/100)**2 / 0.1 for F in F_values]
plt.figure(figsize=(8, 6))
plt.loglog(dt_values, errors_lie, 'bo-', label='Lie (O(dt))')
plt.loglog(dt_values, errors_strang, 'rs-', label='Strang (O(dtˆ2))')
plt.loglog(dt_values, [errors_lie[0]*(dt/dt_values[0]) for dt in dt_values],

'b--', alpha=0.5)
plt.loglog(dt_values, [errors_strang[0]*(dt/dt_values[0])**2 for dt in dt_values],

'r--', alpha=0.5)
plt.xlabel('Time step')
plt.ylabel('Error')
plt.legend()
plt.title('Splitting Method Comparison')
plt.grid(True)

Lie splitting shows first-order convergence (O(∆t)) while Strang splitting achieves second-order

541



DRAFT

5. Nonlinear Problems

(O(∆t2)).

5.53.5. Exercise 5: Burgers Shock Formation

Burgers’ equation can develop steep gradients (shocks) for small viscosity.

a) Simulate with ν = 0.1, 0.01, 0.001.
b) Observe the shock steepening for small ν.
c) Plot the maximum gradient vs time.

542



DRAFT

5. Nonlinear Problems

ñ Solution

from src.nonlin import solve_burgers_equation
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(np.pi * x)

fig, axes = plt.subplots(2, 3, figsize=(15, 10))

for col, nu in enumerate([0.1, 0.01, 0.001]):
result = solve_burgers_equation(

L=2.0, nu=nu, Nx=200, T=0.5, C=0.3, I=I,
save_history=True,

)

# Plot solution at several times
ax = axes[0, col]
for i in range(0, len(result.t_history), max(1, len(result.t_history)//5)):

ax.plot(result.x, result.u_history[i],
label=f't = {result.t_history[i]:.2f}')

ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(f'nu = {nu}')
ax.legend(fontsize=8)

# Plot maximum gradient vs time
ax = axes[1, col]
max_grads = []
for u in result.u_history:

grad = np.abs(np.diff(u) / (result.x[1] - result.x[0]))
max_grads.append(grad.max())

ax.plot(result.t_history, max_grads)
ax.set_xlabel('Time')
ax.set_ylabel('Max |du/dx|')
ax.set_title(f'Gradient evolution, nu = {nu}')

plt.tight_layout()

As viscosity decreases, the solution develops steeper gradients. For very small ν, the gradient
can become large, approaching shock behavior.

5.53.6. Exercise 6: Allen-Cahn Equation

The Allen-Cahn equation ut = ϵ2uxx + u− u3 models phase transitions.

543



DRAFT

5. Nonlinear Problems

a) Start with random initial data in [−1, 1].
b) Observe how the solution evolves toward ±1.
c) Study the effect of ϵ on interface width.

ñ Solution

from src.nonlin import solve_reaction_diffusion_splitting, allen_cahn_reaction
import numpy as np
import matplotlib.pyplot as plt

# Random initial condition
np.random.seed(42)
x_init = np.linspace(0, 2.0, 101)
u_init = 0.2 * np.sin(3 * np.pi * x_init) + 0.1 * np.random.randn(101)

fig, axes = plt.subplots(1, 3, figsize=(15, 5))

for ax, epsilon in zip(axes, [0.1, 0.05, 0.02]):
result = solve_reaction_diffusion_splitting(

L=2.0, a=epsilon**2, Nx=100, T=1.0, F=0.3,
I=lambda x, u_init=u_init: np.interp(x, x_init, u_init),
R_func=lambda u: allen_cahn_reaction(u, epsilon=1.0),
splitting="strang",
save_history=True,

)

for i in range(0, len(result.t_history), max(1, len(result.t_history)//5)):
ax.plot(result.x, result.u_history[i], alpha=0.7,

label=f't = {result.t_history[i]:.2f}')
ax.set_xlabel('x')
ax.set_ylabel('u')
ax.set_title(f'epsilon = {epsilon}')
ax.axhline(1, color='k', linestyle='--', alpha=0.3)
ax.axhline(-1, color='k', linestyle='--', alpha=0.3)
ax.legend(fontsize=8)

plt.tight_layout()

The solution evolves toward ±1 with sharp interfaces. Smaller ϵ gives sharper interfaces but
requires finer resolution.

5.53.7. Exercise 7: Energy Decay in Nonlinear Diffusion

For nonlinear diffusion with homogeneous Dirichlet BCs, the “energy”

E(t) = 1
2

∫ L

0
u2 dx

544



DRAFT

5. Nonlinear Problems

should decrease.

a) Compute E(t) for nonlinear diffusion.
b) Verify monotonic decrease.
c) Compare decay rates for different D(u).

545



DRAFT

5. Nonlinear Problems

ñ Solution

from src.nonlin import (
solve_nonlinear_diffusion_explicit,
constant_diffusion,
linear_diffusion,

)
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(np.pi * x)

plt.figure(figsize=(10, 6))

for D_func, label in [
(lambda u: constant_diffusion(u, D0=1.0), 'Constant D=1'),
(lambda u: linear_diffusion(u, D0=1.0, alpha=0.5), 'D=1+0.5u'),
(lambda u: linear_diffusion(u, D0=1.0, alpha=1.0), 'D=1+u'),

]:
result = solve_nonlinear_diffusion_explicit(

L=1.0, Nx=100, T=0.5, F=0.4, I=I, D_func=D_func,
save_history=True,

)

# Compute energy
energies = []
for u in result.u_history:

E = 0.5 * np.trapz(u**2, result.x)
energies.append(E)

plt.semilogy(result.t_history, energies, label=label)

plt.xlabel('Time')
plt.ylabel('Energy E(t)')
plt.legend()
plt.title('Energy Decay in Nonlinear Diffusion')
plt.grid(True)

# Verify monotonic decrease
dE = np.diff(energies)
print(f"Energy monotonically decreasing: {np.all(dE <= 0)}")

The energy decreases monotonically. Nonlinear diffusion with D(u) increasing with u can lead
to faster decay.

546



DRAFT

5. Nonlinear Problems

5.53.8. Exercise 8: Convergence of Burgers Solver

Verify the spatial convergence of the Burgers equation solver.

a) Use grid sizes Nx = 25, 50, 100, 200.
b) Compare with a fine-grid reference solution.
c) Compute the observed convergence rate.

547



DRAFT

5. Nonlinear Problems

ñ Solution

from src.nonlin import solve_burgers_equation
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(np.pi * x)

# Reference solution
ref = solve_burgers_equation(

L=2.0, nu=0.1, Nx=400, T=0.2, C=0.3, I=I,
)

grid_sizes = [25, 50, 100, 200]
errors = []

for Nx in grid_sizes:
result = solve_burgers_equation(

L=2.0, nu=0.1, Nx=Nx, T=0.2, C=0.3, I=I,
)
# Interpolate to reference grid for comparison
u_interp = np.interp(ref.x, result.x, result.u)
error = np.sqrt(np.mean((u_interp - ref.u)**2))
errors.append(error)
print(f"Nx = {Nx:3d}, error = {error:.4e}")

# Compute convergence rate
errors = np.array(errors)
dx = 2.0 / np.array(grid_sizes)
log_dx = np.log(dx)
log_err = np.log(errors)
rate = np.polyfit(log_dx, log_err, 1)[0]

print(f"\nObserved convergence rate: {rate:.2f}")

plt.figure(figsize=(8, 6))
plt.loglog(dx, errors, 'bo-', label=f'Observed (rate={rate:.2f})')
plt.loglog(dx, errors[0]*(dx/dx[0])**2, 'r--', label='O(dxˆ2)')
plt.xlabel('Grid spacing dx')
plt.ylabel('L2 error')
plt.legend()
plt.title('Convergence of Burgers Solver')
plt.grid(True)

548



DRAFT

5. Nonlinear Problems

5.53.9. Exercise 9: Picard Iteration Convergence

Study the convergence of Picard iteration for implicit nonlinear diffusion.

a) Track the number of iterations needed at each time step.
b) Study how the tolerance affects accuracy.
c) Compare with the explicit scheme for the same problem.

ñ Solution

from src.nonlin import (
solve_nonlinear_diffusion_picard,
solve_nonlinear_diffusion_explicit,

)
import numpy as np
import matplotlib.pyplot as plt

def I(x):
return np.sin(np.pi * x)

# Picard solver
result_picard = solve_nonlinear_diffusion_picard(

L=1.0, Nx=50, T=0.05, dt=0.005,
I=I,

)

# Explicit solver for comparison
result_explicit = solve_nonlinear_diffusion_explicit(

L=1.0, Nx=50, T=0.05, F=0.4,
I=I,

)

plt.figure(figsize=(10, 5))
plt.plot(result_picard.x, result_picard.u, 'b-', label='Picard (implicit)')
plt.plot(result_explicit.x, result_explicit.u, 'r--', label='Explicit')
plt.xlabel('x')
plt.ylabel('u')
plt.legend()
plt.title('Comparison: Picard vs Explicit')

diff = np.max(np.abs(result_picard.u - np.interp(result_picard.x,
result_explicit.x,
result_explicit.u)))

print(f"Maximum difference: {diff:.4e}")

The Picard method allows larger time steps but requires iteration. Both methods should give
similar results for the same problem.

549



DRAFT

5. Nonlinear Problems

5.53.10. Exercise 10: Traveling Wave in Burgers

Study the traveling wave solution of the viscous Burgers equation.

a) Use initial condition u(x, 0) = − tanh((x−L/2)/δ) with boundary values u(0) = 1, u(L) = −1.
b) Observe the wave propagation.
c) Estimate the wave speed numerically.

550



DRAFT

5. Nonlinear Problems

ñ Solution

551



DRAFT

5. Nonlinear Problems

from devito import Grid, TimeFunction, Eq, Operator, Constant
import numpy as np
import matplotlib.pyplot as plt

# Setup
L = 10.0
Nx = 200
nu = 0.1
T = 5.0
delta = 1.0 # Initial width

grid = Grid(shape=(Nx + 1,), extent=(L,))
x_dim = grid.dimensions[0]
t_dim = grid.stepping_dim

u = TimeFunction(name='u', grid=grid, time_order=1, space_order=2)
x_coords = np.linspace(0, L, Nx + 1)

# Initial condition: tanh profile
u.data[0, :] = -np.tanh((x_coords - L/2) / delta)
u.data[1, :] = u.data[0, :].copy()

dx = L / Nx
dt = 0.25 * min(0.5 * dx, 0.25 * dx**2 / nu)
Nt = int(T / dt)

dt_const = Constant(name='dt', value=np.float32(dt))
nu_const = Constant(name='nu', value=np.float32(nu))

u_plus = u.subs(x_dim, x_dim + x_dim.spacing)
u_minus = u.subs(x_dim, x_dim - x_dim.spacing)

advection = 0.25 * dt_const / dx * (u_plus**2 - u_minus**2)
diffusion = nu_const * dt_const / (dx**2) * (u_plus - 2*u + u_minus)
stencil = u - advection + diffusion

update = Eq(u.forward, stencil, subdomain=grid.interior)
bc_left = Eq(u[t_dim + 1, 0], 1.0)
bc_right = Eq(u[t_dim + 1, Nx], -1.0)

op = Operator([update, bc_left, bc_right])

# Run and save history
history = [u.data[0, :].copy()]
times = [0.0]

for n in range(Nt):
op.apply(time_m=n, time_M=n, dt=np.float32(dt))
if (n + 1) % (Nt // 10) == 0:

history.append(u.data[(n+1) % 2, :].copy())
times.append((n + 1) * dt)

# Plot
plt.figure(figsize=(10, 6))
for i, t in enumerate(times):

plt.plot(x_coords, history[i], label=f't = {t:.1f}')
plt.xlabel('x')
plt.ylabel('u')
plt.legend()
plt.title('Burgers Traveling Wave')

# Estimate wave speed from zero crossing
zero_crossings = []
for i, u_arr in enumerate(history):

idx = np.argmin(np.abs(u_arr))
zero_crossings.append((times[i], x_coords[idx]))

if len(zero_crossings) > 2:
t_vals = [z[0] for z in zero_crossings]
x_vals = [z[1] for z in zero_crossings]
speed = np.polyfit(t_vals, x_vals, 1)[0]
print(f"Estimated wave speed: {speed:.3f}")

552



DRAFT

5. Nonlinear Problems

The wave propagates with a speed related to the average of the boundary values. For small
viscosity, the wave develops a sharp front.

553



DRAFTPart II.

Appendices

554



DRAFT
6. Formulas

6.1. Finite difference operator notation

u′(tn) ≈ [Dtu]n = un+ 1
2 − un− 1

2

∆t

u′(tn) ≈ [D2tu]n = un+1 − un−1

2∆t

u′(tn) = [D−
t u]n = un − un−1

∆t

u′(tn) ≈ [D+
t u]n = un+1 − un

∆t

u′(tn+θ) = [D̄tu]n+θ = un+1 − un

∆t

u′(tn) ≈ [D2−
t u]n = 3un − 4un−1 + un−2

2∆t

u′′(tn) ≈ [DtDtu]n = un+1 − 2un + un−1

∆t2

u(tn+ 1
2
) ≈ [ut]n+ 1

2 = 1
2(un+1 + un)

u(tn+ 1
2
)2 ≈ [u2t,g]n+ 1

2 = un+1un

u(tn+ 1
2
) ≈ [ut,h]n+ 1

2 = 2
1

un+1 + 1
un

u(tn+θ) ≈ [ut,θ]n+θ = θun+1 + (1− θ)un,

tn+θ = θtn+1 + (1− θ)tn−1
(6.1)

Some may wonder why θ is absent on the right-hand side of (6.1). The fraction is an approximation
to the derivative at the point tn+θ = θtn+1 + (1− θ)tn.

555



DRAFT

6. Formulas

6.2. Truncation errors of finite difference approximations

u′
e(tn) = [Dtue]n +Rn = u

n+ 1
2e − un− 1

2e
∆t +Rn,

Rn = − 1
24u

′′′
e (tn)∆t2 +O(∆t4)

u′
e(tn) = [D2tue]n +Rn = un+1

e − un−1
e

2∆t +Rn,

Rn = −1
6u

′′′
e (tn)∆t2 +O(∆t4)

u′
e(tn) = [D−

t ue]n +Rn = un
e − un−1

e
∆t +Rn,

Rn = −1
2u

′′
e(tn)∆t+O(∆t2)

u′
e(tn) = [D+

t ue]n +Rn = un+1
e − un

e
∆t +Rn,

Rn = 1
2u

′′
e(tn)∆t+O(∆t2)

u′
e(tn+θ) = [D̄tue]n+θ +Rn+θ = un+1

e − un
e

∆t +Rn+θ,

Rn+θ = −1
2(1− 2θ)u′′

e(tn+θ)∆t+ 1
6((1− θ)3 − θ3)u′′′

e (tn+θ)∆t2+

O(∆t3)

u′
e(tn) = [D2−

t ue]n +Rn = 3un
e − 4un−1

e + un−2
e

2∆t +Rn,

Rn = 1
3u

′′′
e (tn)∆t2 +O(∆t3)

u′′
e(tn) = [DtDtue]n +Rn = un+1

e − 2un
e + un−1

e
∆t2 +Rn,

Rn = − 1
12u

′′′′
e (tn)∆t2 +O(∆t4)

(6.2)

ue(tn+θ) = [uet,θ]n+θ +Rn+θ = θun+1
e + (1− θ)un

e +Rn+θ,

Rn+θ = −1
2u

′′
e(tn+θ)∆t2θ(1− θ) +O(∆t3) .

(6.3)

6.2.1. Complex exponentials

Let un = exp (iωn∆t) = eiωtn .

[DtDtu]n = un 2
∆t(cosω∆t− 1) = − 4

∆t sin2
(
ω∆t

2

)
,

[D+
t u]n = un 1

∆t(exp (iω∆t)− 1),

556



DRAFT

6. Formulas

[D−
t u]n = un 1

∆t(1− exp (−iω∆t)), (6.4)

[Dtu]n = un 2
∆t i sin

(
ω∆t

2

)
, (6.5)

[D2tu]n = un 1
∆t i sin (ω∆t) . (6.6)

6.2.2. Real exponentials

Let un = exp (ωn∆t) = eωtn .

[DtDtu]n = un 2
∆t(cosω∆t− 1) = − 4

∆t sin2
(
ω∆t

2

)
,

[D+
t u]n = un 1

∆t(exp (iω∆t)− 1),

[D−
t u]n = un 1

∆t(1− exp (−iω∆t)),

[Dtu]n = un 2
∆t i sin

(
ω∆t

2

)
,

[D2tu]n = un 1
∆t i sin (ω∆t) . (6.7)

6.3. Finite difference formulas for powers of t

The following results are useful when checking if a polynomial term in a solution fulfills the discrete
equation for the numerical method.

[D+
t t]n = 1,

[D−
t t]n = 1,

[Dtt]n = 1,

[D2tt]n = 1,

[DtDtt]n = 0 . (6.8)

The next formulas concern the action of difference operators on a t2 term.

[D+
t t

2]n = (2n+ 1)∆t,

[D−
t t

2]n = (2n− 1)∆t,

[Dtt
2]n = 2n∆t,

[D2tt
2]n = 2n∆t,

[DtDtt
2]n = 2, (6.9)

557



DRAFT

6. Formulas

Finally, we present formulas for a t3 term:

[D+
t t

3]n = 3(n∆t)2 + 3n∆t2 + ∆t2,

[D−
t t

3]n = 3(n∆t)2 − 3n∆t2 + ∆t2,

[Dtt
3]n = 3(n∆t)2 + 1

4∆t2,

[D2tt
3]n = 3(n∆t)2 + ∆t2,

[DtDtt
3]n = 6n∆t, (6.10)

6.4. Software

Application of finite difference operators to polynomials and exponential functions, resulting in the
formulas above, can easily be computed by some sympy code (from the file src/formulas/lib.py
in this repository):

from sympy import *

t, dt, n, w = symbols("t dt n w", real=True)

def D_t_forward(u):
return (u(t + dt) - u(t)) / dt

def D_t_backward(u):
return (u(t) - u(t - dt)) / dt

def D_t_centered(u):
return (u(t + dt / 2) - u(t - dt / 2)) / dt

def D_2t_centered(u):
return (u(t + dt) - u(t - dt)) / (2 * dt)

def D_t_D_t(u):
return (u(t + dt) - 2 * u(t) + u(t - dt)) / (dt**2)

op_list = [D_t_forward, D_t_backward, D_t_centered, D_2t_centered, D_t_D_t]

def ft1(t):

558



DRAFT

6. Formulas

return t

def ft2(t):
return t**2

def ft3(t):
return t**3

def f_expiwt(t):
return exp(I * w * t)

def f_expwt(t):
return exp(w * t)

func_list = [ft1, ft2, ft3, f_expiwt, f_expwt]

To see the results, one can now make a simple loop over the different types of functions and the
various operators associated with them:

for func in func_list:
for op in op_list:

f = func
e = op(f)
e = simplify(expand(e))
print e
if func in [f_expiwt, f_expwt]:

e = e/f(t)
e = e.subs(t, n*dt)
print expand(e)
print factor(simplify(expand(e)))

559



DRAFT
7. Truncation Error Analysis

Truncation error analysis provides a widely applicable framework for analyzing the accuracy of
finite difference schemes. This type of analysis can also be used for finite element and finite volume
methods if the discrete equations are written in finite difference form. The result of the analysis
is an asymptotic estimate of the error in the scheme on the form Chr, where h is a discretization
parameter (∆t, ∆x, etc.), r is a number, known as the convergence rate, and C is a constant,
typically dependent on the derivatives of the exact solution.

Knowing r gives understanding of the accuracy of the scheme. But maybe even more important, a
powerful verification method for computer codes is to check that the empirically observed convergence
rates in experiments coincide with the theoretical value of r found from truncation error analysis.

The analysis can be carried out by hand, by symbolic software, and also numerically. All three
methods will be illustrated. From examining the symbolic expressions of the truncation error we
can add correction terms to the differential equations in order to increase the numerical accuracy.

In general, the term truncation error refers to the discrepancy that arises from performing a finite
number of steps to approximate a process with infinitely many steps. The term is used in a number
of contexts, including truncation of infinite series, finite precision arithmetic, finite differences, and
differential equations. We shall be concerned with computing truncation errors arising in finite
difference formulas and in finite difference discretizations of differential equations.

7.1. Abstract problem setting

Consider an abstract differential equation

L(u) = 0,

where L(u) is some formula involving the unknown u and its derivatives. One example is L(u) =
u′(t) + a(t)u(t) − b(t), where a and b are constants or functions of time. We can discretize the
differential equation and obtain a corresponding discrete model, here written as

L∆(u) = 0 .

The solution u of this equation is the numerical solution. To distinguish the numerical solution from
the exact solution of the differential equation problem, we denote the latter by ue and write the
differential equation and its discrete counterpart as

L(ue) = 0,
L∆(u) = 0 .

560



DRAFT

7. Truncation Error Analysis

Initial and/or boundary conditions can usually be left out of the truncation error analysis and are
omitted in the following.

The numerical solution u is, in a finite difference method, computed at a collection of mesh points.
The discrete equations represented by the abstract equation L∆(u) = 0 are usually algebraic
equations involving u at some neighboring mesh points.

7.2. Error measures

A key issue is how accurate the numerical solution is. The ultimate way of addressing this issue
would be to compute the error ue − u at the mesh points. This is usually extremely demanding.
In very simplified problem settings we may, however, manage to derive formulas for the numerical
solution u, and therefore closed form expressions for the error ue−u. Such special cases can provide
considerable insight regarding accuracy and stability, but the results are established for special
problems.

The error ue − u can be computed empirically in special cases where we know ue. Such cases can
be constructed by the method of manufactured solutions, where we choose some exact solution
ue = v and fit a source term f in the governing differential equation L(ue) = f such that ue = v is
a solution (i.e., f = L(v)). Assuming an error model of the form Chr, where h is the discretization
parameter, such as ∆t or ∆x, one can estimate the convergence rate r. This is a widely applicable
procedure, but the validity of the results is, strictly speaking, tied to the chosen test problems.

Another error measure arises by asking to what extent the exact solution ue fits the discrete
equations. Clearly, ue is in general not a solution of L∆(u) = 0, but we can define the residual

R = L∆(ue),

and investigate how close R is to zero. A small R means intuitively that the discrete equations are
close to the differential equation, and then we are tempted to think that un must also be close to
ue(tn).

The residual R is known as the truncation error of the finite difference scheme L∆(u) = 0. It
appears that the truncation error is relatively straightforward to compute by hand or symbolic
software without specializing the differential equation and the discrete model to a special case. The
resulting R is found as a power series in the discretization parameters. The leading-order terms
in the series provide an asymptotic measure of the accuracy of the numerical solution method (as
the discretization parameters tend to zero). An advantage of truncation error analysis, compared
to empirical estimation of convergence rates, or detailed analysis of a special problem with a
mathematical expression for the numerical solution, is that the truncation error analysis reveals
the accuracy of the various building blocks in the numerical method and how each building block
impacts the overall accuracy. The analysis can therefore be used to detect building blocks with
lower accuracy than the others.

Knowing the truncation error or other error measures is important for verification of programs by
empirically establishing convergence rates. The forthcoming text will provide many examples on
how to compute truncation errors for finite difference discretizations of ODEs and PDEs.

561



DRAFT

7. Truncation Error Analysis

7.3. Truncation errors in finite difference formulas

The accuracy of a finite difference formula is a fundamental issue when discretizing differential
equations. We shall first go through a particular example in detail and thereafter list the truncation
error in the most common finite difference approximation formulas.

7.4. Example: The backward difference for u′(t)

Consider a backward finite difference approximation of the first-order derivative u′:

[D−
t u]n = un − un−1

∆t ≈ u′(tn) . (7.1)

Here, un means the value of some function u(t) at a point tn, and [D−
t u]n is the discrete derivative

of u(t) at t = tn. The discrete derivative computed by a finite difference is, in general, not exactly
equal to the derivative u′(tn). The error in the approximation is

Rn = [D−
t u]n − u′(tn) . (7.2)

The common way of calculating Rn is to

1. expand u(t) in a Taylor series around the point where the derivative is evaluated, here tn,
2. insert this Taylor series in (7.2), and
3. collect terms that cancel and simplify the expression.

The result is an expression for Rn in terms of a power series in ∆t. The error Rn is commonly
referred to as the truncation error of the finite difference formula.

The Taylor series formula often found in calculus books takes the form

f(x+ h) =
∞∑

i=0

1
i!
dif

dxi
(x)hi .

In our application, we expand the Taylor series around the point where the finite difference formula
approximates the derivative. The Taylor series of un at tn is simply u(tn), while the Taylor series of
un−1 at tn must employ the general formula,

u(tn−1) = u(t−∆t) =
∞∑

i=0

1
i!
diu

dti
(tn)(−∆t)i

= u(tn)− u′(tn)∆t+ 1
2u

′′(tn)∆t2 +O(∆t3),

where O(∆t3) means a power-series in ∆t where the lowest power is ∆t3. We assume that ∆t
is small such that ∆tp ≫ ∆tq if p is smaller than q. The details of higher-order terms in ∆t are
therefore not of much interest. Inserting the Taylor series above in the right-hand side of (7.2) gives
rise to some algebra:

562



DRAFT

7. Truncation Error Analysis

[D−
t u]n − u′(tn) = u(tn)− u(tn−1)

∆t − u′(tn)

=
u(tn)− (u(tn)− u′(tn)∆t+ 1

2u
′′(tn)∆t2 +O(∆t3))

∆t − u′(tn)

= −1
2u

′′(tn)∆t+O(∆t2)),

which is, according to (7.2), the truncation error:

Rn = −1
2u

′′(tn)∆t+O(∆t2)) .

The dominating term for small ∆t is −1
2u

′′(tn)∆t, which is proportional to ∆t, and we say that the
truncation error is of first order in ∆t.

7.5. Example: The forward difference for u′(t)

We can analyze the approximation error in the forward difference

u′(tn) ≈ [D+
t u]n = un+1 − un

∆t ,

by writing
Rn = [D+

t u]n − u′(tn),

and expanding un+1 in a Taylor series around tn,

u(tn+1) = u(tn) + u′(tn)∆t+ 1
2u

′′(tn)∆t2 +O(∆t3) .

The result becomes
R = 1

2u
′′(tn)∆t+O(∆t2),

showing that also the forward difference is of first order.

7.6. Example: The central difference for u′(t)

For the central difference approximation,

u′(tn) ≈ [Dtu]n, [Dtu]n = un+ 1
2 − un− 1

2

∆t ,

we write
Rn = [Dtu]n − u′(tn),

563



DRAFT

7. Truncation Error Analysis

and expand u(tn+ 1
2
) and u(tn− 1

2
in Taylor series around the point tn where the derivative is evaluated.

We have

u(tn+ 1
2
) =u(tn) + u′(tn)1

2∆t+ 1
2u

′′(tn)(1
2∆t)2+

1
6u

′′′(tn)(1
2∆t)3 + 1

24u
′′′′(tn)(1

2∆t)4+
1

120u
′′′′(tn)(1

2∆t)5 +O(∆t6),

u(tn− 1
2
) =u(tn)− u′(tn)1

2∆t+ 1
2u

′′(tn)(1
2∆t)2−

1
6u

′′′(tn)(1
2∆t)3 + 1

24u
′′′′(tn)(1

2∆t)4−
1

120u
′′′′′(tn)(1

2∆t)5 +O(∆t6)

.Now,
u(tn+ 1

2
)− u(tn− 1

2
) = u′(tn)∆t+ 1

24u
′′′(tn)∆t3 + 1

960u
′′′′′(tn)∆t5 +O(∆t7) .

By collecting terms in [Dtu]n − u′(tn) we find the truncation error to be

Rn = 1
24u

′′′(tn)∆t2 +O(∆t4),

with only even powers of ∆t. Since R ∼ ∆t2 we say the centered difference is of second order in
∆t.

7.7. Overview of leading-order error terms in finite difference formulas

Here we list the leading-order terms of the truncation errors associated with several common finite
difference formulas for the first and second derivatives.

[Dtu]n = un+ 1
2 − un− 1

2

∆t = u′(tn) +Rn,

Rn = 1
24u

′′′(tn)∆t2 +O(∆t4)
(7.3)

[D2tu]n = un+1 − un−1

2∆t = u′(tn) +Rn,

Rn = 1
6u

′′′(tn)∆t2 +O(∆t4)
(7.4)

[D−
t u]n = un − un−1

∆t = u′(tn) +Rn,

Rn = −1
2u

′′(tn)∆t+O(∆t2)
(7.5)

[D+
t u]n = un+1 − un

∆t = u′(tn) +Rn,

Rn = 1
2u

′′(tn)∆t+O(∆t2)
(7.6)

564



DRAFT

7. Truncation Error Analysis

[D̄tu]n+θ = un+1 − un

∆t = u′(tn+θ) +Rn+θ,

Rn+θ = 1
2(1− 2θ)u′′(tn+θ)∆t− 1

6((1− θ)3 − θ3)u′′′(tn+θ)∆t2 +O(∆t3)
(7.7)

[D2−
t u]n = 3un − 4un−1 + un−2

2∆t = u′(tn) +Rn,

Rn = −1
3u

′′′(tn)∆t2 +O(∆t3)
(7.8)

[DtDtu]n = un+1 − 2un + un−1

∆t2 = u′′(tn) +Rn,

Rn = 1
12u

′′′′(tn)∆t2 +O(∆t4)
(7.9)

It will also be convenient to have the truncation errors for various means or averages. The weighted
arithmetic mean leads to

[ut,θ]n+θ = θun+1 + (1− θ)un = u(tn+θ) +Rn+θ,

Rn+θ = 1
2u

′′(tn+θ)∆t2θ(1− θ) +O(∆t3) .
(7.10)

The standard arithmetic mean follows from this formula when θ = 1
2 . Expressed at point tn we

get

[ut]n = 1
2(un− 1

2 + un+ 1
2 ) = u(tn) +Rn,

Rn = 1
8u

′′(tn)∆t2 + 1
384u

′′′′(tn)∆t4 +O(∆t6) .
(7.11)

The geometric mean also has an error O(∆t2):

[u2t,g]n = un− 1
2un+ 1

2 = (un)2 +Rn,

Rn = −1
4u

′(tn)2∆t2 + 1
4u(tn)u′′(tn)∆t2 +O(∆t4) .

(7.12)

The harmonic mean is also second-order accurate:

[ut,h]n = un = 2
1

un− 1
2

+ 1
un+ 1

2

+Rn+ 1
2 ,

Rn = −u
′(tn)2

4u(tn) ∆t2 + 1
8u

′′(tn)∆t2 .
(7.13)

565



DRAFT

7. Truncation Error Analysis

7.8. Software for computing truncation errors

We can use sympy to aid calculations with Taylor series. The derivatives can be defined as symbols,
say D3f for the 3rd derivative of some function f . A truncated Taylor series can then be written as
f + D1f*h + D2f*h**2/2. The following class takes some symbol f for the function in question
and makes a list of symbols for the derivatives. The __call__ method computes the symbolic form
of the series truncated at num_terms terms.

import sympy as sym

class TaylorSeries:
"""Class for symbolic Taylor series."""

def __init__(self, f, num_terms=4):
self.f = f
self.N = num_terms
self.df = [f]
for i in range(1, self.N + 1):

self.df.append(sym.Symbol("D%d%s" % (i, f.name)))

def __call__(self, h):
"""Return the truncated Taylor series at x+h."""
terms = self.f
for i in range(1, self.N + 1):

terms += sym.Rational(1, sym.factorial(i)) * self.df[i] * h**i
return terms

We may, for example, use this class to compute the truncation error of the Forward Euler finite
difference formula:

>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols('u dt')
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24

The truncation error consists of the terms after the first one (u′).

The module file trunc/truncation_errors.py contains another class DiffOp with symbolic ex-
pressions for most of the truncation errors listed in the previous section. For example:

566

https://github.com/devitocodes/devito_book/tree/main/src/trunc/truncation_errors.py


DRAFT

7. Truncation Error Analysis

>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol('u')
>>> diffop = DiffOp(u, independent_variable='t')
>>> diffop['geometric_mean']
-D1u**2*dt**2/4 - D1u*D3u*dt**4/48 + D2u**2*dt**4/64 + ...
>>> diffop['Dtm']
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
>>> >>> diffop.operator_names()
['geometric_mean', 'harmonic_mean', 'Dtm', 'D2t', 'DtDt',
'weighted_arithmetic_mean', 'Dtp', 'Dt']

The indexing of diffop applies names that correspond to the operators: Dtp for D+
t , Dtm for D−

t ,
Dt for Dt, D2t for D2t, DtDt for DtDt.

7.9. Truncation errors in exponential decay ODE

We shall now compute the truncation error of a finite difference scheme for a differential equation.
Our first problem involves the following linear ODE that models exponential decay,

u′(t) = −au(t) . (7.14)

7.10. Forward Euler scheme

We begin with the Forward Euler scheme for discretizing (7.14):

[D+
t u = −au]n . (7.15)

The idea behind the truncation error computation is to insert the exact solution ue of the differential
equation problem (7.14) in the discrete equations (7.15) and find the residual that arises because ue
does not solve the discrete equations. Instead, ue solves the discrete equations with a residual Rn:

[D+
t ue + aue = R]n . (7.16)

From 7.6 it follows that
[D+

t ue]n = u′
e(tn) + 1

2u
′′
e(tn)∆t+O(∆t2),

which inserted in (7.16) results in

u′
e(tn) + 1

2u
′′
e(tn)∆t+O(∆t2) + aue(tn) = Rn .

Now, u′
e(tn) + aun

e = 0 since ue solves the differential equation. The remaining terms constitute the
residual:

Rn = 1
2u

′′
e(tn)∆t+O(∆t2) . (7.17)

This is the truncation error Rn of the Forward Euler scheme.

567



DRAFT

7. Truncation Error Analysis

Because Rn is proportional to ∆t, we say that the Forward Euler scheme is of first order in ∆t.
However, the truncation error is just one error measure, and it is not equal to the true error un

e −un.
For this simple model problem we can compute a range of different error measures for the Forward
Euler scheme, including the true error un

e − un, and all of them have dominating terms proportional
to ∆t.

7.11. Crank-Nicolson scheme

For the Crank-Nicolson scheme,
[Dtu = −au]n+ 1

2 , (7.18)

we compute the truncation error by inserting the exact solution of the ODE and adding a residual
R,

[Dtue + auet = R]n+ 1
2 . (7.19)

The term [Dtue]n+ 1
2 is easily computed from 7.9 by replacing n with n+ 1

2 in the formula,

[Dtue]n+ 1
2 = u′

e(tn+ 1
2
) + 1

24u
′′′
e (tn+ 1

2
)∆t2 +O(∆t4) .

The arithmetic mean is related to u(tn+ 1
2
) by 7.11 so

[auet]n+ 1
2 = ue(tn+ 1

2
) + 1

8u
′′
e(tn)∆t2 + +O(∆t4) .

Inserting these expressions in (7.19) and observing that u′
e(tn+ 1

2
) + au

n+ 1
2e = 0, because ue(t) solves

the ODE u′(t) = −au(t) at any point t, we find that

Rn+ 1
2 =

( 1
24u

′′′
e (tn+ 1

2
) + 1

8u
′′
e(tn)

)
∆t2 +O(∆t4)

Here, the truncation error is of second order because the leading term in R is proportional to ∆t2.

At this point it is wise to redo some of the computations above to establish the truncation error of
the Backward Euler scheme, see Exercise Section 7.33.

7.12. The θ-rule

We may also compute the truncation error of the θ-rule,

[D̄tu = −aut,θ]n+θ .

Our computational task is to find Rn+θ in

[D̄tue + auet,θ = R]n+θ .

From 7.7 and 7.10 we get expressions for the terms with ue. Using that u′
e(tn+θ) + aue(tn+θ) = 0,

we end up with

568



DRAFT

7. Truncation Error Analysis

Rn+θ =(1
2 − θ)u

′′
e(tn+θ)∆t+ 1

2θ(1− θ)u
′′
e(tn+θ)∆t2+

1
2(θ2 − θ + 3)u′′′

e (tn+θ)∆t2 +O(∆t3) (7.20)

For θ = 1
2 the first-order term vanishes and the scheme is of second order, while for θ ̸= 1

2 we only
have a first-order scheme.

7.13. Using symbolic software

The previously mentioned truncation_error module can be used to automate the Taylor series
expansions and the process of collecting terms. Here is an example on possible use:

from truncation_error import DiffOp
from sympy import *

def decay():
u, a = symbols('u a')
diffop = DiffOp(u, independent_variable='t',

num_terms_Taylor_series=3)
D1u = diffop.D(1) # symbol for du/dt
ODE = D1u + a*u # define ODE

FE = diffop['Dtp'] + a*u
CN = diffop['Dt' ] + a*u
BE = diffop['Dtm'] + a*u
theta = diffop['barDt'] + a*diffop['weighted_arithmetic_mean']
theta = sm.simplify(sm.expand(theta))
R = {'FE': FE-ODE, 'BE': BE-ODE, 'CN': CN-ODE,

'theta': theta-ODE}
return R

The returned dictionary becomes

decay: {
'BE': D2u*dt/2 + D3u*dt**2/6,
'FE': -D2u*dt/2 + D3u*dt**2/6,
'CN': D3u*dt**2/24,
'theta': -D2u*a*dt**2*theta**2/2 + D2u*a*dt**2*theta/2 -

D2u*dt*theta + D2u*dt/2 + D3u*a*dt**3*theta**3/3 -
D3u*a*dt**3*theta**2/2 + D3u*a*dt**3*theta/6 +
D3u*dt**2*theta**2/2 - D3u*dt**2*theta/2 + D3u*dt**2/6,

}

The results are in correspondence with our hand-derived expressions.

569



DRAFT

7. Truncation Error Analysis

7.14. Empirical verification of the truncation error

The task of this section is to demonstrate how we can compute the truncation error R numerically.
For example, the truncation error of the Forward Euler scheme applied to the decay ODE u′ = −ua
is

Rn = [D+
t ue + aue]n . (7.21)

If we happen to know the exact solution ue(t), we can easily evaluate Rn from the above formula.

To estimate how R varies with the discretization parameter ∆t, which has been our focus in the
previous mathematical derivations, we first make the assumption that R = C∆tr for appropriate
constants C and r and small enough ∆t. The rate r can be estimated from a series of experiments
where ∆t is varied. Suppose we have m experiments (∆ti, Ri), i = 0, . . . ,m− 1. For two consecutive
experiments (∆ti−1, Ri−1) and (∆ti, Ri), a corresponding ri−1 can be estimated by

ri−1 = ln(Ri−1/Ri)
ln(∆ti−1/∆ti)

, (7.22)

for i = 1, . . . ,m− 1. Note that the truncation error Ri varies through the mesh, so (7.22) is to be
applied pointwise. A complicating issue is that Ri and Ri−1 refer to different meshes. Pointwise
comparisons of the truncation error at a certain point in all meshes therefore requires any computed
R to be restricted to the coarsest mesh and that all finer meshes contain all the points in the coarsest
mesh. Suppose we have N0 intervals in the coarsest mesh. Inserting a superscript n in (7.22), where
n counts mesh points in the coarsest mesh, n = 0, . . . , N0, leads to the formula

rn
i−1 =

ln(Rn
i−1/R

n
i )

ln(∆ti−1/∆ti)
. (7.23)

Experiments are most conveniently defined by N0 and a number of refinements m. Suppose each
mesh has twice as many cells Ni as the previous one:

Ni = 2iN0, ∆ti = TN−1
i ,

where [0, T ] is the total time interval for the computations. Suppose the computed Ri values on the
mesh with Ni intervals are stored in an array R[i] (R being a list of arrays, one for each mesh).
Restricting this Ri function to the coarsest mesh means extracting every Ni/N0 point and is done
as follows:

stride = N[i]/N_0
R[i] = R[i][::stride]

The quantity R[i][n] now corresponds to Rn
i .

In addition to estimating r for the pointwise values of R = C∆tr, we may also consider an integrated
quantity on mesh i,

RI,i =

∆ti
Ni∑

n=0
(Rn

i )2

 1
2

≈
∫ T

0
Ri(t)dt .

The sequence RI,i, i = 0, . . . ,m− 1, is also expected to behave as C∆tr, with the same r as for the
pointwise quantity R, as ∆t→ 0.

The function below computes the Ri and RI,i quantities, plots them and compares with the
theoretically derived truncation error (R_a) if available.

570



DRAFT

7. Truncation Error Analysis

import numpy as np

def estimate(truncation_error, T, N_0, m, makeplot=True):
"""
Compute the truncation error in a problem with one independent
variable, using m meshes, and estimate the convergence
rate of the truncation error.

The user-supplied function truncation_error(dt, N) computes
the truncation error on a uniform mesh with N intervals of
length dt::

R, t, R_a = truncation_error(dt, N)

where R holds the truncation error at points in the array t,
and R_a are the corresponding theoretical truncation error
values (None if not available).

The truncation_error function is run on a series of meshes
with 2**i*N_0 intervals, i=0,1,...,m-1.
The values of R and R_a are restricted to the coarsest mesh.
and based on these data, the convergence rate of R (pointwise)
and time-integrated R can be estimated empirically.
"""
N = [2**i * N_0 for i in range(m)]

R_I = np.zeros(m) # time-integrated R values on various meshes
R = [None] * m # time series of R restricted to coarsest mesh
R_a = [None] * m # time series of R_a restricted to coarsest mesh
dt = np.zeros(m)
legends_R = []
legends_R_a = [] # all legends of curves

for i in range(m):
dt[i] = T / float(N[i])
R[i], t, R_a[i] = truncation_error(dt[i], N[i])

R_I[i] = np.sqrt(dt[i] * np.sum(R[i] ** 2))

if i == 0:
t_coarse = t # the coarsest mesh

stride = N[i] / N_0
R[i] = R[i][::stride] # restrict to coarsest mesh
R_a[i] = R_a[i][::stride]

if makeplot:

571



DRAFT

7. Truncation Error Analysis

plt.figure(1)
plt.plot(t_coarse, R[i])
plt.yscale("log")
legends_R.append("N=%d" % N[i])

plt.figure(2)
plt.plot(t_coarse, R_a[i] - R[i])
plt.yscale("log")
legends_R_a.append("N=%d" % N[i])

if makeplot:
plt.figure(1)
plt.xlabel("time")
plt.ylabel("pointwise truncation error")
plt.legend(legends_R)
plt.savefig("R_series.png")
plt.savefig("R_series.pdf")
plt.figure(2)
plt.xlabel("time")
plt.ylabel("pointwise error in estimated truncation error")
plt.legend(legends_R_a)
plt.savefig("R_error.png")
plt.savefig("R_error.pdf")

r_R_I = convergence_rates(dt, R_I)
print("R integrated in time; r:", end=" ")
print(" ".join(["%.1f" % r for r in r_R_I]))
R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:, n])[-1] for n in range(len(t_coarse))]

The first makeplot block demonstrates how to build up two figures in parallel, using plt.figure(i)
to create and switch to figure number i. Figure numbers start at 1. A logarithmic scale is used
on the y axis since we expect that R as a function of time (or mesh points) is exponential. The
reason is that the theoretical estimate (7.17) contains u′′

e , which for the present model goes like e−at.
Taking the logarithm makes a straight line.

The code follows closely the previously stated mathematical formulas, but the statements for
computing the convergence rates might deserve an explanation. The generic help function
convergence_rate(h, E) computes and returns ri−1, i = 1, . . . ,m− 1 from (7.23), given ∆ti in h
and Rn

i in E:

def convergence_rates(h, E):
from math import log
r = [log(E[i]/E[i-1])/log(h[i]/h[i-1])

for i in range(1, len(h))]
return r

572



DRAFT

7. Truncation Error Analysis

Calling r_R_I = convergence_rates(dt, R_I) computes the sequence of rates r0, r1, . . . , rm−2
for the model RI ∼ ∆tr, while the statements

R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

compute the final rate rm−2 for Rn ∼ ∆tr at each mesh point tn in the coarsest mesh. This latter
computation deserves more explanation. Since R[i][n] holds the estimated truncation error Rn

i on
mesh i, at point tn in the coarsest mesh, R[:,n] picks out the sequence Rn

i for i = 0, . . . ,m − 1.
The convergence_rate function computes the rates at tn, and by indexing [-1] on the returned
array from convergence_rate, we pick the rate rm−2, which we believe is the best estimation since
it is based on the two finest meshes.

The estimate function is available in a module trunc_empir.py. Let us apply this function to
estimate the truncation error of the Forward Euler scheme. We need a function decay_FE(dt, N)
that can compute (7.21) at the points in a mesh with time step dt and N intervals:

import numpy as np
import trunc_empir

def decay_FE(dt, N):
dt = float(dt)
t = np.linspace(0, N * dt, N + 1)
u_e = I * np.exp(-a * t) # exact solution, I and a are global
u = u_e # naming convention when writing up the scheme
R = np.zeros(N)

for n in range(0, N):
R[n] = (u[n + 1] - u[n]) / dt + a * u[n]

R_a = 0.5 * I * (-a) ** 2 * np.exp(-a * t) * dt

return R, t[:-1], R_a[:-1]

if __name__ == "__main__":
I = 1
a = 2 # global variables needed in decay_FE
trunc_empir.estimate(decay_FE, T=2.5, N_0=6, m=4, makeplot=True)

The estimated rates for the integrated truncation error RI become 1.1, 1.0, and 1.0 for this sequence
of four meshes. All the rates for Rn, computed as r_R, are also very close to 1 at all mesh points.
The agreement between the theoretical formula (7.17) and the computed quantity (ref(7.21)) is
very good, as illustrated in Figures Figure 7.1 and Figure 7.2. The program trunc_decay_FE.py
was used to perform the simulations and it can easily be modified to test other schemes (see also
Exercise Section 7.34).

573

https://github.com/devitocodes/devito_book/tree/main/src/trunc/trunc_empir.py
https://github.com/devitocodes/devito_book/tree/main/src/trunc/trunc_decay_FE.py


DRAFT

7. Truncation Error Analysis

Figure 7.1.: Estimated truncation error at mesh points for different meshes.

Figure 7.2.: Difference between theoretical and estimated truncation error at mesh points for different
meshes.

574



DRAFT

7. Truncation Error Analysis

7.15. Increasing the accuracy by adding correction terms

Now we ask the question: can we add terms in the differential equation that can help increase the
order of the truncation error? To be precise, let us revisit the Forward Euler scheme for u′ = −au,
insert the exact solution ue, include a residual R, but also include new terms C:

[D+
t ue + aue = C +R]n . (7.24)

Inserting the Taylor expansions for [D+
t ue]n and keeping terms up to 3rd order in ∆t gives the

equation
1
2u

′′
e(tn)∆t− 1

6u
′′′
e (tn)∆t2 + 1

24u
′′′′
e (tn)∆t3 +O(∆t4) = Cn +Rn .

Can we find Cn such that Rn is O(∆t2)? Yes, by setting

Cn = 1
2u

′′
e(tn)∆t,

we manage to cancel the first-order term and

Rn = 1
6u

′′′
e (tn)∆t2 +O(∆t3) .

The correction term Cn introduces 1
2∆tu′′ in the discrete equation, and we have to get rid of the

derivative u′′. One idea is to approximate u′′ by a second-order accurate finite difference formula,
u′′ ≈ (un+1 − 2un + un−1)/∆t2, but this introduces an additional time level with un−1. Another
approach is to rewrite u′′ in terms of u′ or u using the ODE:

u′ = −au ⇒ u′′ = −au′ = −a(−au) = a2u .

This means that we can simply set Cn = 1
2a

2∆tun. We can then either solve the discrete equation

[D+
t u = −au+ 1

2a
2∆tu]n, (7.25)

or we can equivalently discretize the perturbed ODE

u′ = −âu, â = a(1− 1
2a∆t), (7.26)

by a Forward Euler method. That is, we replace the original coefficient a by the perturbed coefficient
â. Observe that â→ a as ∆t→ 0.

The Forward Euler method applied to (7.26) results in

[D+
t u = −a(1− 1

2a∆t)u]n .

We can control our computations and verify that the truncation error of the scheme above is indeed
O(∆t2).

Another way of revealing the fact that the perturbed ODE leads to a more accurate solution is to
look at the amplification factor. Our scheme can be written as

un+1 = Aun, A = 1− â∆t = 1− p+ 1
2p

2, p = a∆t,

575



DRAFT

7. Truncation Error Analysis

The amplification factor A as a function of p = a∆t is seen to be the first three terms of the Taylor
series for the exact amplification factor e−p. The Forward Euler scheme for u = −au gives only the
first two terms 1− p of the Taylor series for e−p. That is, using â increases the order of the accuracy
in the amplification factor.

Instead of replacing u′′ by a2u, we use the relation u′′ = −au′ and add a term −1
2a∆tu′ in the

ODE:
u′ = −au− 1

2a∆tu′ ⇒
(

1 + 1
2a∆t

)
u′ = −au .

Using a Forward Euler method results in(
1 + 1

2a∆t
)
un+1 − un

∆t = −aun,

which after some algebra can be written as

un+1 =
1− 1

2a∆t
1 + 1

2a∆t
un .

This is the same formula as the one arising from a Crank-Nicolson scheme applied to u′ = −au! It
is now recommended to do Exercise Section 7.35 and repeat the above steps to see what kind of
correction term is needed in the Backward Euler scheme to make it second order.

The Crank-Nicolson scheme is a bit more challenging to analyze, but the ideas and techniques are
the same. The discrete equation reads

[Dtu = −au]n+ 1
2 ,

and the truncation error is defined through

[Dtue + auet = C +R]n+ 1
2 ,

where we have added a correction term. We need to Taylor expand both the discrete derivative and
the arithmetic mean with aid of 7.9 and 7.11, respectively. The result is

1
24u

′′′
e (tn+ 1

2
)∆t2 +O(∆t4) + a

8u
′′
e(tn+ 1

2
)∆t2 +O(∆t4) = Cn+ 1

2 +Rn+ 1
2 .

The goal now is to make Cn+ 1
2 cancel the ∆t2 terms:

Cn+ 1
2 = 1

24u
′′′
e (tn+ 1

2
)∆t2 + a

8u
′′
e(tn)∆t2 .

Using u′ = −au, we have that u′′ = a2u, and we find that u′′′ = −a3u. We can therefore solve the
perturbed ODE problem

u′ = −âu, â = a(1− 1
12a

2∆t2),

by the Crank-Nicolson scheme and obtain a method that is of fourth order in ∆t. Exercise
Section 7.36 encourages you to implement these correction terms and calculate empirical convergence
rates to verify that higher-order accuracy is indeed obtained in real computations.

576



DRAFT

7. Truncation Error Analysis

7.16. Extension to variable coefficients

Let us address the decay ODE with variable coefficients,

u′(t) = −a(t)u(t) + b(t),

discretized by the Forward Euler scheme,

[D+
t u = −au+ b]n .

The truncation error R is as always found by inserting the exact solution ue(t) in the discrete
scheme:

[D+
t ue + aue − b = R]n .

Using 7.6,
u′

e(tn)− 1
2u

′′
e(tn)∆t+O(∆t2) + a(tn)ue(tn)− b(tn) = Rn .

Because of the ODE,
u′

e(tn) + a(tn)ue(tn)− b(tn) = 0,

we are left with the result
Rn = −1

2u
′′
e(tn)∆t+O(∆t2) . (7.27)

We see that the variable coefficients do not pose any additional difficulties in this case. Exercise
Section 7.37 takes the analysis above one step further to the Crank-Nicolson scheme.

7.17. Exact solutions of the finite difference equations

Having a mathematical expression for the numerical solution is very valuable in program verification,
since we then know the exact numbers that the program should produce. Looking at the various
formulas for the truncation errors in 7.9 and 7.13 in Section Section 7.7, we see that all but two of
the R expressions contain a second or higher order derivative of ue. The exceptions are the geometric
and harmonic means where the truncation error involves u′

e and even ue in case of the harmonic
mean. So, apart from these two means, choosing ue to be a linear function of t, ue = ct + d for
constants c and d, will make the truncation error vanish since u′′

e = 0. Consequently, the truncation
error of a finite difference scheme will be zero since the various approximations used will all be exact.
This means that the linear solution is an exact solution of the discrete equations.

In a particular differential equation problem, the reasoning above can be used to determine if we
expect a linear ue to fulfill the discrete equations. To actually prove that this is true, we can either
compute the truncation error and see that it vanishes, or we can simply insert ue(t) = ct+ d in the
scheme and see that it fulfills the equations. The latter method is usually the simplest. It will often
be necessary to add some source term to the ODE in order to allow a linear solution.

Many ODEs are discretized by centered differences. From Section Section 7.7 we see that all the
centered difference formulas have truncation errors involving u′′′

e or higher-order derivatives. A
quadratic solution, e.g., ue(t) = t2 + ct + d, will then make the truncation errors vanish. This
observation can be used to test if a quadratic solution will fulfill the discrete equations. Note that
a quadratic solution will not obey the equations for a Crank-Nicolson scheme for u′ = −au + b
because the approximation applies an arithmetic mean, which involves a truncation error with u′′

e .

577



DRAFT

7. Truncation Error Analysis

7.18. Computing truncation errors in nonlinear problems

The general nonlinear ODE
u′ = f(u, t), (7.28)

can be solved by a Crank-Nicolson scheme

[Dtu = f
t]n+ 1

2 . (7.29)

The truncation error is as always defined as the residual arising when inserting the exact solution
ue in the scheme:

[Dtue − f
t = R]n+ 1

2 . (7.30)

Using 7.11 for f t results in

[f t]n+ 1
2 = 1

2(f(un
e , tn) + f(un+1

e , tn+1))

= f(un+ 1
2e , tn+ 1

2
) + 1

8u
′′
e(tn+ 1

2
)∆t2 +O(∆t4) .

With 7.9 the discrete equations (7.30) lead to

u′
e(tn+ 1

2
) + 1

24u
′′′
e (tn+ 1

2
)∆t2 + f(un+ 1

2e , tn+ 1
2
)− 1

8u
′′
e(tn+ 1

2
)∆t2 +O(∆t4) = Rn+ 1

2 .

Since u′
e(tn+ 1

2
)− f(un+ 1

2e , tn+ 1
2
) = 0, the truncation error becomes

Rn+ 1
2 = ( 1

24u
′′′
e (tn+ 1

2
) + 1

8u
′′
e(tn+ 1

2
))∆t2 .

The computational techniques worked well even for this nonlinear ODE.

7.19. Linear model without damping

The next example on computing the truncation error involves the following ODE for vibration
problems:

u′′(t) + ω2u(t) = 0 . (7.31)

Here, ω is a given constant.

7.19.1. The truncation error of a centered finite difference scheme

Using a standard, second-ordered, central difference for the second-order derivative in time, we have
the scheme

[DtDtu+ ω2u = 0]n . (7.32)

Inserting the exact solution ue in this equation and adding a residual R so that ue can fulfill the
equation results in

[DtDtue + ω2ue = R]n .

578



DRAFT

7. Truncation Error Analysis

To calculate the truncation error Rn, we use 7.4, i.e.,

[DtDtue]n = u′′
e(tn) + 1

12u
′′′′
e (tn)∆t2 +O(∆t4),

and the fact that u′′
e(t) + ω2ue(t) = 0. The result is

Rn = 1
12u

′′′′
e (tn)∆t2 +O(∆t4) .

### The truncation error of approximating u′(0) The initial conditions for (7.31) are u(0) = I
and u′(0) = V . The latter involves a finite difference approximation. The standard choice

[D2tu = V ]0,

where u−1 is eliminated with the aid of the discretized ODE for n = 0, involves a centered difference
with an O(∆t2) truncation error given by 7.3. The simpler choice

[D+
t u = V ]0,

is based on a forward difference with a truncation error O(∆t). A central question is if this initial
error will impact the order of the scheme throughout the simulation. Exercise Section 7.40 asks you
to perform an experiment to investigate this question.

7.19.2. Truncation error of the equation for the first step

We have shown that the truncation error of the difference used to approximate the initial condition
u′(0) = 0 is O(∆t2), but we can also investigate the difference equation used for the first step. In
a truncation error setting, the right way to view this equation is not to use the initial condition
[D2tu = V ]0 to express u−1 = u1 − 2∆tV in order to eliminate u−1 from the discretized differential
equation, but the other way around: the fundamental equation is the discretized initial condition
[D2tu = V ]0 and we use the discretized ODE [DtDt + ω2u = 0]0 to eliminate u−1 in the discretized
initial condition. From [DtDt + ω2u = 0]0 we have

u−1 = 2u0 − u1 −∆t2ω2u0,

which inserted in [D2tu = V ]0 gives

u1 − u0

∆t + 1
2ω

2∆tu0 = V . (7.33)

The first term can be recognized as a forward difference such that the equation can be written in
operator notation as

[D+
t u+ 1

2ω
2∆tu = V ]0 .

The truncation error is defined as

[D+
t ue + 1

2ω
2∆tue − V = R]0 .

Using 7.6 with one more term in the Taylor series, we get that

u′
e(0) + 1

2u
′′
e(0)∆t+ 1

6u
′′′
e (0)∆t2 +O(∆t3) + 1

2ω
2∆tue(0)− V = Rn .

579



DRAFT

7. Truncation Error Analysis

Now, u′
e(0) = V and u′′

e(0) = −ω2ue(0) so we get

Rn = 1
6u

′′′
e (0)∆t2 +O(∆t3) .

There is another way of analyzing the discrete initial condition, because eliminating u−1 via the
discretized ODE can be expressed as

[D2tu+ ∆t(DtDtu− ω2u) = V ]0 . (7.34)

Writing out (7.34) shows that the equation is equivalent to (7.33). The truncation error is defined
by

[D2tue + ∆t(DtDtue − ω2ue) = V +R]0 .

Replacing the difference via 7.3 and 7.4, as well as using u′
e(0) = V and u′′

e(0) = −ω2ue(0), gives

Rn = 1
6u

′′′
e (0)∆t2 +O(∆t3) .

### Computing correction terms The idea of using correction terms to increase the order of Rn

can be applied as described in Section Section 7.15. We look at

[DtDtue + ω2ue = C +R]n,

and observe that Cn must be chosen to cancel the ∆t2 term in Rn. That is,

Cn = 1
12u

′′′′
e (tn)∆t2 .

To get rid of the 4th-order derivative we can use the differential equation: u′′ = −ω2u, which implies
u′′′′ = ω4u. Adding the correction term to the ODE results in

u′′ + ω2(1− 1
12ω

2∆t2)u = 0 . (7.35)

Solving this equation by the standard scheme

[DtDtu+ ω2(1− 1
12ω

2∆t2)u = 0]n,

will result in a scheme with truncation error O(∆t4).

We can use another set of arguments to justify that (7.35) leads to a higher-order method. Mathe-
matical analysis of the scheme (7.32) reveals that the numerical frequency ω̃ is (approximately as
∆t→ 0)

ω̃ = ω(1 + 1
24ω

2∆t2) .

One can therefore attempt to replace ω in the ODE by a slightly smaller ω since the numerics will
make it larger:

[u′′ + (ω(1− 1
24ω

2∆t2))2u]n = 0 .

Expanding the squared term and omitting the higher-order term ∆t4 gives exactly the ODE (7.35).
Experiments show that un is computed to 4th order in ∆t. You can confirm this by running a little
program in the vib directory:

580



DRAFT

7. Truncation Error Analysis

from vib_undamped import convergence_rates, solver_adjust_w

r = convergence_rates(
m=5, solver_function=solver_adjust_w, num_periods=8)

One will see that the rates r lie around 4.

7.20. Model with damping and nonlinearity

The model (7.31) can be extended to include damping βu′, a nonlinear restoring (spring) force s(u),
and some known excitation force F (t):

mu′′ + βu′ + s(u) = F (t) . (7.36)

The coefficient m usually represents the mass of the system. This governing equation can be
discretized by centered differences:

[mDtDtu+ βD2tu+ s(u) = F ]n .

The exact solution ue fulfills the discrete equations with a residual term:

[mDtDtue + βD2tue + s(ue) = F +R]n .

Using 7.4 and 7.3 we get

[mDtDtue + βD2tue]n = mu′′
e(tn) + βu′

e(tn)+(
m

12u
′′′′
e (tn) + β

6u
′′′
e (tn)

)
∆t2 +O(∆t4)

Combining this with the previous equation, we can collect the terms

mu′′
e(tn) + βu′

e(tn) + ω2ue(tn) + s(ue(tn))− Fn,

and set this sum to zero because ue solves the differential equation. We are left with the truncation
error

Rn =
(
m

12u
′′′′
e (tn) + β

6u
′′′
e (tn)

)
∆t2 +O(∆t4), (7.37)

so the scheme is of second order.

According to (7.37), we can add correction terms

Cn =
(
m

12u
′′′′
e (tn) + β

6u
′′′
e (tn)

)
∆t2,

to the right-hand side of the ODE to obtain a fourth-order scheme. However, expressing u′′′′ and
u′′′ in terms of lower-order derivatives is now harder because the differential equation is more
complicated:

581



DRAFT

7. Truncation Error Analysis

u′′′ = 1
m

(F ′ − βu′′ − s′(u)u′),

u′′′′ = 1
m

(F ′′ − βu′′′ − s′′(u)(u′)2 − s′(u)u′′),

= 1
m

(F ′′ − β 1
m

(F ′ − βu′′ − s′(u)u′)− s′′(u)(u′)2 − s′(u)u′′) .

It is not impossible to discretize the resulting modified ODE, but it is up to debate whether
correction terms are feasible and the way to go. Computing with a smaller ∆t is usually always
possible in these problems to achieve the desired accuracy.

7.21. Extension to quadratic damping

Instead of the linear damping term βu′ in (7.36) we now consider quadratic damping β|u′|u′:

mu′′ + β|u′|u′ + s(u) = F (t) . (7.38)

A centered difference for u′ gives rise to a nonlinearity, which can be linearized using a geometric
mean: [|u′|u′]n ≈ |[u′]n− 1

2 |[u′]n+ 1
2 . The resulting scheme becomes

[mDtDtu]n + β|[Dtu]n− 1
2 |[Dtu]n+ 1

2 + s(un) = Fn .

The truncation error is defined through

[mDtDtue]n + β|[Dtue]n− 1
2 |[Dtue]n+ 1

2 + s(un
e )− Fn = Rn .

We start with expressing the truncation error of the geometric mean. According to 7.12,

|[Dtue]n− 1
2 |[Dtue]n+ 1

2 = [|Dtue|Dtue]n − 1
4u

′
e(tn)2∆t2+

1
4ue(tn)u′′

e(tn)∆t2 +O(∆t4) .

Using 7.9 for the Dtue factors results in

[|Dtue|Dtue]n = |u′
e + 1

24u
′′′
e (tn)∆t2 +O(∆t4)|(u′

e + 1
24u

′′′
e (tn)∆t2 +O(∆t4))

We can remove the absolute value since it essentially gives a factor 1 or -1 only. Calculating the
product, we have the leading-order terms

[DtueDtue]n = (u′
e(tn))2 + 1

12ue(tn)u′′′
e (tn)∆t2 +O(∆t4) .

With
m[DtDtue]n = mu′′

e(tn) + m

12u
′′′′
e (tn)∆t2 +O(∆t4),

and using the differential equation on the form mu′′ + β(u′)2 + s(u) = F , we end up with

Rn = (m12u
′′′′
e (tn) + β

12ue(tn)u′′′
e (tn))∆t2 +O(∆t4) .

This result demonstrates that we have second-order accuracy also with quadratic damping. The key
elements that lead to the second-order accuracy is that the difference approximations are O(∆t2)
and the geometric mean approximation is also O(∆t2).

582



DRAFT

7. Truncation Error Analysis

7.22. The general model formulated as first-order ODEs

The second-order model (7.38) can be formulated as a first-order system,

v′ = 1
m

(F (t)− β|v|v − s(u)) , (7.39)

u′ = v . (7.40)

The system (7.39)-(7.40) can be solved either by a forward-backward scheme (the Euler-Cromer
method) or a centered scheme on a staggered mesh.

7.22.1. The Euler-Cromer scheme

The discretization is based on the idea of stepping (7.39) forward in time and then using a backward
difference in (7.40) with the recently computed vn+1:

[D+
t v = 1

m
(F (t)− β|v|v − s(u))]n+1 . (7.41)

[D−
t u = v]n+1, (7.42)

For a truncation error analysis, we rewrite the system in vector-matrix form. Consider the linear
case without damping,

vn+1 = vn −∆tω2un, un+1 = un + ∆tvn+1 .

We introduce the vector w = (v, u) and write the system as

Awn+1 = Bwn, A =
[

1 0
1 −∆t

]
, B =

[
1 −∆tω2

0 1

]
.

The exact solution we satisfies
Awn+1

e = Bwn + ∆tRn,

where Rn is the residual, which has to be multiplied by ∆t since we have already done that in the
discrete equation.

The corresponding differential equation in w becomes

dw

dt
= Cw, C =

[
0 −ω2

1 0

]
.

We realize that d2w = C2w, and in general dmw = Cw. Using these formulas to get rid of the
derivatives in a Taylor expansion of wn+1

e around tn gives

A(wn
e + ∆tCwn

e + 1
2∆t2C2wn

e + · · · ) = Bwn
e + ∆tRn .

From this we get

583



DRAFT

7. Truncation Error Analysis

Rn = 1
∆t(A−B + ∆tAC + 1

2∆t2AC2 + · · · )wn
e

∼ (1)

This does not work out. . .

Each ODE will have a truncation error when inserting the exact solutions ue and ve in (7.41)-(7.42):

[D+
t ue = ve +Ru]n, (7.43)

[D−
t ve]n+1 = 1

m
(F (tn+1)− β|ve(tn)|ve(tn+1)− s(ue(tn+1))) +Rn+1

v . (7.44)

Application of 7.6 and 7.5 in (7.43) and (7.44), respectively, gives

u′
e(tn) + 1

2u
′′
e(tn)∆t+O(∆t2) = ve(tn) +Rn

u, (7.45)

v′
e(tn+1)− 1

2v
′′
e (tn+1)∆t+O(∆t2) = 1

m
(F (tn+1)− β|ve(tn)|ve(tn+1)+

s(ue(tn+1)) +Rn
v .

(7.46)

Since u′
e = ve, (7.45) gives

Rn
u = 1

2u
′′
e(tn)∆t+O(∆t2) .

In (7.46) we can collect the terms that constitute the ODE, but the damping term has the wrong
form. Let us drop the absolute value in the damping term for simplicity. Adding a subtracting the
right form vn+1vn+1 helps:

v′
e(tn+1)− 1

m
(F (tn+1)− βve(tn+1)ve(tn+1) + s(ue(tn+1))+

(βve(tn)ve(tn+1)− βve(tn+1)ve(tn+1))),

which reduces to

β

m
ve(tn+1(ve(tn)− ve(tn+1)) = β

m
ve(tn+1[D−

t ve]n+1∆t

= β

m
ve(tn+1(v′

e(tn+1)∆t+−1
2v

′′′
e (tn+1)∆t+O(∆t3)) .

We end with Rn
u and Rn+1

v as O(∆t), simply because all the building blocks in the schemes (the
forward and backward differences and the linearization trick) are only first-order accurate. However,
this analysis is misleading: the building blocks play together in a way that makes the scheme
second-order accurate. This is shown by considering an alternative, yet equivalent, formulation of
the above scheme.

584



DRAFT

7. Truncation Error Analysis

7.22.2. A centered scheme on a staggered mesh

We now introduce a staggered mesh where we seek u at mesh points tn and v at points tn+ 1
2

in
between the u points. The staggered mesh makes it easy to formulate centered differences in the
system (7.39)-(7.40):

[Dtu = v]n− 1
2 ,

[Dtv = 1
m

(F (t)− β|v|v − s(u))]n . (7.47)

The term |vn|vn causes trouble since vn is not computed, only vn− 1
2 and vn+ 1

2 . Using geometric
mean, we can express |vn|vn in terms of known quantities: |vn|vn ≈ |vn− 1

2 |vn+ 1
2 . We then have

[Dtu]n− 1
2 = vn− 1

2 ,

[Dtv]n = 1
m

(F (tn)− β|vn− 1
2 |vn+ 1

2 − s(un)) . (7.48)

The truncation error in each equation fulfills

[Dtue]n− 1
2 = ve(tn− 1

2
) +R

n− 1
2

u ,

[Dtve]n = 1
m

(F (tn)− β|ve(tn− 1
2
)|ve(tn+ 1

2
)− s(un)) +Rn

v .

The truncation error of the centered differences is given by 7.9, and the geometric mean approximation
analysis can be taken from 7.12. These results lead to

u′
e(tn− 1

2
) + 1

24u
′′′
e (tn− 1

2
)∆t2 +O(∆t4) = ve(tn− 1

2
) +R

n− 1
2

u ,

and
v′

e(tn) = 1
m

(F (tn)− β|ve(tn)|ve(tn) +O(∆t2)− s(un)) +Rn
v .

The ODEs fulfilled by ue and ve are evident in these equations, and we achieve second-order accuracy
for the truncation error in both equations:

R
n− 1

2
u = O(∆t2), Rn

v = O(∆t2) .

7.23. Linear wave equation in 1D

The standard, linear wave equation in 1D for a function u(x, t) reads

∂2u

∂t2
= c2∂

2u

∂x2 + f(x, t), x ∈ (0, L), t ∈ (0, T ], (7.49)

where c is the constant wave velocity of the physical medium in [0, L]. The equation can also be
more compactly written as

utt = c2uxx + f, x ∈ (0, L), t ∈ (0, T ], (7.50)

585



DRAFT

7. Truncation Error Analysis

Centered, second-order finite differences are a natural choice for discretizing the derivatives, leading
to

[DtDtu = c2DxDxu+ f ]ni . (7.51)

Inserting the exact solution ue(x, t) in (7.51) makes this function fulfill the equation if we add the
term R:

[DtDtue = c2DxDxue + f +R]ni (7.52)

Our purpose is to calculate the truncation error R. From 7.4 we have that

[DtDtue]ni = ue,tt(xi, tn) + 1
12ue,tttt(xi, tn)∆t2 +O(∆t4),

when we use a notation taking into account that ue is a function of two variables and that derivatives
must be partial derivatives. The notation ue,tt means ∂2ue/∂t2.

The same formula may also be applied to the x-derivative term:

[DxDxue]ni = ue,xx(xi, tn) + 1
12ue,xxxx(xi, tn)∆x2 +O(∆x4),

Equation (7.52) now becomes

ue,tt + 1
12ue,tttt(xi, tn)∆t2 = c2ue,xx + c2 1

12ue,xxxx(xi, tn)∆x2 + f(xi, tn)+

O(∆t4,∆x4) +Rn
i

.Because ue fulfills the partial differential equation (PDE) (7.50), the first, third, and fifth term
cancel out, and we are left with

Rn
i = 1

12ue,tttt(xi, tn)∆t2 − c2 1
12ue,xxxx(xi, tn)∆x2 +O(∆t4,∆x4), (7.53)

showing that the scheme (7.51) is of second order in the time and space mesh spacing.

7.24. Finding correction terms

Can we add correction terms to the PDE and increase the order of Rn
i in (7.53)? The starting point

is
[DtDtue = c2DxDxue + f + C +R]ni (7.54)

From the previous analysis we simply get (7.53) again, but now with C:

Rn
i + Cn

i = 1
12ue,tttt(xi, tn)∆t2 − c2 1

12ue,xxxx(xi, tn)∆x2 +O(∆t4,∆x4) . (7.55)

The idea is to let Cn
i cancel the ∆t2 and ∆x2 terms to make Rn

i = O(∆t4,∆x4):

Cn
i = 1

12ue,tttt(xi, tn)∆t2 − c2 1
12ue,xxxx(xi, tn)∆x2 .

586



DRAFT

7. Truncation Error Analysis

Essentially, it means that we add a new term

C = 1
12
(
utttt∆t2 − c2uxxxx∆x2

)
,

to the right-hand side of the PDE. We must either discretize these 4th-order derivatives directly or
rewrite them in terms of lower-order derivatives with the aid of the PDE. The latter approach is
more feasible. From the PDE we have the operator equality

∂2

∂t2
= c2 ∂

2

∂x2 ,

so
utttt = c2uxxtt, uxxxx = c−2uttxx .

Assuming u is smooth enough, so that uxxtt = uttxx, these relations lead to

C = 1
12((c2∆t2 −∆x2)uxx)tt .

A natural discretization is

Cn
i = 1

12((c2∆t2 −∆x2)[DxDxDtDtu]ni .

Writing out [DxDxDtDtu]ni as [DxDx(DtDtu)]ni gives

1
∆t2

(
un+1 ∗ ∗i+ 1− 2un ∗ ∗i+ 1 + un−1

i+1
∆x2 − 2

un+1 ∗ ∗i− 2un ∗ ∗i+ un−1
i

∆x2 +
un+1 ∗ ∗i− 1− 2un ∗ ∗i− 1 + un−1

i−1
∆x2

)
Now the unknown values un+1 ∗ ∗i+ 1, un+1 ∗ ∗i, and un+1

i−1 are coupled, and we must solve a
tridiagonal system to find them. This is in principle straightforward, but it results in an implicit
finite difference scheme, while we had a convenient explicit scheme without the correction terms.

7.25. Extension to variable coefficients

Now we address the variable coefficient version of the linear 1D wave equation,

∂2u

∂t2
= ∂

∂x

(
λ(x)∂u

∂x

)
,

or written more compactly as
utt = (λux)x . (7.56)

The discrete counterpart to this equation, using arithmetic mean for λ and centered differences,
reads

[DtDtu = Dxλ
x
Dxu]ni . (7.57)

The truncation error is the residual R in the equation

[DtDtue = Dxλ
x
Dxue +R]ni . (7.58)

587



DRAFT

7. Truncation Error Analysis

The difficulty with (7.58) is how to compute the truncation error of the term [Dxλ
x
Dxue]ni .

We start by writing out the outer operator:

[Dxλ
x
Dxue]ni = 1

∆x

(
[λx

Dxue]n
i+ 1

2
− [λx

Dxue]n
i− 1

2

)
. (7.59)

With the aid of 7.9 and 7.11 we have

[Dxue]n
i+ 1

2
= ue,x(xi+ 1

2
, tn) + 1

24ue,xxx(xi+ 1
2
, tn)∆x2 +O(∆x4),

[λx]i+ 1
2

= λ(xi+ 1
2
) + 1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4),

[λx
Dxue]n

i+ 1
2

= (λ(xi+ 1
2
) + 1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4))×

(ue,x(xi+ 1
2
, tn) + 1

24ue,xxx(xi+ 1
2
, tn)∆x2 +O(∆x4))

= λ(xi+ 1
2
)ue,x(xi+ 1

2
, tn) + λ(xi+ 1

2
) 1
24ue,xxx(xi+ 1

2
, tn)∆x2+

ue,x(xi+ 1
2
, tn)1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4)

= [λue,x]n
i+ 1

2
+Gn

i+ 1
2
∆x2 +O(∆x4),

where we have introduced the short form

Gn
i+ 1

2
= 1

24ue,xxx(xi+ 1
2
, tn)λ(xi+ 1

2
) + ue,x(xi+ 1

2
, tn)1

8λ
′′(xi+ 1

2
) .

Similarly, we find that

[λx
Dxue]n

i− 1
2

= [λue,x]n
i− 1

2
+Gn

i− 1
2
∆x2 +O(∆x4) .

Inserting these expressions in the outer operator (7.59) results in

[Dxλ
x
Dxue]ni = 1

∆x([λx
Dxue]n

i+ 1
2
− [λx

Dxue]n
i− 1

2
)

= 1
∆x([λue,x]n

i+ 1
2

+Gn
i+ 1

2
∆x2 − [λue,x]n

i− 1
2
−Gn

i− 1
2
∆x2 +O(∆x4))

= [Dxλue,x]ni + [DxG]ni ∆x2 +O(∆x4) .

The reason for O(∆x4) in the remainder is that there are coefficients in front of this term, say
H∆x4, and the subtraction and division by ∆x results in [DxH]ni ∆x4.

We can now use 7.9 to express the Dx operator in [Dxλue,x]ni as a derivative and a truncation
error:

[Dxλue,x]ni = ∂

∂x
λ(xi)ue,x(xi, tn) + 1

24(λue,x)xxx(xi, tn)∆x2 +O(∆x4) .

Expressions like [DxG]ni ∆x2 can be treated in an identical way,

[DxG]ni ∆x2 = Gx(xi, tn)∆x2 + 1
24Gxxx(xi, tn)∆x4 +O(∆x4) .

588



DRAFT

7. Truncation Error Analysis

There will be a number of terms with the ∆x2 factor. We lump these now into O(∆x2). The result
of the truncation error analysis of the spatial derivative is therefore summarized as

[Dxλ
x
Dxue]ni = ∂

∂x
λ(xi)ue,x(xi, tn) +O(∆x2) .

After having treated the [DtDtue]ni term as well, we achieve

Rn
i = O(∆x2) + 1

12ue,tttt(xi, tn)∆t2 .

The main conclusion is that the scheme is of second-order in time and space also in this variable
coefficient case. The key ingredients for second order are the centered differences and the arithmetic
mean for λ: all those building blocks feature second-order accuracy.

[sl: HP planned 1D wave equation on a staggered mesh here, five equal signs heading]

7.26. Linear wave equation in 2D/3D

The two-dimensional extension of (7.49) takes the form

∂2u

∂t2
= c2

(
∂2u

∂x2 + ∂2u

∂y2

)
+ f(x, y, t), (x, y) ∈ (0, L)× (0, H), t ∈ (0, T ], (7.60)

where now c(x, y) is the constant wave velocity of the physical medium [0, L]× [0, H]. In compact
notation, the PDE (7.60) can be written

utt = c2(uxx + uyy) + f(x, y, t), (x, y) ∈ (0, L)× (0, H), t ∈ (0, T ], (7.61)

in 2D, while the 3D version reads

utt = c2(uxx + uyy + uzz) + f(x, y, z, t), (7.62)

for (x, y, z) ∈ (0, L)× (0, H)× (0, B) and t ∈ (0, T ].

Approximating the second-order derivatives by the standard formulas 7.4 yields the scheme

[DtDtu = c2(DxDxu+DyDyu+DzDzu) + f ]ni,j,k .

The truncation error is found from

[DtDtue = c2(DxDxue +DyDyue +DzDzue) + f +R]ni,j,k .

The calculations from the 1D case can be repeated with the terms in the y and z directions.
Collecting terms that fulfill the PDE, we end up with

Rn
i,j,k = [ 1

12ue,tttt∆t2 − c2 1
12
(
ue,xxxx∆x2 + ue,yyyy∆x2 + ue,zzzz∆z2

)
]ni,j,k+ (7.63)

O(∆t4,∆x4,∆y4,∆z4)

.

589



DRAFT

7. Truncation Error Analysis

7.27. Linear diffusion equation in 1D

The standard, linear, 1D diffusion equation takes the form

∂u

∂t
= α

∂2u

∂x2 + f(x, t), x ∈ (0, L), t ∈ (0, T ], (7.64)

where α > 0 is a constant diffusion coefficient. A more compact form of the diffusion equation is
ut = αuxx + f .

The spatial derivative in the diffusion equation, αuxx, is commonly discretized as [DxDxu]ni . The
time-derivative, however, can be treated by a variety of methods.

7.27.1. The Forward Euler scheme in time

Let us start with the simple Forward Euler scheme:

[D+
t u = αDxDxu+ f ]ni .

The truncation error arises as the residual R when inserting the exact solution ue in the discrete
equations:

[D+
t ue = αDxDxue + f +R]ni .

Now, using 7.6 and 7.4, we can transform the difference operators to derivatives:

ue,t(xi, tn) + 1
2ue,tt(tn)∆t+O(∆t2) = αue,xx(xi, tn)+

α

12ue,xxxx(xi, tn)∆x2 +O(∆x4) + f(xi, tn) +Rn
i .

The terms ue,t(xi, tn)− αue,xx(xi, tn)− f(xi, tn) vanish because ue solves the PDE. The truncation
error then becomes

Rn
i = 1

2ue,tt(tn)∆t+O(∆t2) + α

12ue,xxxx(xi, tn)∆x2 +O(∆x4) .

### The Crank-Nicolson scheme in time The Crank-Nicolson method consists of using a centered
difference for ut and an arithmetic average of the uxx term:

[Dtu]n+ 1
2

i = α
1
2([DxDxu]ni + [DxDxu]n+1

i ) + f
n+ 1

2
i .

The equation for the truncation error is

[Dtue]n+ 1
2

i = α
1
2([DxDxue]ni + [DxDxue]n+1

i ) + f
n+ 1

2
i +R

n+ 1
2

i .

To find the truncation error, we start by expressing the arithmetic average in terms of values at
time tn+ 1

2
. According to 7.11,

1
2([DxDxue]ni + [DxDxue]n+1

i ) = [DxDxue]n+ 1
2

i + 1
8[DxDxue,tt]

n+ 1
2

i ∆t2 +O(∆t4) .

590



DRAFT

7. Truncation Error Analysis

With 7.4 we can express the difference operator DxDxu in terms of a derivative:

[DxDxue]n+ 1
2

i = ue,xx(xi, tn+ 1
2
) + 1

12ue,xxxx(xi, tn+ 1
2
)∆x2 +O(∆x4) .

The error term from the arithmetic mean is similarly expanded,

1
8[DxDxue,tt]

n+ 1
2

i ∆t2 = 1
8ue,ttxx(xi, tn+ 1

2
)∆t2 +O(∆t2∆x2)

The time derivative is analyzed using 7.9:

[Dtu]n+ 1
2

i = ue,t(xi, tn+ 1
2
) + 1

24ue,ttt(xi, tn+ 1
2
)∆t2 +O(∆t4) .

Summing up all the contributions and notifying that

ue,t(xi, tn+ 1
2
) = αue,xx(xi, tn+ 1

2
) + f(xi, tn+ 1

2
),

the truncation error is given by

R
n+ 1

2
i = 1

8ue,xx(xi, tn+ 1
2
)∆t2 + 1

12ue,xxxx(xi, tn+ 1
2
)∆x2+

1
24ue,ttt(xi, tn+ 1

2
)∆t2 + +O(∆x4) +O(∆t4) +O(∆t2∆x2)

7.28. Nonlinear diffusion equation in 1D

We address the PDE
∂u

∂t
= ∂

∂x

(
α(u)∂u

∂x

)
+ f(u),

with two potentially nonlinear coefficients q(u) and α(u). We use a Backward Euler scheme with
arithmetic mean for α(u),

[D−u = Dxα(u)x
Dxu+ f(u)]ni .

Inserting ue defines the truncation error R:

[D−ue = Dxα(ue)x
Dxue + f(ue) +R]ni .

The most computationally challenging part is the variable coefficient with α(u), but we can use the
same setup as in Section Section 7.25 and arrive at a truncation error O(∆x2) for the x-derivative
term. The nonlinear term [f(ue)]ni = f(ue(xi, tn)) matches x and t derivatives of ue in the PDE.
We end up with

Rn
i = −1

2
∂2

∂t2
ue(xi, tn)∆t+O(∆x2) .

7.29. Devito and Truncation Errors

Devito’s space_order parameter directly controls the truncation error of spatial derivatives. Under-
standing this connection is essential for choosing appropriate accuracy settings in your simulations.

591



DRAFT

7. Truncation Error Analysis

7.29.1. The space_order Parameter

When you create a TimeFunction or Function in Devito, the space_order parameter specifies the
accuracy of spatial derivative approximations:

from devito import Grid, TimeFunction

grid = Grid(shape=(101,), extent=(1.0,))
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)

The space_order=2 specifies that spatial derivatives should use stencils accurate to O(∆x2). Higher
orders are available:

space_order Stencil Points Accuracy
2 3 O(∆x2)
4 5 O(∆x4)
6 7 O(∆x6)
8 9 O(∆x8)

The relationship between space_order and stencil width follows from the truncation error analysis
in Section 7.3. To achieve O(∆x2k) accuracy for a second derivative, we need a stencil with 2k + 1
points.

7.29.2. Viewing Generated Stencils

Devito allows you to inspect the symbolic expressions for derivatives, which reveals the stencil
coefficients:

from devito import Grid, TimeFunction

grid = Grid(shape=(11,), extent=(1.0,))
x, = grid.dimensions
h = x.spacing # Grid spacing symbol

# Compare different space orders
for order in [2, 4, 6]:

u = TimeFunction(name='u', grid=grid, space_order=order)
print(f"space_order={order}: {u.dx2}")

For space_order=2, this produces the familiar three-point stencil:

[DxDxu]i = ui−1 − 2ui + ui+1
∆x2

For space_order=4, Devito generates the five-point stencil with coefficients derived from the
formulas in Section 7.7:

[DxDxu]i = −ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2
12∆x2

592



DRAFT

7. Truncation Error Analysis

7.29.3. Trading Accuracy for Performance

Higher space_order means:

• Wider stencils: More memory bandwidth required
• More operations: Additional floating-point operations per grid point
• Better accuracy: Smaller truncation error per grid point

For many problems, space_order=2 is sufficient, especially when combined with grid refinement
studies. However, wave propagation problems often benefit from higher orders:

# Wave equation with high-order spatial accuracy
u = TimeFunction(name='u', grid=grid, time_order=2, space_order=8)

In geophysics applications (seismic imaging, full waveform inversion), space_order=8 is common
because the accuracy gain outweighs the computational overhead for wave propagation over many
wavelengths.

7.29.4. Matching Temporal and Spatial Accuracy

For a scheme to achieve its full accuracy potential, the truncation errors from time and space
discretization should be balanced. As shown in Section 7.23, the standard leapfrog scheme for the
wave equation has truncation error:

R = O(∆t2) +O(∆x2)

Using space_order=4 with time_order=2 means the spatial error O(∆x4) may be much smaller
than the temporal error O(∆t2). This is acceptable when:

1. You want higher spatial accuracy for a fixed grid
2. The time step is limited by stability (CFL condition), not accuracy
3. You’re doing convergence studies focused on spatial refinement

For problems where temporal accuracy is also critical, consider using higher-order time integration
schemes or smaller time steps.

7.29.5. Verifying Convergence Rates

As discussed in the empirical verification section (Section 7.14), we can verify that Devito’s stencils
achieve the expected convergence rates:

import numpy as np
from devito import Grid, TimeFunction, Eq, Operator

def test_laplacian_accuracy(space_order):
"""Verify convergence rate of Laplacian approximation."""
errors = []

593



DRAFT

7. Truncation Error Analysis

dx_values = []

for N in [20, 40, 80, 160]:
grid = Grid(shape=(N+1,), extent=(1.0,))
x, = grid.dimensions

u = TimeFunction(name='u', grid=grid, space_order=space_order)
u.data[0, :] = np.sin(np.pi * np.linspace(0, 1, N+1))

# Exact second derivative: -piˆ2 * sin(pi*x)
exact = -np.pi**2 * np.sin(np.pi * np.linspace(0, 1, N+1))

# Devito approximation
laplacian = u.dx2.evaluate
numerical = np.array(laplacian.data[0, :])

# Compute error (excluding boundary points)
error = np.max(np.abs(numerical[2:-2] - exact[2:-2]))
errors.append(error)
dx_values.append(1.0/N)

# Estimate convergence rate
rates = [np.log(errors[i]/errors[i+1])/np.log(2)

for i in range(len(errors)-1)]
return np.mean(rates)

# Expected: rate ~ 2 for space_order=2, rate ~ 4 for space_order=4

The measured rates should match the theoretical orders from truncation error analysis, providing
verification that both the theory and implementation are correct.

7.30. Exercise: Truncation error of a weighted mean

Derive the truncation error of the weighted mean in 7.10.

� Expand un+1
e and un

e around tn+θ.

7.31. Exercise: Simulate the error of a weighted mean

We consider the weighted mean

ue(tn) ≈ θun+1
e + (1− θ)un

e .

594



DRAFT

7. Truncation Error Analysis

Choose some specific function for ue(t) and compute the error in this approximation for a sequence
of decreasing ∆t = tn+1 − tn and for θ = 0, 0.25, 0.5, 0.75, 1. Assuming that the error equals C∆tr,
for some constants C and r, compute r for the two smallest ∆t values for each choice of θ and
compare with the truncation error 7.10.

7.32. Exercise: Verify a truncation error formula

Set up a numerical experiment as explained in Section Section 7.14 for verifying the formulas 7.8.

7.33. Problem: Truncation error of the Backward Euler scheme

Derive the truncation error of the Backward Euler scheme for the decay ODE u′ = −au with
constant a. Extend the analysis to cover the variable-coefficient case u′ = −a(t)u+ b(t).

7.34. Exercise: Empirical estimation of truncation errors

Use the ideas and tools from Section Section 7.14 to estimate the rate of the truncation error of the
Backward Euler and Crank-Nicolson schemes applied to the exponential decay model u′ = −au,
u(0) = I.

. Hint

In the Backward Euler scheme, the truncation error can be estimated at mesh points n =
1, . . . , N , while the truncation error must be estimated at midpoints tn+ 1

2
, n = 0, . . . , N − 1

for the Crank-Nicolson scheme. The truncation_error(dt, N) function to be supplied to
the estimate function needs to carefully implement these details and return the right t array
such that t[i] is the time point corresponding to the quantities R[i] and R_a[i].

7.35. Exercise: Correction term for a Backward Euler scheme

Consider the model u′ = −au, u(0) = I. Use the ideas of Section Section 7.15 to add a correction
term to the ODE such that the Backward Euler scheme applied to the perturbed ODE problem is
of second order in ∆t. Find the amplification factor.

7.36. Problem: Verify the effect of correction terms

Make a program that solves u′ = −au, u(0) = I, by the θ-rule and computes convergence rates.
Adjust a such that it incorporates correction terms. Run the program to verify that the error from
the Forward and Backward Euler schemes with perturbed a is O(∆t2), while the error arising from
the Crank-Nicolson scheme with perturbed a is O(∆t4).

595



DRAFT

7. Truncation Error Analysis

7.37. Problem: Truncation error of the Crank-Nicolson scheme

The variable-coefficient ODE u′ = −a(t)u + b(t) can be discretized in two different ways by the
Crank-Nicolson scheme, depending on whether we use averages for a and b or compute them at the
midpoint tn+ 1

2
:

[Dtu = −aut + b]n+ 1
2 , (7.65)

[Dtu = −au+ b
t]n+ 1

2 (7.66)

.Compute the truncation error in both cases.

7.38. Problem: Truncation error of u′ = f(u, t)

Consider the general nonlinear first-order scalar ODE

u′(t) = f(u(t), t) .

Show that the truncation error in the Forward Euler scheme,

[D+
t u = f(u, t)]n,

and in the Backward Euler scheme,
[D−

t u = f(u, t)]n,

both are of first order, regardless of what f is.

Showing the order of the truncation error in the Crank-Nicolson scheme,

[Dtu = f(u, t)]n+ 1
2 ,

is somewhat more involved: Taylor expand un
e , un+1

e , f(un
e , tn), and f(un+1

e , tn+1) around tn+ 1
2
, and

use that
df

dt
= ∂f

∂u
u′ + ∂f

∂t
.

Check that the derived truncation error is consistent with previous results for the case f(u, t) =
−au.

7.39. Exercise: Truncation error of [DtDtu]n

Derive the truncation error of the finite difference approximation 7.4 to the second-order derivative.

596



DRAFT

7. Truncation Error Analysis

7.40. Exercise: Investigate the impact of approximating u′(0)

Section Section 7.19 describes two ways of discretizing the initial condition u′(0) = V for a vibration
model u′′ + ω2u = 0: a centered difference [D2tu = V ]0 or a forward difference [D+

t u = V ]0.
The program vib_undamped.py solves u′′ + ω2u = 0 with [D2tu = 0]0 and features a function
convergence_rates for computing the order of the error in the numerical solution. Modify this
program such that it applies the forward difference [D+

t u = 0]0 and report how this simpler and
more convenient approximation impacts the overall convergence rate of the scheme.

7.41. Problem: Investigate the accuracy of a simplified scheme

Consider the ODE
mu′′ + β|u′|u′ + s(u) = F (t) .

The term |u′|u′ quickly gives rise to nonlinearities and complicates the scheme. Why not simply
apply a backward difference to this term such that it only involves known values? That is, we
propose to solve

[mDtDtu+ β|D−
t u|D−

t u+ s(u) = F ]n .

Drop the absolute value for simplicity and find the truncation error of the scheme. Perform numerical
experiments with the scheme and compared with the one based on centered differences. Can you
illustrate the accuracy loss visually in real computations, or is the asymptotic analysis here mainly
of theoretical interest?

597

https://github.com/devitocodes/devito_book/tree/main/src/vib/vib_undamped.py


DRAFT
8. Software Engineering

8.1. Mathematical model

Let ut, utt, ux, uxx denote derivatives of u with respect to the subscript, i.e., utt is a second-order time
derivative and ux is a first-order space derivative. The initial-boundary value problem implemented
in the wave1D_dn_vc.py code is

utt = (q(x)ux)x + f(x, t), x ∈ (0, L), t ∈ (0, T ]

u(x, 0) = I(x), x ∈ [0, L]

ut(x, 0) = V (t), x ∈ [0, L]

u(0, t) = U0(t) or ux(0, t) = 0, t ∈ (0, T ]

u(L, t) = UL(t) or ux(L, t) = 0, t ∈ (0, T ] (8.1)

We allow variable wave velocity c2(x) = q(x), and Dirichlet or homogeneous Neumann conditions at
the boundaries.

8.2. Numerical discretization

The PDE is discretized by second-order finite differences in time and space, with arithmetic mean
for the variable coefficient

[DtDtu = Dxq
xDxu+ f ]ni .

The Neumann boundary conditions are discretized by

[D2xu]ni = 0,

at a boundary point i. The details of how the numerical scheme is worked out are described in
Section 2.35 and Section 2.42.

8.3. A solver function

The general initial-boundary value problem solved by finite difference methods can be implemented
as shown in the following solver function (taken from the file wave1D_dn_vc.py). This function
builds on simpler versions described in Section 2.14, Section 2.22, Section 2.35, and Section 2.42.
There are several quite advanced constructs that will be commented upon later. The code is
lengthy, but that is because we provide a lot of flexibility with respect to input arguments, boundary
conditions, and optimization (scalar versus vectorized loops).

598

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_dn_vc.py


DRAFT

8. Software Engineering

8.4. Storing simulation data in files

Numerical simulations produce large arrays as results and the software needs to store these arrays
on disk. Several methods are available in Python. We recommend to use tailored solutions for large
arrays and not standard file storage tools such as pickle (cPickle for speed in Python version 2)
and shelve, because the tailored solutions have been optimized for array data and are hence much
faster than the standard tools.

8.5. Using savez to store arrays in files

8.5.1. Storing individual arrays

The numpy.storez function can store a set of arrays to a named file in a zip archive. An associated
function numpy.load can be used to read the file later. Basically, we call numpy.storez(filename,
**kwargs), where kwargs is a dictionary containing array names as keys and the corresponding
array objects as values. Very often, the solution at a time point is given a natural name where the
name of the variable and the time level counter are combined, e.g., u11 or v39. Suppose n is the
time level counter and we have two solution arrays, u and v, that we want to save to a zip archive.
The appropriate code is

import numpy as np
u_name = 'u%04d' % n # array name
v_name = 'v%04d' % n # array name
kwargs = {u_name: u, v_name: v} # keyword args for savez
fname = '.mydata%04d.dat' % n
np.savez(fname, **kwargs)
if n == 0: # store x once

np.savez('.mydata_x.dat', x=x)

Since the name of the array must be given as a keyword argument to savez, and the name must
be constructed as shown, it becomes a little tricky to do the call, but with a dictionary kwargs
and **kwargs, which sends each key-value pair as individual keyword arguments, the task gets
accomplished.

8.5.2. Merging zip archives

Each separate call to np.savez creates a new file (zip archive) with extension .npz. It is very
convenient to collect all results in one archive instead. This can be done by merging all the individual
.npz files into a single zip archive:

599



DRAFT

8. Software Engineering

def merge_zip_archives(individual_archives, archive_name):
"""
Merge individual zip archives made with numpy.savez into
one archive with name archive_name.
The individual archives can be given as a list of names
or as a Unix wild chard filename expression for glob.glob.
The result of this function is that all the individual
archives are deleted and the new single archive made.
"""
import zipfile
archive = zipfile.ZipFile(

archive_name, 'w', zipfile.ZIP_DEFLATED,
allowZip64=True)

if isinstance(individual_archives, (list,tuple)):
filenames = individual_archives

elif isinstance(individual_archives, str):
filenames = glob.glob(individual_archives)

for filename in filenames:
f = zipfile.ZipFile(filename, 'r',

zipfile.ZIP_DEFLATED)
for name in f.namelist():

data = f.open(name, 'r')
archive.writestr(name[:-4], data.read())

f.close()
os.remove(filename)

archive.close()

Here we remark that savez automatically adds the .npz extension to the names of the arrays we
store. We do not want this extension in the final archive.

8.5.3. Reading arrays from zip archives

Archives created by savez or the merged archive we describe above with name of the form
myarchive.npz, can be conveniently read by the numpy.load function:

import numpy as np
array_names = np.load(`myarchive.npz`)
for array_name in array_names:

8.6. Using joblib to store arrays in files

The Python package joblib has nice functionality for efficient storage of arrays on disk. The
following class applies this functionality so that one can save an array, or in fact any Python data
structure (e.g., a dictionary of arrays), to disk under a certain name. Later, we can retrieve the

600



DRAFT

8. Software Engineering

object by use of its name. The name of the directory under which the arrays are stored by joblib
can be given by the user.

class Storage:
"""
Store large data structures (e.g. numpy arrays) efficiently
using joblib.

Use:

>>> from Storage import Storage
>>> storage = Storage(cachedir='tmp_u01', verbose=1)
>>> import numpy as np
>>> a = np.linspace(0, 1, 100000) # large array
>>> b = np.linspace(0, 1, 100000) # large array
>>> storage.save('a', a)
>>> storage.save('b', b)
>>> # later
>>> a = storage.retrieve('a')
>>> b = storage.retrieve('b')
"""

def __init__(self, cachedir="tmp", verbose=1):
"""
Parameters
----------
cachedir: str

Name of directory where objects are stored in files.
verbose: bool, int

Let joblib and this class speak when storing files
to disk.

"""
import joblib

self.memory = joblib.Memory(cachedir=cachedir, verbose=verbose)
self.verbose = verbose
self.retrieve = self.memory.cache(self.retrieve, ignore=["data"])
self.save = self.retrieve

def retrieve(self, name, data=None):
if self.verbose > 0:

print("joblib save of", name)
return data

The retrieve and save functions, which do the work, seem quite magic. The idea is that joblib
looks at the name parameter and saves the return value data to disk if the name parameter has not
been used in a previous call. Otherwise, if name is already registered, joblib fetches the data object

601



DRAFT

8. Software Engineering

from file and returns it (this is an example of a memoize function, see Section 2.1.4 in (Langtangen
and Pedersen 2016) for a brief explanation]).

8.7. Using a hash to create a file or directory name

Array storage techniques like those outlined in Sections Section 8.6 and Section 8.5.1 demand the
user to assign a name for the file(s) or directory where the solution is to be stored. Ideally, this name
should reflect parameters in the problem such that one can recognize an already run simulation.
One technique is to make a hash string out of the input data. A hash string is a 40-character long
hexadecimal string that uniquely reflects another potentially much longer string. (You may be used
to hash strings from the Git version control system: every committed version of the files in Git is
recognized by a hash string.)

Suppose you have some input data in the form of functions, numpy arrays, and other objects. To
turn these input data into a string, we may grab the source code of the functions, use a very efficient
hash method for potentially large arrays, and simply convert all other objects via str to a string
representation. The final string, merging all input data, is then converted to an SHA1 hash string
such that we represent the input with a 40-character long string.

def myfunction(func1, func2, array1, array2, obj1, obj2):
import inspect, joblib, hashlib
data = (inspect.getsource(func1),

inspect.getsource(func2),
joblib.hash(array1),
joblib.hash(array2),
str(obj1),
str(obj2))

hash_input = hashlib.sha1(data).hexdigest()

It is wise to use joblib.hash and not try to do a str(array1), since that string can be very long,
and joblib.hash is more efficient than hashlib when turning these data into a hash.

. Remark: turning function objects into their source code is unreliable!

The idea of turning a function object into a string via its source code may look smart, but is
not a completely reliable solution. Suppose we have some function

x0 = 0.1
f = lambda x: 0 if x <= x0 else 1

The source code will be f = lambda x: 0 if x <= x0 else 1, so if the calling code changes
the value of x0 (which f remembers - it is a closure), the source remains unchanged, the hash
is the same, and the change in input data is unnoticed. Consequently, the technique above
must be used with care. The user can always just remove the stored files in disk and thereby
force a recomputation (provided the software applies a hash to test if a zip archive or joblib
subdirectory exists, and if so, avoids recomputation).

602



DRAFT

8. Software Engineering

We use numpy.storez to store the solution at each time level on disk. Such actions must be taken
care of outside the solver function, more precisely in the user_action function that is called at
every time level.

We have, in the wave1D_dn_vc.py code, implemented the user_action callback function as a class
PlotAndStoreSolution with a __call__(self, x, t, t, n) method for the user_action func-
tion. Basically, __call__ stores and plots the solution. The storage makes use of the numpy.savez
function for saving a set of arrays to a zip archive. Here, in this callback function, we want to save
one array, u. Since there will be many such arrays, we introduce the array names 'u%04d' % n and
closely related filenames. The usage of numpy.savez in __call__ goes like this:

from numpy import savez
name = 'u%04d' % n # array name
kwargs = {name: u} # keyword args for savez
fname = '.' + self.filename + '_' + name + '.dat'
self.t.append(t[n]) # store corresponding time value
savez(fname, **kwargs)
if n == 0: # store x once

savez('.' + self.filename + '_x.dat', x=x)

For example, if n is 10 and self.filename is tmp, the above call to savez becomes
savez('.tmp_u0010.dat', u0010=u). The actual filename becomes .tmp_u0010.dat.npz.
The actual array name becomes u0010.npy.

Each savez call results in a file, so after the simulation we have one file per time level. Each file
produced by savez is a zip archive. It makes sense to merge all the files into one. This is done in
the close_file method in the PlotAndStoreSolution class. The code goes as follows.

class PlotAndStoreSolution:
...
def close_file(self, hashed_input):

"""
Merge all files from savez calls into one archive.
hashed_input is a string reflecting input data
for this simulation (made by solver).
"""
if self.filename is not None:

savez('.' + self.filename + '_t.dat',
t=array(self.t, dtype=float))

archive_name = '.' + hashed_input + '_archive.npz'
filenames = glob.glob('.' + self.filename + '*.dat.npz')
merge_zip_archives(filenames, archive_name)

We use various ZipFile functionality to extract the content of the individual files (each with name
filename) and write it to the merged archive (archive). There is only one array in each individual
file (filename) so strictly speaking, there is no need for the loop for name in f.namelist()
(as f.namelist() returns a list of length 1). However, in other applications where we compute

603

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_dn_vc.py


DRAFT

8. Software Engineering

more arrays at each time level, savez will store all these and then there is need for iterating over
f.namelist().

Instead of merging the archives written by savez we could make an alternative implementation
that writes all our arrays into one archive. This is the subject of Exercise Section 8.31.

8.8. Making hash strings from input data

The hashed_input argument, used to name the resulting archive file with all solutions, is supposed
to be a hash reflecting all import parameters in the problem such that this simulation has a unique
name. The hashed_input string is made in the solver function, using the hashlib and inspect
modules, based on the arguments to solver:

import hashlib, inspect
data = inspect.getsource(I) + '_' + inspect.getsource(V) + \

'**' + inspect.getsource(f) + '**' + str(c) + '_' + \
('None' if U_0 is None else inspect.getsource(U_0)) + \
('None' if U_L is None else inspect.getsource(U_L)) + \
'**' + str(L) + str(dt) + '**' + str(C) + '_' + str(T) + \
'_' + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()

To get the source code of a function f as a string, we use inspect.getsource(f). All input,
functions as well as variables, is then merged to a string data, and then hashlib.sha1 makes a
unique, much shorter (40 characters long), fixed-length string out of data that we can use in the
archive filename.

. Remark

Note that the construction of the data string is not fool proof: if, e.g., I is a formula with
parameters and the parameters change, the source code is still the same and data and hence
the hash remains unaltered. The implementation must therefore be used with care!

8.9. Avoiding rerunning previously run cases

If the archive file whose name is based on hashed_input already exists, the simulation with the
current set of parameters has been done before and one can avoid redoing the work. The solver
function returns the CPU time and hashed_input, and a negative CPU time means that no
simulation was run. In that case we should not call the close_file method above (otherwise we
overwrite the archive with just the self.t array). The typical usage goes like

action = PlotAndStoreSolution(...)
dt = (L/Nx)/C # choose the stability limit with given Nx
cpu, hashed_input = solver(

I=lambda x: ...,

604

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave1D/wave1D_dn_vc.py


DRAFT

8. Software Engineering

V=0, f=0, c=1, U_0=lambda t: 0, U_L=None, L=1,
dt=dt, C=C, T=T,
user_action=action, version='vectorized',
stability_safety_factor=1)

action.make_movie_file()
if cpu > 0: # did we generate new data?

action.close_file(hashed_input)

8.10. Verification

8.10.1. Vanishing approximation error

Exact solutions of the numerical equations are always attractive for verification purposes since the
software should reproduce such solutions to machine precision. With Dirichlet boundary conditions
we can construct a function that is linear in t and quadratic in x that is also an exact solution of
the scheme, while with Neumann conditions we are left with testing just a constant solution (see
comments in Section 2.40).

8.10.2. Convergence rates

A more general method for verification is to check the convergence rates. We must introduce one
discretization parameter h and assume an error model E = Chr, where C and r are constants to
be determine (i.e., r is the rate that we are interested in). Given two experiments with different
resolutions hi and hi−1, we can estimate r by

r = ln(Ei/Ei−1)
ln(hi/hi−1) ,

where Ei is the error corresponding to hi and Ei−1 corresponds to hi−1. Section 2.9 explains
the details of this type of verification and how we introduce the single discretization parameter
h = ∆t = ĉ∆t, for some constant ĉ. To compute the error, we had to rely on a global variable in the
user action function. Below is an implementation where we have a more elegant solution in terms of
a class: the error variable is not a class attribute and there is no need for a global error (which is
always considered an advantage).

The returned sequence r should converge to 2 since the error analysis in Section 2.61 predicts
various error measures to behave like O(∆t2) + O(∆x2). We can easily run the case with
standing waves and the analytical solution u(x, t) = cos(2π

L t) sin(2π
L x). The call will be very

similar to the one provided in the test_convrate_sincos function in Section 2.18, see the file
src/wave/wave1D/wave1D_dn_vc.py for details.

Many who know about class programming prefer to organize their software in terms of classes. This
gives a richer application programming interface (API) since a function solver must have all its input
data in terms of arguments, while a class-based solver naturally has a mix of method arguments

605



DRAFT

8. Software Engineering

and user-supplied methods. (Well, to be more precise, our solvers have demanded user_action to
be a function provided by the user, so it is possible to mix variables and functions in the input also
with a solver function.)

We will next illustrate how some of the functionality in wave1D_dn_vc.py may be implemented
by using classes. Focusing on class implementation aspects, we restrict the example case to a
simpler wave with constant wave speed c. Applying the method of manufactured solutions, we test
whether the class based implementation is able to compute the known exact solution within machine
precision.

We will create a class Problem to hold the physical parameters of the problem and a class Solver
to hold the numerical solution parameters besides the solver function itself. As the number of
parameters increases, so does the amount of repetitive code. We therefore take the opportunity to
illustrate how this may be counteracted by introducing a super class Parameters that allows code
to be parameterized. In addition, it is convenient to collect the arrays that describe the mesh in a
special Mesh class and make a class Function for a mesh function (mesh point values and its mesh).
All the following code is found in wave1D_oo.py.

8.11. Class Parameters

The classes Problem and Solver both inherit class Parameters, which handles reading of parameters
from the command line and has methods for setting and getting parameter values. Since processing
dictionaries is easier than processing a collection of individual attributes, the class Parameters
requires each class Problem and Solver to represent their parameters by dictionaries, one compulsory
and two optional ones. The compulsory dictionary, self.prm, contains all parameters, while a
second and optional dictionary, self.type, holds the associated object types, and a third and
optional dictionary, self.help, stores help strings. The Parameters class may be implemented as
follows:

class Parameters:
def __init__(self):

"""
Subclasses must initialize self.prm with
parameters and default values, self.type with
the corresponding types, and self.help with
the corresponding descriptions of parameters.
self.type and self.help are optional, but
self.prms must be complete and contain all parameters.
"""
pass

def ok(self):
"""Check if attr. prm, type, and help are defined."""
if (

hasattr(self, "prm")
and isinstance(self.prm, dict)
and hasattr(self, "type")

606

https://github.com/devitocodes/devito_book/tree/main/src/softeng2/wave1D_oo.py


DRAFT

8. Software Engineering

and isinstance(self.type, dict)
and hasattr(self, "help")
and isinstance(self.help, dict)

):
return True

else:
raise ValueError(

"The constructor in class %s does not "
"initialize the\ndictionaries "
"self.prm, self.type, self.help!" % self.__class__.__name__

)

def _illegal_parameter(self, name):
"""Raise exception about illegal parameter name."""
raise ValueError(

'parameter "%s" is not registered.\nLegal '
"parameters are\n%s" % (name, " ".join(list(self.prm.keys())))

)

def set(self, **parameters):
"""Set one or more parameters."""
for name in parameters:

if name in self.prm:
self.prm[name] = parameters[name]

else:
self._illegal_parameter(name)

def get(self, name):
"""Get one or more parameter values."""
if isinstance(name, (list, tuple)): # get many?

for n in name:
if n not in self.prm:

self._illegal_parameter(name)
return [self.prm[n] for n in name]

else:
if name not in self.prm:

self._illegal_parameter(name)
return self.prm[name]

def __getitem__(self, name):
"""Allow obj[name] indexing to look up a parameter."""
return self.get(name)

def __setitem__(self, name, value):
"""
Allow obj[name] = value syntax to assign a parameter's value.
"""

607



DRAFT

8. Software Engineering

return self.set(name=value)

def define_command_line_options(self, parser=None):
self.ok()
if parser is None:

import argparse

parser = argparse.ArgumentParser()

for name in self.prm:
tp = self.type[name] if name in self.type else str
help = self.help[name] if name in self.help else None
parser.add_argument(

"--" + name, default=self.get(name), metavar=name, type=tp, help=help
)

return parser

def init_from_command_line(self, args):
for name in self.prm:

self.prm[name] = getattr(args, name)

8.12. Class Problem

Inheriting the Parameters class, our class Problem is defined as:

class Problem(Parameters):
"""
Physical parameters for the wave equation
u_tt = (c**2*u_x)_x + f(x,t) with t in [0,T] and
x in (0,L). The problem definition is implied by
the method of manufactured solution, choosing
u(x,t)=x(L-x)(1+t/2) as our solution. This solution
should be exactly reproduced when c is const.
"""

def __init__(self):
self.prm = dict(L=2.5, c=1.5, T=18)
self.type = dict(L=float, c=float, T=float)
self.help = dict(

L="1D domain",
c="coefficient (wave velocity) in PDE",
T="end time of simulation",

)

608



DRAFT

8. Software Engineering

def u_exact(self, x, t):
L = self["L"]
return x * (L - x) * (1 + 0.5 * t)

def I(self, x):
return self.u_exact(x, 0)

def V(self, x):
return 0.5 * self.u_exact(x, 0)

def f(self, x, t):
c = self["c"]
return 2 * (1 + 0.5 * t) * c**2

def U_0(self, t):
return self.u_exact(0, t)

U_L = None

8.13. Class Mesh

The Mesh class can be made valid for a space-time mesh in any number of space dimensions. To
make the class versatile, the constructor accepts either a tuple/list of number of cells in each spatial
dimension or a tuple/list of cell spacings. In addition, we need the size of the hypercube mesh as a
tuple/list of 2-tuples with lower and upper limits of the mesh coordinates in each direction. For 1D
meshes it is more natural to just write the number of cells or the cell size and not wrap it in a list.
We also need the time interval from t0 to T. Giving no spatial discretization information implies a
time mesh only, and vice versa. The Mesh class with documentation and a doc test should now be
self-explanatory:

import numpy as np

class Mesh:
"""
Holds data structures for a uniform mesh on a hypercube in
space, plus a uniform mesh in time.

======== ==================================================
Argument Explanation
======== ==================================================
L List of 2-lists of min and max coordinates

in each spatial direction.
T Final time in time mesh.
Nt Number of cells in time mesh.
dt Time step. Either Nt or dt must be given.

609



DRAFT

8. Software Engineering

N List of number of cells in the spatial directions.
d List of cell sizes in the spatial directions.

Either N or d must be given.
======== ==================================================

Users can access all the parameters mentioned above, plus
``x[i]`` and ``t`` for the coordinates in direction ``i``
and the time coordinates, respectively.

Examples:

>>> from UniformFDMesh import Mesh
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>>
>>> # Simple time mesh
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3

"""

def __init__(self, L=None, T=None, t0=0, N=None, d=None, Nt=None, dt=None):
if N is None and d is None:

if Nt is None and dt is None:
raise ValueError("Mesh constructor: either Nt or dt must be given")

if T is None:
raise ValueError("Mesh constructor: T must be given")

if Nt is None and dt is None:
if N is None and d is None:

raise ValueError("Mesh constructor: either N or d must be given")
if L is None:

raise ValueError("Mesh constructor: L must be given")

610



DRAFT

8. Software Engineering

if L is not None and isinstance(L[0], (float, int)):
L = [L]

if N is not None and isinstance(N, (float, int)):
N = [N]

if d is not None and isinstance(d, (float, int)):
d = [d]

self.x = None
self.t = None
self.Nt = None
self.dt = None
self.N = None
self.d = None
self.t0 = t0

if N is None and d is not None and L is not None:
self.L = L
if len(d) != len(L):

raise ValueError(
"d has different size (no of space dim.) from L: %d vs %d",
len(d),
len(L),

)
self.d = d
self.N = [

int(round(float(self.L[i][1] - self.L[i][0]) / d[i]))
for i in range(len(d))

]
if d is None and N is not None and L is not None:

self.L = L
if len(N) != len(L):

raise ValueError(
"N has different size (no of space dim.) from L: %d vs %d",
len(N),
len(L),

)
self.N = N
self.d = [float(self.L[i][1] - self.L[i][0]) / N[i] for i in range(len(N))]

if Nt is None and dt is not None and T is not None:
self.T = T
self.dt = dt
self.Nt = int(round(T / dt))

if dt is None and Nt is not None and T is not None:
self.T = T
self.Nt = Nt
self.dt = T / float(Nt)

611



DRAFT

8. Software Engineering

if self.N is not None:
self.x = [

np.linspace(self.L[i][0], self.L[i][1], self.N[i] + 1)
for i in range(len(self.L))

]
if Nt is not None:

self.t = np.linspace(self.t0, self.T, self.Nt + 1)

def get_num_space_dim(self):
return len(self.d) if self.d is not None else 0

def has_space(self):
return self.d is not None

def has_time(self):
return self.dt is not None

def dump(self):
s = ""
if self.has_space():

s += (
"space: "
+ "x".join(

["[%g,%g]" % (self.L[i][0], self.L[i][1]) for i in range(len(self.L))]
)
+ " N="

)
s += "x".join([str(Ni) for Ni in self.N]) + " d="
s += ",".join([str(di) for di in self.d])

if self.has_space() and self.has_time():
s += " "

if self.has_time():
s += (

"time: "
+ "[%g,%g]" % (self.t0, self.T)
+ " Nt=%g" % self.Nt
+ " dt=%g" % self.dt

)
return s

ñ We rely on attribute access - not get/set functions!

Java programmers, in particular, are used to get/set functions in classes to access internal
data. In Python, we usually apply direct access of the attribute, such as m.N[i] if m is a
Mesh object. A widely used convention is to do this as long as access to an attribute does
not require additional code. In that case, one applies a property construction. The original

612



DRAFT

8. Software Engineering

interface remains the same after a property is introduced (in contrast to Java), so user will not
notice a change to properties.
The only argument against direct attribute access in class Mesh is that the attributes are
read-only so we could avoid offering a set function. Instead, we rely on the user that she does
not assign new values to the attributes.

8.14. Class Function

A class Function is handy to hold a mesh and corresponding values for a scalar or vector function
over the mesh. Since we may have a time or space mesh, or a combined time and space mesh, with
one or more components in the function, some if tests are needed for allocating the right array sizes.
To help the user, an indices attribute with the name of the indices in the final array u for the
function values is made. The examples in the doc string should explain the functionality.

class Function:
"""
A scalar or vector function over a mesh (of class Mesh).

========== ===================================================
Argument Explanation
========== ===================================================
mesh Class Mesh object: spatial and/or temporal mesh.
num_comp Number of components in function (1 for scalar).
space_only True if the function is defined on the space mesh

only (to save space). False if function has values
in space and time.

========== ===================================================

The indexing of ``u``, which holds the mesh point values of the
function, depends on whether we have a space and/or time mesh.

Examples:

>>> from UniformFDMesh import Mesh, Function
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>> f = Function(m)
>>> f.indices
['x0']
>>> f.u.shape
(5,)
>>> f.u[4] # space point 4

613



DRAFT

8. Software Engineering

0.0
>>>
>>> # Simple time mesh for two components
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>> f = Function(m, num_comp=2)
>>> f.indices
['time', 'component']
>>> f.u.shape
(9, 2)
>>> f.u[3,1] # time point 3, comp=1 (2nd comp.)
0.0
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>> f = Function(m)
>>> f.indices
['x0', 'x1']
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1],[-1,1]], d=[0.5,1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3
>>> f = Function(m, num_comp=2, space_only=False)
>>> f.indices
['time', 'x0', 'x1', 'component']
>>> f.u.shape
(11, 3, 3, 2)
>>> f.u[2,1,2,0] # time step 2, space point (1,2), comp=0
0.0
>>> # Function with space data only
>>> f = Function(m, num_comp=1, space_only=True)
>>> f.indices
['x0', 'x1']
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
"""

614



DRAFT

8. Software Engineering

def __init__(self, mesh, num_comp=1, space_only=True):
self.mesh = mesh
self.num_comp = num_comp
self.indices = []

if (self.mesh.has_space() and not self.mesh.has_time()) or (
self.mesh.has_space() and self.mesh.has_time() and space_only

):
if num_comp == 1:

self.u = np.zeros([self.mesh.N[i] + 1 for i in range(len(self.mesh.N))])
self.indices = ["x" + str(i) for i in range(len(self.mesh.N))]

else:
self.u = np.zeros(

[self.mesh.N[i] + 1 for i in range(len(self.mesh.N))] + [num_comp]
)
self.indices = ["x" + str(i) for i in range(len(self.mesh.N))] + [

"component"
]

if not self.mesh.has_space() and self.mesh.has_time():
if num_comp == 1:

self.u = np.zeros(self.mesh.Nt + 1)
self.indices = ["time"]

else:
self.u = np.zeros((self.mesh.Nt + 1, num_comp))
self.indices = ["time", "component"]

if self.mesh.has_space() and self.mesh.has_time() and not space_only:
size = [self.mesh.Nt + 1] + [

self.mesh.N[i] + 1 for i in range(len(self.mesh.N))
]
if num_comp > 1:

self.indices = (
["time"]
+ ["x" + str(i) for i in range(len(self.mesh.N))]
+ ["component"]

)
size += [num_comp]

else:
self.indices = ["time"] + ["x" + str(i) for i in range(len(self.mesh.N))]

self.u = np.zeros(size)

8.15. Class Solver

With the Mesh and Function classes in place, we can rewrite the solver function, but we make it
a method in class Solver:

615



DRAFT

8. Software Engineering

class Solver(Parameters):
"""
Numerical parameters for solving the wave equation
u_tt = (c**2*u_x)_x + f(x,t) with t in [0,T] and
x in (0,L). The problem definition is implied by
the method of manufactured solution, choosing
u(x,t)=x(L-x)(1+t/2) as our solution. This solution
should be exactly reproduced, provided c is const.
We simulate in [0, L/2] and apply a symmetry condition
at the end x=L/2.
"""

def __init__(self, problem):
self.problem = problem
self.prm = dict(C=0.75, Nx=3, stability_safety_factor=1.0)
self.type = dict(C=float, Nx=int, stability_safety_factor=float)
self.help = dict(

C="Courant number",
Nx="No of spatial mesh points",
stability_safety_factor="stability factor",

)

from UniformFDMesh import Function, Mesh

L_end = self.problem["L"]
dx = (L_end / 2) / float(self["Nx"])
t_interval = self.problem["T"]
dt = dx * self["stability_safety_factor"] * self["C"] / float(self.problem["c"])
self.m = Mesh(

L=[0, L_end / 2], d=[dx], Nt=int(round(t_interval / float(dt))), T=t_interval
)
self.f = Function(self.m, num_comp=1, space_only=False)

def solve(self, user_action=None, version="scalar"):
L, c, T = self.problem[["L", "c", "T"]]
L = L / 2 # compute with half the domain only (symmetry)
C, Nx, stability_safety_factor = self[["C", "Nx", "stability_safety_factor"]]
dx = self.m.d[0]
I = self.problem.I
V = self.problem.V
f = self.problem.f
U_0 = self.problem.U_0
U_L = self.problem.U_L
Nt = self.m.Nt
t = np.linspace(0, T, Nt + 1) # Mesh points in time
x = np.linspace(0, L, Nx + 1) # Mesh points in space

616



DRAFT

8. Software Engineering

dx = x[1] - x[0]
dt = t[1] - t[0]

if isinstance(c, (float, int)):
c = np.zeros(x.shape) + c

elif callable(c):
c_ = np.zeros(x.shape)
for i in range(Nx + 1):

c_[i] = c(x[i])
c = c_

q = c**2
C2 = (dt / dx) ** 2
dt2 = dt * dt # Help variables in the scheme

if f is None or f == 0:
f = (

(lambda x, t: 0)
if version == "scalar"
else lambda x, t: np.zeros(x.shape)

)
if I is None or I == 0:

I = (lambda x: 0) if version == "scalar" else lambda x: np.zeros(x.shape)
if V is None or V == 0:

V = (lambda x: 0) if version == "scalar" else lambda x: np.zeros(x.shape)
if U_0 is not None:

if isinstance(U_0, (float, int)) and U_0 == 0:
U_0 = lambda t: 0

if U_L is not None:
if isinstance(U_L, (float, int)) and U_L == 0:

U_L = lambda t: 0

import hashlib
import inspect

data = (
inspect.getsource(I)
+ "_"
+ inspect.getsource(V)
+ "_"
+ inspect.getsource(f)
+ "_"
+ str(c)
+ "_"
+ ("None" if U_0 is None else inspect.getsource(U_0))
+ ("None" if U_L is None else inspect.getsource(U_L))
+ "_"

617



DRAFT

8. Software Engineering

+ str(L)
+ str(dt)
+ "_"
+ str(C)
+ "_"
+ str(T)
+ "_"
+ str(stability_safety_factor)

)
hashed_input = hashlib.sha1(data).hexdigest()
if os.path.isfile("." + hashed_input + "_archive.npz"):

return -1, hashed_input

u_1 = self.f.u[0, :]
u = self.f.u[1, :]

t0 = time.perf_counter() # CPU time measurement

Ix = range(0, Nx + 1)
It = range(0, Nt + 1)

for i in range(0, Nx + 1):
u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

for i in Ix[1:-1]:
u[i] = (

u_1[i]
+ dt * V(x[i])
+ 0.5
* C2
* (

0.5 * (q[i] + q[i + 1]) * (u_1[i + 1] - u_1[i])
- 0.5 * (q[i] + q[i - 1]) * (u_1[i] - u_1[i - 1])

)
+ 0.5 * dt2 * f(x[i], t[0])

)

i = Ix[0]
if U_0 is None:

ip1 = i + 1
im1 = ip1 # i-1 -> i+1
u[i] = (

u_1[i]

618



DRAFT

8. Software Engineering

+ dt * V(x[i])
+ 0.5
* C2
* (

0.5 * (q[i] + q[ip1]) * (u_1[ip1] - u_1[i])
- 0.5 * (q[i] + q[im1]) * (u_1[i] - u_1[im1])

)
+ 0.5 * dt2 * f(x[i], t[0])

)
else:

u[i] = U_0(dt)

i = Ix[-1]
if U_L is None:

im1 = i - 1
ip1 = im1 # i+1 -> i-1
u[i] = (

u_1[i]
+ dt * V(x[i])
+ 0.5
* C2
* (

0.5 * (q[i] + q[ip1]) * (u_1[ip1] - u_1[i])
- 0.5 * (q[i] + q[im1]) * (u_1[i] - u_1[im1])

)
+ 0.5 * dt2 * f(x[i], t[0])

)
else:

u[i] = U_L(dt)

if user_action is not None:
user_action(u, x, t, 1)

for n in It[1:-1]:
u_2 = self.f.u[n - 1, :]
u_1 = self.f.u[n, :]
u = self.f.u[n + 1, :]

if version == "scalar":
for i in Ix[1:-1]:

u[i] = (
-u_2[i]
+ 2 * u_1[i]
+ C2
* (

0.5 * (q[i] + q[i + 1]) * (u_1[i + 1] - u_1[i])
- 0.5 * (q[i] + q[i - 1]) * (u_1[i] - u_1[i - 1])

619



DRAFT

8. Software Engineering

)
+ dt2 * f(x[i], t[n])

)

elif version == "vectorized":
u[1:-1] = (

-u_2[1:-1]
+ 2 * u_1[1:-1]
+ C2
* (

0.5 * (q[1:-1] + q[2:]) * (u_1[2:] - u_1[1:-1])
- 0.5 * (q[1:-1] + q[:-2]) * (u_1[1:-1] - u_1[:-2])

)
+ dt2 * f(x[1:-1], t[n])

)
else:

raise ValueError("version=%s" % version)

i = Ix[0]
if U_0 is None:

ip1 = i + 1
im1 = ip1
u[i] = (

-u_2[i]
+ 2 * u_1[i]
+ C2
* (

0.5 * (q[i] + q[ip1]) * (u_1[ip1] - u_1[i])
- 0.5 * (q[i] + q[im1]) * (u_1[i] - u_1[im1])

)
+ dt2 * f(x[i], t[n])

)
else:

u[i] = U_0(t[n + 1])

i = Ix[-1]
if U_L is None:

im1 = i - 1
ip1 = im1
u[i] = (

-u_2[i]
+ 2 * u_1[i]
+ C2
* (

0.5 * (q[i] + q[ip1]) * (u_1[ip1] - u_1[i])
- 0.5 * (q[i] + q[im1]) * (u_1[i] - u_1[im1])

)

620



DRAFT

8. Software Engineering

+ dt2 * f(x[i], t[n])
)

else:
u[i] = U_L(t[n + 1])

if user_action is not None:
if user_action(u, x, t, n + 1):

break

cpu_time = time.perf_counter() - t0
return cpu_time, hashed_input

def assert_no_error(self):
"""Run through mesh and check error"""
Nx = self["Nx"]
Nt = self.m.Nt
L, T = self.problem[["L", "T"]]
L = L / 2 # only half the domain used (symmetry)
x = np.linspace(0, L, Nx + 1) # Mesh points in space
t = np.linspace(0, T, Nt + 1) # Mesh points in time

for n in range(len(t)):
u_e = self.problem.u_exact(x, t[n])
diff = np.abs(self.f.u[n, :] - u_e).max()
print("diff:", diff)
tol = 1e-13
assert diff < tol

Observe that the solutions from all time steps are stored in the mesh function, which allows error
assessment (in assert_no_error) to take place after all solutions have been found. Of course, in
2D or 3D, such a strategy may place too high demands on available computer memory, in which
case intermediate results could be stored on file.

Running wave1D_oo.py gives a printout showing that the class-based implementation performs as
expected, i.e. that the known exact solution is reproduced (within machine precision).

8.16. Speeding up Cython code

We now consider the wave2D_u0.py code for solving the 2D linear wave equation with constant
wave velocity and homogeneous Dirichlet boundary conditions u = 0. We shall in the present
chapter extend this code with computational modules written in other languages than Python. This
extended version is called wave2D_u0_adv.py.

The wave2D_u0.py file contains a solver function, which calls an advance_* function to advance the
numerical scheme one level forward in time. The function advance_scalar applies standard Python
loops to implement the scheme, while advance_vectorized performs corresponding vectorized

621

https://github.com/devitocodes/devito_book/tree/main/src/wave/wave2D_u0/wave2D_u0.py
https://github.com/devitocodes/devito_book/tree/main/src/softeng2/wave2D_u0_adv.py


DRAFT

8. Software Engineering

arithmetics with array slices. The statements of this solver are explained in Section 2.71, in
particular Section 2.72 and Section 2.73.

Although vectorization can bring down the CPU time dramatically compared with scalar code, there
is still some factor 5-10 to win in these types of applications by implementing the finite difference
scheme in compiled code, typically in Fortran, C, or C++. This can quite easily be done by adding
a little extra code to our program. Cython is an extension of Python that offers the easiest way to
nail our Python loops in the scalar code down to machine code and achieve the efficiency of C.

Cython can be viewed as an extended Python language where variables are declared with types and
where functions are marked to be implemented in C. Migrating Python code to Cython is done
by copying the desired code segments to functions (or classes) and placing them in one or more
separate files with extension .pyx.

8.17. Declaring variables and annotating the code

Our starting point is the plain advance_scalar function for a scalar implementation of the updating
algorithm for new values un+1

i,j :

def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); It = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in It[1:-1]:

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
j = It[0]
for i in Ix: u[i,j] = 0
j = It[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in It: u[i,j] = 0
i = Ix[-1]
for j in It: u[i,j] = 0
return u

622



DRAFT

8. Software Engineering

We simply take a copy of this function and put it in a file wave2D_u0_loop_cy.pyx. The relevant
Cython implementation arises from declaring variables with types and adding some important
annotations to speed up array computing in Cython. Let us first list the complete code in the .pyx
file:

import numpy as np

cimport cython
cimport numpy as np

ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(

np.ndarray[DT, ndim=2, mode='c'] u,
np.ndarray[DT, ndim=2, mode='c'] u_1,
np.ndarray[DT, ndim=2, mode='c'] u_2,
np.ndarray[DT, ndim=2, mode='c'] f,
double Cx2, double Cy2, double dt2):

cdef:
int Ix_start = 0
int It_start = 0
int Ix_end = u.shape[0]-1
int It_end = u.shape[1]-1
int i, j
double u_xx, u_yy

for i in range(Ix_start+1, Ix_end):
for j in range(It_start+1, It_end):

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = 2*u_1[i,j] - u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
j = It_start
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
j = It_end
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
i = Ix_start
for j in range(It_start, It_end+1): u[i,j] = 0
i = Ix_end
for j in range(It_start, It_end+1): u[i,j] = 0
return u

This example may act as a recipe on how to transform array-intensive code with loops into Cython.

1. Variables are declared with types: for example, double v in the argument list instead of just

623



DRAFT

8. Software Engineering

v, and cdef double v for a variable v in the body of the function. A Python float object is
declared as double for translation to C by Cython, while an int object is declared by int.

2. Arrays need a comprehensive type declaration involving

• the type np.ndarray,
• the data type of the elements, here 64-bit floats, abbreviated as DT through ctypedef

np.float64_t DT (instead of DT we could use the full name of the data type: np.float64_t,
which is a Cython-defined type),

• the dimensions of the array, here ndim=2 and ndim=1,
• specification of contiguous memory for the array (mode='c').

1. Functions declared with cpdef are translated to C but are also accessible from Python.
2. In addition to the standard numpy import we also need a special Cython import of numpy:

cimport numpy as np, to appear after the standard import.
3. By default, array indices are checked to be within their legal limits. To speed up the code one

should turn off this feature for a specific function by placing @cython.boundscheck(False)
above the function header.

4. Also by default, array indices can be negative (counting from the end), but this feature has a
performance penalty and is therefore here turned off by writing @cython.wraparound(False)
right above the function header.

5. The use of index sets Ix and It in the scalar code cannot be successfully translated to C.
One reason is that constructions like Ix[1:-1] involve negative indices, and these are now
turned off. Another reason is that Cython loops must take the form for i in xrange
or for i in range for being translated into efficient C loops. We have therefore introduced
Ix_start as Ix[0] and Ix_end as Ix[-1] to hold the start and end of the values of index
i. Similar variables are introduced for the j index. A loop for i in Ix is with these new
variables written as for i in range(Ix_start, Ix_end+1).

ñ Array declaration syntax in Cython

We have used the syntax np.ndarray[DT, ndim=2, mode='c'] to declare numpy arrays in
Cython. There is a simpler, alternative syntax, employing typed memory views, where the
declaration looks like double [:,:]. However, the full support for this functionality is not
yet ready, and in this text we use the full array declaration syntax.

8.18. Visual inspection of the C translation

Cython can visually explain how successfully it translated a code from Python to C. The command

Terminal> cython -a wave2D_u0_loop_cy.pyx

produces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a web browser to
illustrate which lines of the code that have been translated to C. Figure Figure 8.1 shows the
illustrated code. Yellow lines indicate the lines that Cython did not manage to translate to efficient
C code and that remain in Python. For the present code we see that Cython is able to translate all
the loops with array computing to C, which is our primary goal.

624

http://docs.cython.org/src/userguide/memoryviews.html


DRAFT

8. Software Engineering

Figure 8.1.: Visual illustration of Cython’s ability to translate Python to C.

You can also inspect the generated C code directly, as it appears in the file wave2D_u0_loop_cy.c.
Nevertheless, understanding this C code requires some familiarity with writing Python extension
modules in C by hand. Deep down in the file we can see in detail how the compute-intensive
statements have been translated into some complex C code that is quite different from what a human
would write (at least if a direct correspondence to the mathematical notation was intended).

8.19. Building the extension module

Cython code must be translated to C, compiled, and linked to form what is known in the Python
world as a C extension module. This is usually done by making a setup.py script, which is the
standard way of building and installing Python software. For an extension module arising from
Cython code, the following setup.py script is all we need to build and install the module:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = 'wave2D_u0_loop_cy'
setup(

name=cymodule
ext_modules=[Extension(cymodule, [cymodule + '.pyx'],)],
cmdclass={'build_ext': build_ext},

)

We run the script by

625



DRAFT

8. Software Engineering

Terminal> python setup.py build_ext --inplace

The --inplace option makes the extension module available in the current directory as the file
wave2D_u0_loop_cy.so. This file acts as a normal Python module that can be imported and
inspected:

>>> import wave2D_u0_loop_cy
>>> dir(wave2D_u0_loop_cy)
['__builtins__', '__doc__', '__file__', '__name__',
'__package__', '__test__', 'advance', 'np']

The important output from the dir function is our Cython function advance (the module also
features the imported numpy module under the name np as well as many standard Python objects
with double underscores in their names).

The setup.py file makes use of the distutils package in Python and Cython’s extension of
this package. These tools know how Python was built on the computer and will use compatible
compiler(s) and options when building other code in Cython, C, or C++. Quite some experience
with building large program systems is needed to do the build process manually, so using a setup.py
script is strongly recommended.

ñ Simplified build of a Cython module

When there is no need to link the C code with special libraries, Cython offers a shortcut for
generating and importing the extension module:

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the wave2D_u0_adv.py code we do
not use pyximport and require an explicit build process of this and many other modules.

8.20. Calling the Cython function from Python

The wave2D_u0_loop_cy module contains our advance function, which we now may call from the
Python program for the wave equation:

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance
...
for n in It[1:-1]: # time loop

f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_n, u_nm1, f_a, x, y, t, Cx2, Cy2, dt2)

626



DRAFT

8. Software Engineering

8.20.1. Efficiency

For a mesh consisting of 120× 120 cells, the scalar Python code requires 1370 CPU time units, the
vectorized version requires 5.5, while the Cython version requires only 1! For a smaller mesh with
60× 60 cells Cython is about 1000 times faster than the scalar Python code, and the vectorized
version is about 6 times slower than the Cython version.

Instead of relying on Cython’s (excellent) ability to translate Python to C, we can invoke a compiled
language directly and write the loops ourselves. Let us start with Fortran 77, because this is a
language with more convenient array handling than C (or plain C++), because we can use the same
multi-dimensional indices in the Fortran code as in the numpy arrays in the Python code, while in
C these arrays are one-dimensional and require us to reduce multi-dimensional indices to a single
index.

8.21. The Fortran subroutine

We write a Fortran subroutine advance in a file wave2D_u0_loop_f77.f for implementing the
updating formula (2.111) and setting the solution to zero at the boundaries:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx,0:Ny), Cx2, Cy2, dt2
integer i, j
real*8 u_xx, u_yy

Cf2py intent(in, out) u

C Scheme at interior points
do j = 1, Ny-1

do i = 1, Nx-1
u_xx = u_1(i-1,j) - 2*u_1(i,j) + u_1(i+1,j)
u_yy = u_1(i,j-1) - 2*u_1(i,j) + u_1(i,j+1)
u(i,j) = 2*u_1(i,j) - u_2(i,j) + Cx2*u_xx + Cy2*u_yy +

& dt2*f(i,j)
end do

end do

C Boundary conditions
j = 0
do i = 0, Nx

u(i,j) = 0
end do
j = Ny
do i = 0, Nx

u(i,j) = 0
end do
i = 0

627

https://github.com/devitocodes/devito_book/tree/main/src/softeng2/wave2D_u0_loop_f77.f


DRAFT

8. Software Engineering

do j = 0, Ny
u(i,j) = 0

end do
i = Nx
do j = 0, Ny

u(i,j) = 0
end do
return
end

This code is plain Fortran 77, except for the special Cf2py comment line, which here specifies that
u is both an input argument and an object to be returned from the advance routine. Or more
precisely, Fortran is not able return an array from a function, but we need a wrapper code in C for
the Fortran subroutine to enable calling it from Python, and from this wrapper code one can return
u to the calling Python code.

ñ Tip: Return all computed objects to the calling code

It is not strictly necessary to return u to the calling Python code since the advance function
will modify the elements of u, but the convention in Python is to get all output from a function
as returned values. That is, the right way of calling the above Fortran subroutine from Python
is

u = advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the Fortran subroutine is called
from Fortran, reads

advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2)

8.22. Building the Fortran module with f2py

The nice feature of writing loops in Fortran is that, without much effort, the tool f2py can produce
a C extension module such that we can call the Fortran version of advance from Python. The
necessary commands to run are

Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \
--overwrite-signature wave2D_u0_loop_f77.f

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

The first command asks f2py to interpret the Fortran code and make a Fortran 90 specification
of the extension module in the file wave2D_u0_loop_f77.pyf. The second command makes f2py
generate all necessary wrapper code, compile our Fortran file and the wrapper code, and finally
build the module. The build process takes place in the specified subdirectory build_f77 so that files

628



DRAFT

8. Software Engineering

can be inspected if something goes wrong. The option -DF2PY_REPORT_ON_ARRAY_COPY=1 makes
f2py write a message for every array that is copied in the communication between Fortran and
Python, which is very useful for avoiding unnecessary array copying (see below). The name of the
module file is wave2D_u0_loop_f77.so, and this file can be imported and inspected as any other
Python module:

>>> import wave2D_u0_loop_f77
>>> dir(wave2D_u0_loop_f77)
['__doc__', '__file__', '__name__', '__package__',
'__version__', 'advance']

>>> print wave2D_u0_loop_f77.__doc__
This module 'wave2D_u0_loop_f77' is auto-generated with f2py....
Functions:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

. Examine the doc strings!

Printing the doc strings of the module and its functions is extremely important after having
created a module with f2py. The reason is that f2py makes Python interfaces to the Fortran
functions that are different from how the functions are declared in the Fortran code (!). The
rationale for this behavior is that f2py creates Pythonic interfaces such that Fortran routines
can be called in the same way as one calls Python functions. Output data from Python
functions is always returned to the calling code, but this is technically impossible in Fortran.
Also, arrays in Python are passed to Python functions without their dimensions because that
information is packed with the array data in the array objects. This is not possible in Fortran,
however. Therefore, f2py removes array dimensions from the argument list, and f2py makes
it possible to return objects back to Python.

Let us follow the advice of examining the doc strings and take a close look at the documentation
f2py has generated for our Fortran advance subroutine:

>>> print wave2D_u0_loop_f77.advance.__doc__
This module 'wave2D_u0_loop_f77' is auto-generated with f2py
Functions:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

.
advance - Function signature:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,[nx,ny])
Required arguments:

u : input rank-2 array('d') with bounds (nx + 1,ny + 1)
u_n : input rank-2 array('d') with bounds (nx + 1,ny + 1)
u_nm1 : input rank-2 array('d') with bounds (nx + 1,ny + 1)
f : input rank-2 array('d') with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float

629



DRAFT

8. Software Engineering

dt2 : input float
Optional arguments:

nx := (shape(u,0)-1) input int
ny := (shape(u,1)-1) input int

Return objects:
u : rank-2 array('d') with bounds (nx + 1,ny + 1)

Here we see that the nx and ny parameters declared in Fortran are optional arguments that can be
omitted when calling advance from Python.

We strongly recommend to print out the documentation of every Fortran function to be called from
Python and make sure the call syntax is exactly as listed in the documentation.

8.23. How to avoid array copying

Multi-dimensional arrays are stored as a stream of numbers in memory. For a two-dimensional
array consisting of rows and columns there are two ways of creating such a stream: row-major
ordering, which means that rows are stored consecutively in memory, or column-major ordering,
which means that the columns are stored one after each other. All programming languages inherited
from C, including Python, apply the row-major ordering, but Fortran uses column-major storage.
Thinking of a two-dimensional array in Python or C as a matrix, it means that Fortran works with
the transposed matrix.

Fortunately, f2py creates extra code so that accessing u(i,j) in the Fortran subroutine corresponds
to the element u[i,j] in the underlying numpy array (without the extra code, u(i,j) in Fortran
would access u[j,i] in the numpy array). Technically, f2py takes a copy of our numpy array and
reorders the data before sending the array to Fortran. Such copying can be costly. For 2D wave
simulations on a 60× 60 grid the overhead of copying is a factor of 5, which means that almost the
whole performance gain of Fortran over vectorized numpy code is lost!

To avoid having f2py to copy arrays with C storage to the corresponding Fortran storage, we declare
the arrays with Fortran storage:

order = 'Fortran' if version == 'f77' else 'C'
u = zeros((Nx+1,Ny+1), order=order) # solution array
u_n = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_nm1 = zeros((Nx+1,Ny+1), order=order) # solution at t-2*dt

In the compile and build step of using f2py, it is recommended to add an extra option for making
f2py report on array copying:

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

It can sometimes be a challenge to track down which array that causes a copying. There are two
principal reasons for copying array data: either the array does not have Fortran storage or the

630



DRAFT

8. Software Engineering

element types do not match those declared in the Fortran code. The latter cause is usually effectively
eliminated by using real*8 data in the Fortran code and float64 (the default float type in numpy)
in the arrays on the Python side. The former reason is more common, and to check whether an
array before a Fortran call has the right storage one can print the result of isfortran(a), which is
True if the array a has Fortran storage.

Let us look at an example where we face problems with array storage. A typical problem in the
wave2D_u0.py code is to set

f_a = f(xv, yv, t[n])

before the call to the Fortran advance routine. This computation creates a new array with C
storage. An undesired copy of f_a will be produced when sending f_a to a Fortran routine. There
are two remedies, either direct insertion of data in an array with Fortran storage,

f_a = zeros((Nx+1, Ny+1), order='Fortran')
...
f_a[:,:] = f(xv, yv, t[n])

or remaking the f(xv, yv, t[n]) array,

f_a = asarray(f(xv, yv, t[n]), order='Fortran')

The former remedy is most efficient if the asarray operation is to be performed a large number of
times.

8.23.1. Efficiency

The efficiency of this Fortran code is very similar to the Cython code. There is usually nothing
more to gain, from a computational efficiency point of view, by implementing the complete Python
program in Fortran or C. That will just be a lot more code for all administering work that is needed
in scientific software, especially if we extend our sample program wave2D_u0.py to handle a real
scientific problem. Then only a small portion will consist of loops with intensive array calculations.
These can be migrated to Cython or Fortran as explained, while the rest of the programming can
be more conveniently done in Python.

The computationally intensive loops can alternatively be implemented in C code. Just as Fortran
calls for care regarding the storage of two-dimensional arrays, working with two-dimensional arrays
in C is a bit tricky. The reason is that numpy arrays are viewed as one-dimensional arrays when
transferred to C, while C programmers will think of u, u_n, and u_nm1 as two dimensional arrays
and index them like u[i][j]. The C code must declare u as double* u and translate an index
pair [i][j] to a corresponding single index when u is viewed as one-dimensional. This translation
requires knowledge of how the numbers in u are stored in memory.

631



DRAFT

8. Software Engineering

8.24. Translating index pairs to single indices

Two-dimensional numpy arrays with the default C storage are stored row by row. In general,
multi-dimensional arrays with C storage are stored such that the last index has the fastest variation,
then the next last index, and so on, ending up with the slowest variation in the first index. For a
two-dimensional u declared as zeros((Nx+1,Ny+1)) in Python, the individual elements are stored
in the following order:

u[0,0], u[0,1], u[0,2], ..., u[0,Ny], u[1,0], u[1,1], ...,
u[1,Ny], u[2,0], ..., u[Nx,0], u[Nx,1], ..., u[Nx, Ny]

Viewing u as one-dimensional, the index pair (i, j) translates to i(Ny + 1) + j. So, where a C
programmer would naturally write an index u[i][j], the indexing must read u[i*(Ny+1) + j].
This is tedious to write, so it can be handy to define a C macro,

so that we can write u[idx(i,j)], which reads much better and is easier to debug.

. Be careful with macro definitions

Macros just perform simple text substitutions: idx(hello,world) is expanded to
(hello)*(Ny+1) + world. The parentheses in (i) are essential - using the natural mathemat-
ical formula i*(Ny+1) + j in the macro definition, idx(i-1,j) would expand to i-1*(Ny+1)
+ j, which is the wrong formula. Macros are handy, but require careful use. In C++, inline
functions are safer and replace the need for macros.

8.25. The complete C code

The C version of our function advance can be coded as follows.

void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2, int Nx, int Ny)

{
int i, j;
double u_xx, u_yy;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {

for (j=1; j<=Ny-1; j++) {
u_xx = u_1[idx(i-1,j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j)];
u_yy = u_1[idx(i,j-1)] - 2*u_1[idx(i,j)] + u_1[idx(i,j+1)];
u[idx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +

Cx2*u_xx + Cy2*u_yy + dt2*f[idx(i,j)];
}

}

632



DRAFT

8. Software Engineering

/* Boundary conditions */
j = 0; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
i = 0; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;
i = Nx; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;

}

8.26. The Cython interface file

All the code above appears in the file wave2D_u0_loop_c.c. We need to compile this file together
with C wrapper code such that advance can be called from Python. Cython can be used to generate
appropriate wrapper code. The relevant Cython code for interfacing C is placed in a file with
extension .pyx. This file, called wave2D_u0_loop_c_cy.pyx, looks like

import numpy as np

cimport cython
cimport numpy as np

cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_1, double* u_2, double* f,

double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(

np.ndarray[double, ndim=2, mode='c'] u,
np.ndarray[double, ndim=2, mode='c'] u_1,
np.ndarray[double, ndim=2, mode='c'] u_2,
np.ndarray[double, ndim=2, mode='c'] f,
double Cx2, double Cy2, double dt2):
advance(&u[0,0], &u_1[0,0], &u_2[0,0], &f[0,0],

Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u

We first declare the C functions to be interfaced. These must also appear in a C header file,
wave2D_u0_loop_c.h,

extern void advance(double* u, double* u_n, double* u_nm1, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

633

https://github.com/devitocodes/devito_book/tree/main/src/softeng2/wave2D_u0_loop_c.c
https://github.com/devitocodes/devito_book/tree/main/src/softeng2/wave2D_u0_loop_c_cy.pyx
https://github.com/devitocodes/devito_book/tree/main/src/softeng2/wave2D_u0_loop_c.h


DRAFT

8. Software Engineering

The next step is to write a Cython function with Python objects as arguments. The name advance
is already used for the C function so the function to be called from Python is named advance_cwrap.
The contents of this function is simply a call to the advance version in C. To this end, the right
information from the Python objects must be passed on as arguments to advance. Arrays are sent
with their C pointers to the first element, obtained in Cython as &u[0,0] (the & takes the address
of a C variable). The Nx and Ny arguments in advance are easily obtained from the shape of the
numpy array u. Finally, u must be returned such that we can set u = advance(...) in Python.

8.27. Building the extension module

It remains to build the extension module. An appropriate setup.py file is

from distutils.core import setup
from distutils.extension import Extension

from Cython.Distutils import build_ext

sources = ["wave2D_u0_loop_c.c", "wave2D_u0_loop_c_cy.pyx"]
module = "wave2D_u0_loop_c_cy"
setup(

name=module,
ext_modules=[

Extension(
module,
sources,
libraries=[], # C libs to link with

)
],
cmdclass={"build_ext": build_ext},

)

All we need to specify is the .c file(s) and the .pyx interface file. Cython is automatically run
to generate the necessary wrapper code. Files are then compiled and linked to an extension
module residing in the file wave2D_u0_loop_c_cy.so. Here is a session with running setup.py and
examining the resulting module in Python

Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_u0_loop_c_cy as m
>>> dir(m)
['__builtins__', '__doc__', '__file__', '__name__', '__package__',
'__test__', 'advance_cwrap', 'np']

The call to the C version of advance can go like this in Python:

634



DRAFT

8. Software Engineering

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2)

8.27.1. Efficiency

In this example, the C and Fortran code runs at the same speed, and there are no significant
differences in the efficiency of the wrapper code. The overhead implied by the wrapper code is
negligible as long as there is little numerical work in the advance function, or in other words, that
we work with small meshes.

An alternative to using Cython for interfacing C code is to apply f2py. The C code is the same,
just the details of specifying how it is to be called from Python differ. The f2py tool requires the
call specification to be a Fortran 90 module defined in a .pyf file. This file was automatically
generated when we interfaced a Fortran subroutine. With a C function we need to write this
module ourselves, or we can use a trick and let f2py generate it for us. The trick consists in
writing the signature of the C function with Fortran syntax and place it in a Fortran file, here
wave2D_u0_loop_c_f2py_signature.f:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance

integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2

Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny

return
end

Note that we need a special f2py instruction, through a Cf2py comment line, to specify that all
the function arguments are C variables. We also need to tell that the function is actually in C:
intent(c) advance.

Since f2py is just concerned with the function signature and not the complete contents of the
function body, it can easily generate the Fortran 90 module specification based solely on the signature
above:

Terminal> f2py -m wave2D_u0_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step is as for the Fortran code, except that we list C files instead of Fortran
files:

635



DRAFT

8. Software Engineering

Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

As when interfacing Fortran code with f2py, we need to print out the doc string to see the exact
call syntax from the Python side. This doc string is identical for the C and Fortran versions of
advance.

8.28. Migrating loops to C++ via f2py

C++ is a much more versatile language than C or Fortran and has over the last two decades become
very popular for numerical computing. Many will therefore prefer to migrate compute-intensive
Python code to C++. This is, in principle, easy: just write the desired C++ code and use some
tool for interfacing it from Python. A tool like SWIG can interpret the C++ code and generate
interfaces for a wide range of languages, including Python, Perl, Ruby, and Java. However, SWIG is
a comprehensive tool with a correspondingly steep learning curve. Alternative tools, such as Boost
Python, SIP, and Shiboken are similarly comprehensive. Simpler tools include PyBindGen.

A technically much easier way of interfacing C++ code is to drop the possibility to use C++ classes
directly from Python, but instead make a C interface to the C++ code. The C interface can be
handled by f2py as shown in the example with pure C code. Such a solution means that classes in
Python and C++ cannot be mixed and that only primitive data types like numbers, strings, and
arrays can be transferred between Python and C++. Actually, this is often a very good solution
because it forces the C++ code to work on array data, which usually gives faster code than if
fancy data structures with classes are used. The arrays coming from Python, and looking like plain
C/C++ arrays, can be efficiently wrapped in more user-friendly C++ array classes in the C++
code, if desired.

8.29. Software Engineering with Devito

The previous sections described traditional approaches to migrating Python loops to compiled
languages. Devito provides an alternative paradigm: write the mathematics symbolically in Python,
and let the framework generate optimized C code automatically.

8.29.1. The Devito Approach

Instead of manually writing C, Cython, or Fortran code, Devito:

1. Accepts symbolic PDE specifications in Python
2. Automatically generates optimized C/C++ code
3. Compiles and caches the generated code
4. Provides OpenMP parallelization and optional GPU support

This eliminates the need for manual low-level coding while achieving competitive performance with
hand-tuned implementations.

636

http://swig.org/
https://www.boost.org/doc/libs/release/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/release/libs/python/doc/html/index.html
https://riverbankcomputing.com/software/sip/
https://wiki.qt.io/Qt_for_Python
http://code.google.com/p/pybindgen/


DRAFT

8. Software Engineering

8.29.2. Project Structure for Devito Applications

A well-organized Devito project follows standard Python package conventions:

my_pde_solver/
+-- src/
| +-- __init__.py
| +-- solvers/
| | +-- __init__.py
| | +-- wave.py # Wave equation solvers
| | +-- diffusion.py # Diffusion equation solvers
| +-- utils/
| +-- __init__.py
| +-- visualization.py # Plotting utilities
| +-- convergence.py # Convergence testing
+-- tests/
| +-- conftest.py # Pytest fixtures
| +-- test_wave.py
| +-- test_diffusion.py
+-- examples/
| +-- run_simulation.py
+-- pyproject.toml
+-- README.md

8.29.3. Pytest Fixtures for Devito Testing

Devito’s Grid and Function objects can be reused across tests using pytest fixtures:

# tests/conftest.py
import pytest
import numpy as np
from devito import Grid, TimeFunction, Function

@pytest.fixture
def grid_1d():

"""Create a standard 1D grid for testing."""
return Grid(shape=(101,), extent=(1.0,))

@pytest.fixture
def grid_2d():

"""Create a standard 2D grid for testing."""
return Grid(shape=(101, 101), extent=(1.0, 1.0))

637



DRAFT

8. Software Engineering

@pytest.fixture
def wave_field(grid_2d):

"""Create a TimeFunction for wave equation testing."""
return TimeFunction(name='u', grid=grid_2d,

time_order=2, space_order=4)

@pytest.fixture
def velocity_model(grid_2d):

"""Create a velocity model with constant value."""
c = Function(name='c', grid=grid_2d)
c.data[:] = 1500.0 # m/s
return c

Usage in tests:

# tests/test_wave.py
def test_wave_propagation(grid_2d, wave_field, velocity_model):

"""Test that wave equation solver runs without error."""
from src.solvers.wave import solve_acoustic_wave

result = solve_acoustic_wave(
grid=grid_2d,
u=wave_field,
c=velocity_model,
T=0.1,

)

assert result is not None
assert not np.isnan(result.u.data).any()

8.29.4. Convergence Testing Pattern

Verifying numerical schemes against manufactured solutions is essential. Here’s a reusable pattern:

def convergence_test(solver_func, exact_solution, grid_sizes, **solver_kwargs):
"""
Run a convergence test for a Devito solver.

Parameters
----------
solver_func : callable

Solver function that returns a result with .u attribute
exact_solution : callable

Function(x, t) returning exact solution
grid_sizes : list

638



DRAFT

8. Software Engineering

List of N values to test
**solver_kwargs : dict

Additional arguments passed to solver

Returns
-------
rates : list

Computed convergence rates between successive refinements
"""
import numpy as np

errors = []
dx_values = []

for N in grid_sizes:
result = solver_func(Nx=N, **solver_kwargs)

# Compute error at final time
x = np.linspace(0, result.L, N + 1)
u_exact = exact_solution(x, result.t)
error = np.max(np.abs(result.u - u_exact))

errors.append(error)
dx_values.append(result.L / N)

# Compute convergence rates
rates = []
for i in range(len(errors) - 1):

rate = np.log(errors[i] / errors[i + 1]) / np.log(2)
rates.append(rate)

return rates

# Usage in test
def test_diffusion_convergence():

from src.solvers.diffusion import solve_diffusion

rates = convergence_test(
solver_func=solve_diffusion,
exact_solution=lambda x, t: np.exp(-np.pi**2 * t) * np.sin(np.pi * x),
grid_sizes=[20, 40, 80, 160],
T=0.01,
a=1.0,

)

# Expect second-order convergence

639



DRAFT

8. Software Engineering

assert all(r > 1.9 for r in rates), f"Convergence rates {rates} < 2"

8.29.5. Performance Profiling with Devito

Devito provides built-in profiling through environment variables:

import os

# Enable performance logging
os.environ['DEVITO_LOGGING'] = 'PERF'

# Run your simulation
from src.solvers.wave import solve_acoustic_wave
result = solve_acoustic_wave(...)

# Output will include timing information for each operator

For more detailed analysis:

from devito import configuration

# Enable detailed profiling
configuration['profiling'] = 'advanced'

# Create and run operator
op = Operator([update_eq])
summary = op.apply(time=nt, dt=dt)

# Access timing information
print(f"Total time: {summary.globals['fdlike'].time:.3f} s")
print(f"GFLOPS: {summary.globals['fdlike'].gflopss:.2f}")

8.29.6. Caching and Compilation

Devito caches compiled operators to avoid recompilation:

from devito import configuration

# View cache location
print(configuration['cachedir'])

# Force recompilation (useful during development)
configuration['jit-backdoor'] = True

For production runs, ensure the cache is preserved between runs to avoid recompilation overhead.

640



DRAFT

8. Software Engineering

8.29.7. Result Classes for Solver Output

Using dataclasses provides clean interfaces for solver results:

from dataclasses import dataclass, field
import numpy as np

@dataclass
class SolverResult:

"""Container for solver output."""
u: np.ndarray # Solution at final time
x: np.ndarray # Spatial grid
t: float # Final time
L: float # Domain length
dx: float # Grid spacing
dt: float # Time step used
nsteps: int # Number of time steps
u_history: list = field(default_factory=list) # Optional history
t_history: list = field(default_factory=list) # Time points

def solve_with_result(...):
"""Solver that returns a SolverResult."""
# ... solver code ...

return SolverResult(
u=np.array(u.data[0, :]),
x=x_values,
t=t_final,
L=L,
dx=dx,
dt=dt,
nsteps=nt,

)

8.29.8. Comparison with Manual Optimization

The following table compares Devito with manual optimization approaches:

Approach Development Time Performance Portability Maintainability
Pure Python Low Poor High High
NumPy
vectorized

Medium Medium High Medium

Cython High Good Medium Low
Fortran/f2py High Excellent Low Low

641



DRAFT

8. Software Engineering

Approach Development Time Performance Portability Maintainability
C/C++ Very High Excellent Low Low
Devito Low Excellent High High

Devito achieves performance comparable to hand-tuned code while maintaining the simplicity and
portability of Python. This makes it an excellent choice for scientific computing projects where
both productivity and performance matter.

8.30. Exercise: Explore computational efficiency of numpy.sum versus
built-in sum

Using the task of computing the sum of the first n integers, we want to compare the efficiency of
numpy.sum versus Python’s built-in function sum. Use IPython’s %timeit functionality to time
these two functions applied to three different arguments: range(n), xrange(n), and arrange(n).

� Solution

Here are experiments in IPython:

In [1]: a = np.arrange(n)

In [2]: %timeit sum(range(n))
10 loops, best of 3: 25 ms per loop

In [3]: %timeit sum(xrange(n))
100 loops, best of 3: 9.91 ms per loop

In [4]: %timeit np.sum(range(n))
10 loops, best of 3: 73.7 ms per loop

In [5]: %timeit np.sum(xrange(n))
10 loops, best of 3: 119 ms per loop

In [6]: %timeit np.sum(a)
1000 loops, best of 3: 630 us per loop

In [7]: %timeit sum(a)
10 loops, best of 3: 95.5 ms per loop

We observe that numpy.sum applied to a numpy array is by far the fastest method. We also see
that the plain sum function is slow when applied to arrays, but faster than numpy.sum when
applied to the range list or the xrange sequence. There is almost a factor of 200 between the
best and worst method!

642



DRAFT

8. Software Engineering

8.31. Exercise: Make an improved numpy.savez function

The numpy.savez function can save multiple arrays to a zip archive. Unfortunately, if we want to
use savez in time-dependent problems and call it multiple times (once per time level), each call
leads to a separate zip archive. It is more convenient to have all arrays in one archive, which can
be read by numpy.load. Section Section 8.4 provides a recipe for merging all the individual zip
archives into one archive. An alternative is to write a new savez function that allows multiple calls
and storage into the same archive prior to a final close method to close the archive and make it
ready for reading. Implement such an improved savez function as a class Savez.

The class should pass the following unit test:

def test_Savez():
import tempfile, os
tmp = 'tmp_testarchive'
database = Savez(tmp)
for i in range(4):

array = np.linspace(0, 5+i, 3)
kwargs = {'myarray_%02d' % i: array}
database.savez(**kwargs)

database.close()

database = np.load(tmp+'.npz')

expected = {
'myarray_00': np.array([ 0. , 2.5, 5. ]),
'myarray_01': np.array([ 0., 3., 6.])
'myarray_02': np.array([ 0. , 3.5, 7. ]),
'myarray_03': np.array([ 0., 4., 8.]),
}

for name in database:
computed = database[name]
diff = np.abs(expected[name] - computed).max()
assert diff < 1E-13

database.close
os.remove(tmp+'.npz')

� Tip

Study the source code for function savez (or more precisely, function _savez).

� Solution

Here is the code:

643

https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py


DRAFT

8. Software Engineering

import numpy as np

class Savez:
def __init__(self, zipfilename):

import os
import sys
import tempfile
import zipfile

if isinstance(zipfilename, str):
if not zipfilename.endswith(".npz"):

zipfilename += ".npz"

# original _savez has no compression
compression = zipfile.ZIP_STORED

if sys.version_info >= (2, 5):
self.zip = zipfile.ZipFile(

zipfilename, mode="w", allowZip64=True, compression=compression
)

# Stage arrays in a temporary file on disk,
# before writing to zip.
fd, tmpfile = tempfile.mkstemp(suffix="-numpy.npy")
os.close(fd)
self.tmpfile = tmpfile
self.i = 0 # array counter

def savez(self, *args, **kwds):
import os

import numpy.lib.format as format

namedict = kwds
for val in args:

key = "arr_%d" % self.i
if key in namedict.keys():

raise ValueError("Cannot use un-named variables and keyword %s" % key)
namedict[key] = val
self.i += 1

try:
for key, val in namedict.items():

fname = key + ".npy"
fid = open(self.tmpfile, "wb")
try:

format.write_array(fid, np.asanyarray(val))
fid.close()
fid = None
self.zip.write(self.tmpfile, arcname=fname)

finally:
if fid:

fid.close()
finally:

os.remove(self.tmpfile)

def close(self):
self.zip.close()

644



DRAFT

8. Software Engineering

8.32. Exercise: Visualize the impact of the Courant number

Use the pulse function in the wave1D_dn_vc.py to simulate a pulse through two media with
different wave velocities. The aim is to visualize the impact of the Courant number C on the quality
of the solution. Set slowness_factor=4 and Nx=100.

Simulate for C = 1, 0.9, 0.75 and make an animation comparing the three curves (use the
animate_archives.py program to combine the curves and make animations on the screen and
video files). Perform the investigations for different types of initial profiles: a Gaussian pulse, a
“cosine hat” pulse, half a”cosine hat” pulse, and a plug pulse.

� Solution

We make a little Python script for running one “pulse” simulation:

import os
import sys

path = os.path.join(
os.pardir, os.pardir, os.pardir, os.pardir, "wave", "src-wave", "wave1D"

)
sys.path.insert(0, path)
from wave1D_dn_vc import pulse

pulse_tp = sys.argv[1]
C = float(sys.argv[2])
pulse(pulse_tp=pulse_tp, C=C, Nx=100, animate=False, slowness_factor=4)

Then we can make another (Bash) script running through the different types of simulations
and also making video files:

#!/bin/bash
for pulse_tp in gaussian cosinehat half-cosinehat plug; do

mkdir -p $pulse_tp
cd $pulse_tp
for C in 1 0.9 0.75; do

python ../pulse.py $pulse_tp $C
done
cd ..

done

Note that we make separate directories for the different type initial profiles.

645



DRAFT

8. Software Engineering

8.33. Exercise: Visualize the impact of the resolution

We solve the same set of problems as in Exercise Section 8.32, except that we now fix C = 1 and
instead study the impact of ∆t and ∆x by varying the Nx parameter: 20, 40, 160. Make animations
comparing three such curves.

Axelsson, O. 1996. Iterative Solution Methods. Cambridge University Press.
Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.

Romine, and H. Van der Vorst. 1994. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Second. SIAM. http://www.netlib.org/linalg/html_templates/T
emplates.html.

Duran, D. 2010. Numerical Methods for Fluid Dynamics - with Applications to Geophysics. Second.
Springer.

Fletcher, C. A. J. 2013. Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and
General Techniques. Second. Springer.

Grief, C., and U. M. Ascher. 2011. A First Course in Numerical Methods. Computational Science
and Engineering. SIAM.

Hjorth-Jensen, M. 2016. Computational Physics. Institute of Physics Publishing. https://www.ph
ysics.udel.edu/~bnikolic/teaching/phys660/PDF/computational_physics.pdf.

Kelley, C. T. 1995. Iterative Methods for Linear and Nonlinear Equations. SIAM.
Langtangen, H. P. 2016a. A Primer on Scientific Programming with Python. Fifth. Texts in

Computational Science and Engineering. Springer.
———. 2016b. Finite Difference Computing with Exponential Decay Models. Lecture Notes in

Computational Science and Engineering. Springer. http://hplgit.github.io/decay-book/doc/web
/.

Langtangen, H. P., and G. K. Pedersen. 2016. Scaling of Differential Equations. Simula Springer
Brief Series. Springer. http://hplgit.github.io/scaling-book/doc/web/.

Lapidus, L., and G. F. Pinder. 1982. Numerical Solution of Partial Differential Equations in Science
and Engineering. Wiley.

LeVeque, R. 2007. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. SIAM.

Rannacher, R. 1984. “Finite Element Solution of Diffusion Problems with Irregular Data.” Nu-
merische Mathematik 43: 309–27.

Saad, Y. 2003. Iterative Methods for Sparse Linear Systems. Second. SIAM. http://www-
users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf.

Strikwerda, J. 2007. Numerical Solution of Partial Differential Equations in Science and Engineering.
Second. SIAM.

646

http://www.netlib.org/linalg/html_templates/Templates.html
http://www.netlib.org/linalg/html_templates/Templates.html
https://www.physics.udel.edu/~bnikolic/teaching/phys660/PDF/computational_physics.pdf
https://www.physics.udel.edu/~bnikolic/teaching/phys660/PDF/computational_physics.pdf
http://hplgit.github.io/decay-book/doc/web/
http://hplgit.github.io/decay-book/doc/web/
http://hplgit.github.io/scaling-book/doc/web/
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

	Welcome
	About this Edition
	License
	What is Devito?
	Book Structure
	Getting Started

	Preface
	About This Adaptation
	What Has Changed
	Acknowledgment

	Original Preface
	Why finite differences?
	Simplify, understand, generalize
	Constructive mathematics
	All nuts and bolts
	Python as programming language
	Program verification
	Vectorized code
	Analysis via exact solutions of discrete equations
	Code-inspired mathematical notation
	Limited scope
	Focus on wave phenomena
	Independent chapters
	Supplementary materials
	Acknowledgments


	Main Chapters
	Introduction to Devito
	What is Devito?
	The Traditional Approach
	The Devito Approach
	How Devito Works
	When to Use Devito
	Installation
	What You'll Learn

	Your First PDE: The 1D Wave Equation
	The Mathematical Model
	Finite Difference Discretization
	The Devito Implementation
	Understanding the Code
	Visualizing the Solution
	The CFL Condition
	What Devito Does Behind the Scenes

	Core Devito Abstractions
	Grid: The Computational Domain
	Function: Static Fields
	TimeFunction: Time-Varying Fields
	Derivative Notation
	Eq: Defining Equations
	Operator: Compilation and Execution
	Complete Example: 2D Diffusion
	Summary of Core Abstractions

	Boundary Conditions in Devito
	Dirichlet Boundary Conditions
	Neumann Boundary Conditions
	Mixed Boundary Conditions
	2D Boundary Conditions
	Time-Dependent Boundary Conditions
	Absorbing Boundary Conditions
	Periodic Boundary Conditions
	Best Practices
	Example: Complete Wave Equation Solver

	Verification and Convergence Testing
	The Importance of Verification
	Convergence Rate Testing
	Implementing a Convergence Test
	Method of Manufactured Solutions (MMS)
	Quick Verification Checks
	Debugging Tips
	Summary


	Wave Equations
	Simulation of waves on a string
	Discretizing the domain
	Uniform meshes

	The discrete solution
	Fulfilling the equation at the mesh points
	Replacing derivatives by finite differences
	Interpretation of the equation as a stencil
	Algebraic version of the initial conditions

	Formulating a recursive algorithm
	Sketch of an implementation
	A slightly generalized model problem
	Using an analytical solution of physical significance
	Manufactured solution and estimation of convergence rates
	Specifying the solution and computing corresponding data
	Defining a single discretization parameter
	Computing rates

	Constructing an exact solution of the discrete equations
	Solving the Wave Equation with Devito
	From Mathematics to Devito Code
	The Devito Grid
	TimeFunction for the Wave Field
	Symbolic Derivatives
	Formulating the PDE
	Boundary Conditions
	Creating and Running the Operator
	Complete Solver Implementation
	The Courant Number and Stability
	Handling Initial Velocity
	Verification: Standing Wave Solution
	Visualization
	Summary: Devito vs. NumPy

	Source Terms and Variable Coefficients
	Adding a Source Term
	Source Wavelets
	The Ricker Wavelet
	Point Sources in Devito
	Variable Wave Speed
	Implementing Variable Velocity in Devito
	CFL Condition with Variable Velocity
	Example: Wave Propagation in Layered Medium
	Reflection and Transmission Coefficients
	Absorbing Boundary Conditions
	Summary

	Implementation
	Callback function for user-specific actions
	The solver function
	Verification: exact quadratic solution
	Verification: convergence rates
	Visualization: animating the solution
	Function for administering the simulation
	Dissection of the code
	Making movie files
	Skipping frames for animation speed

	Running a case
	Working with a scaled PDE model
	Vectorized computations
	Operations on slices of arrays
	Finite difference schemes expressed as slices
	Verification
	Efficiency measurements
	Solution 1
	Solution 2
	Efficiency experiments

	Remark on the updating of arrays
	Making Movies
	Exercise: Simulate a standing wave
	Exercise: Add storage of solution in a user action function
	Exercise: Use a class for the user action function
	Exercise: Compare several Courant numbers in one movie
	Exercise: Implementing the solver function as a generator
	Project: Calculus with 1D mesh functions
	Neumann boundary conditions
	Neumann boundary condition
	Discretization of derivatives at the boundary
	Implementation of Neumann conditions
	Index set notation
	Verifying the implementation of Neumann conditions
	Alternative implementation via ghost cells
	Idea
	Implementation

	Variable wave velocity
	The model PDE with a variable coefficient
	Computing the coefficient between mesh points
	How a variable coefficient affects the stability
	Neumann condition and a variable coefficient
	Implementation of variable coefficients
	A more general PDE model with variable coefficients
	Building a general 1D wave equation solver
	User action function as a class
	The code
	Dissection

	Pulse propagation in two media
	Exercise: Find the analytical solution to a damped wave equation
	Problem: Explore symmetry boundary conditions
	Exercise: Send pulse waves through a layered medium
	Exercise: Explain why numerical noise occurs
	Exercise: Investigate harmonic averaging in a 1D model
	Problem: Implement open boundary conditions
	Exercise: Implement periodic boundary conditions
	Exercise: Compare discretizations of a Neumann condition
	Exercise: Verification by a cubic polynomial in space
	Analysis of the wave equation
	Properties of the solution

	More precise definition of Fourier representations
	Stability
	Preliminary results

	Numerical dispersion relation
	Extending the analysis to 2D and 3D
	Multi-dimensional wave equations
	Multi-dimensional wave equations
	Mesh
	Discretization
	Discretizing the PDEs
	Handling boundary conditions where u is known
	Discretizing the Neumann condition

	The 2D Wave Equation with Devito
	The 2D Wave Equation
	Devito's Dimension-Agnostic Laplacian
	CFL Stability Condition in 2D
	The 2D Solver
	2D Boundary Conditions
	Standing Waves in 2D
	Visualizing 2D Solutions
	Animation of 2D Waves
	From 2D to 3D
	Computational Considerations
	Summary

	Implementation of 2D and 3D wave equations
	Scalar computations
	Domain and mesh
	Solution arrays
	Index sets
	Computing the solution

	Vectorized computations
	Verification
	Testing a quadratic solution

	Visualization
	Matplotlib
	Gnuplot
	Mayavi

	Exercise: Check that a solution fulfills the discrete model
	Project: Calculus with 2D mesh functions
	Exercise: Implement Neumann conditions in 2D
	Exercise: Test the efficiency of compiled loops in 3D
	Applications of wave equations
	Waves on a string
	Damping
	External forcing
	Modeling the tension via springs

	Elastic waves in a rod
	Waves on a membrane
	The acoustic model for seismic waves
	Anisotropy

	Sound waves in liquids and gases
	Spherical waves
	The linear shallow water equations
	Wind drag on the surface
	Bottom drag
	Effect of the Earth's rotation

	Waves in blood vessels
	Electromagnetic waves
	Exercise: Simulate waves on a non-homogeneous string
	Exercise: Simulate damped waves on a string
	Exercise: Simulate elastic waves in a rod
	Exercise: Simulate spherical waves
	Problem: Earthquake-generated tsunami over a subsea hill
	Problem: Earthquake-generated tsunami over a 3D hill
	Problem: Investigate Mayavi for visualization
	Problem: Investigate visualization packages
	Problem: Implement loops in compiled languages
	Exercise: Simulate seismic waves in 2D
	Project: Model 3D acoustic waves in a room
	Project: Solve a 1D transport equation
	Problem: General analytical solution of a 1D damped wave equation
	For solution, see damped_wave_equation.pdf in joakibo on bitbucket.
	Problem: General analytical solution of a 2D damped wave equation
	Exercises: Wave Equations with Devito
	Exercise 1: Standing Wave Simulation
	Exercise 2: Convergence Rate Verification
	Exercise 3: Guitar String
	Exercise 4: Source Wavelets
	Exercise 5: 2D Wave Propagation
	Exercise 6: Reflection from Interface
	Exercise 7: Manufactured Solution
	Exercise 8: Wave Energy Conservation
	Exercise 9: Numerical Dispersion
	Exercise 10: Extension to Higher Order


	Diffusion Equations
	An explicit method for the 1D diffusion equation
	The initial-boundary value problem for 1D diffusion
	Forward Euler scheme
	Implementation
	Verification
	Exact solution of discrete equations
	Checking convergence rates

	Numerical experiments
	Implicit methods for the 1D diffusion equation
	Backward Euler scheme
	Sparse matrix implementation
	Crank-Nicolson scheme
	The unifying \theta rule
	Experiments
	The Laplace and Poisson equation
	Solving the Diffusion Equation with Devito
	From Discretization to Devito
	The Devito Implementation
	Key Differences from the Wave Equation
	Symbolic PDE Definition
	Boundary Conditions
	Complete Solver
	Verification with Exact Solution
	Convergence Testing
	Visualizing the Solution Evolution
	The Fourier Number and Physical Interpretation
	Handling Different Initial Conditions
	Summary

	Analysis of schemes for the diffusion equation
	Properties of the solution
	Similarity solution
	Solution for a Gaussian pulse
	Solution for a sine component

	Analysis of discrete equations
	Analysis of the finite difference schemes
	Stability
	Accuracy
	Truncation error

	Analysis of the Forward Euler scheme
	Accuracy

	Analysis of the Backward Euler scheme
	Truncation error

	Analysis of the Crank-Nicolson scheme
	Truncation error

	Summary of accuracy of amplification factors
	Analysis of the 2D diffusion equation
	The Backward Euler scheme
	The Crank-Nicolson scheme

	Explanation of numerical artifacts
	Exercise: Explore symmetry in a 1D problem
	Exercise: Investigate approximation errors from a u_x=0 boundary condition
	Exercise: Experiment with open boundary conditions in 1D
	Exercise: Simulate a diffused Gaussian peak in 2D/3D
	Exercise: Examine stability of a diffusion model with a source term
	Diffusion with variable coefficient
	Discretization
	Stationary solution
	Piecewise constant medium
	Implementation of diffusion in a piecewise constant medium
	Axi-symmetric diffusion
	Spherically-symmetric diffusion
	Discretization in spherical coordinates
	Discretization in Cartesian coordinates

	Diffusion in 2D
	Discretization
	Numbering of mesh points versus equations and unknowns
	Algorithm for setting up the coefficient matrix
	Implementation with a dense coefficient matrix
	Verification: exact numerical solution
	Verification: convergence rates
	Implementation with a sparse coefficient matrix
	Understanding the diagonals
	Filling the diagonals
	Filling the right-hand side; scalar version
	Filling the right-hand side; vectorized version
	Verification

	The Jacobi iterative method
	Numerical scheme and linear system
	Iterations
	Initial guess
	Relaxation
	Stopping criteria
	Generalization of the scheme

	Test problem: diffusion of a sine hill
	The relaxed Jacobi method and its relation to the Forward Euler method
	The Gauss-Seidel and SOR methods
	Scalar implementation of the SOR method
	Vectorized implementation of the SOR method
	Direct versus iterative methods
	Direct methods
	Iterative methods

	The Conjugate gradient method
	What is the recommended method for solving linear systems?
	Random walk
	Random walk in 1D
	Statistical considerations
	Playing around with some code
	Scalar code
	Vectorized code
	Fixing the random sequence
	Verification

	Equivalence with diffusion
	Implementation of multiple walks
	Scalar version
	Vectorized version
	Improved vectorized version
	Remark on vectorized code and parallelization
	Test function

	Demonstration of multiple walks
	Empty figure cache
	Random walk as a stochastic equation
	Random walk in 2D
	Random walk in any number of space dimensions
	Multiple random walks in any number of space dimensions
	Scalar code
	Vectorized code

	Applications
	Diffusion of a substance
	Heat conduction
	Porous media flow
	Potential fluid flow
	Streamlines for 2D fluid flow
	The potential of an electric field
	Development of flow between two flat plates
	Tribology: thin film fluid flow
	Propagation of electrical signals in the brain

	2D Diffusion with Devito
	The 2D Diffusion Equation
	Devito's Dimension-Agnostic Laplacian
	Stability Condition in 2D
	The 2D Solver
	2D Boundary Conditions
	Exact Solution for Verification
	Visualizing 2D Solutions
	Heat Diffusion from a Point Source
	Animation of 2D Diffusion
	From 2D to 3D
	Computational Efficiency
	Comparison: Diffusion vs Wave Equation
	Summary

	Exercise: Stabilizing the Crank-Nicolson method by Rannacher time stepping
	Project: Energy estimates for diffusion problems
	Exercise: Splitting methods and preconditioning
	Problem: Oscillating surface temperature of the earth
	Problem: Oscillating and pulsating flow in tubes
	Problem: Scaling a welding problem
	Exercise: Implement a Forward Euler scheme for axi-symmetric diffusion
	Exercises: Diffusion with Devito
	Exercise 1: Verify the Fourier Stability Limit
	Exercise 2: Convergence Rate Verification
	Exercise 3: Gaussian Initial Condition
	Exercise 4: Discontinuous Initial Condition
	Exercise 5: 2D Heat Diffusion
	Exercise 6: Variable Diffusion Coefficient
	Exercise 7: Manufactured Solution
	Exercise 8: Energy Decay
	Exercise 9: 2D Convergence Test
	Exercise 10: Comparison with Legacy Code


	Advection-Dominated Equations
	1D linear advection equations with constant velocity
	Simplest scheme: forward in time, centered in space
	Method
	Test cases
	Bug?

	Analysis of the scheme
	Leapfrog in time, centered differences in space
	Method
	Implementation
	Running a test case
	Running more test cases
	Analysis

	Upwind differences in space
	Periodic boundary conditions
	Implementation
	Test condition
	The code
	Solving a specific problem

	A Crank-Nicolson discretization in time and centered differences in space
	The Lax-Wendroff method
	Analysis of dispersion relations
	Stationary 1D advection-diffusion
	A simple model problem
	A centered finite difference scheme
	Remedy: upwind finite difference scheme
	Analytical insight

	Forward in time, centered in space scheme
	Forward in time, upwind in space scheme
	Applications of advection equations
	Exercise: Analyze 1D stationary convection-diffusion problem
	Exercise: Interpret upwind difference as artificial diffusion
	Advection Schemes with Devito
	The Advection Equation
	Devito Implementation Patterns
	Comparison with Wave and Diffusion Equations
	Upwind Scheme Implementation
	Lax-Wendroff Scheme Implementation
	Lax-Friedrichs Scheme Implementation
	Periodic Boundary Conditions
	Using the Solvers
	Scheme Comparison
	Convergence Testing
	Key Takeaways

	Exercises: Advection with Devito
	Exercise 1: Verify CFL Stability Condition
	Exercise 2: Compare Numerical Diffusion
	Exercise 3: Convergence Rate Verification
	Exercise 4: Step Function Advection
	Exercise 5: Long-Time Integration
	Exercise 6: Effect of Courant Number
	Exercise 7: Variable Velocity Field
	Exercise 8: Advection-Diffusion Equation
	Exercise 9: Cosine Hat Initial Condition
	Exercise 10: Implement Leapfrog Scheme


	Nonlinear Problems
	Linear versus nonlinear equations
	Algebraic equations
	Differential equations

	A simple model problem
	Linearization by explicit time discretization
	Exact solution of nonlinear algebraic equations
	Linearization
	Picard iteration
	Stopping criteria

	Linearization by a geometric mean
	Newton's method
	Relaxation
	Implementation and experiments
	Generalization to a general nonlinear ODE
	Explicit time discretization
	Backward Euler discretization
	Crank-Nicolson discretization

	Systems of ODEs
	Example

	Systems of nonlinear algebraic equations
	Picard iteration
	Newton's method
	Stopping criteria
	Implicit time discretization
	A Picard iteration
	Newton's method

	Nonlinear diffusion model
	Explicit time integration
	Backward Euler scheme and Picard iteration
	Backward Euler scheme and Newton's method
	Linearization via Taylor expansions
	Similarity with Picard iteration
	Implementation
	Derivation with alternative notation

	Crank-Nicolson discretization
	Discretization in space and Newton's method
	Finite difference discretization
	Solution of algebraic equations
	The structure of the equation system
	Picard iteration
	Mesh with two cells
	Newton's method

	Solving Nonlinear PDEs with Devito
	Nonlinear Diffusion: The Explicit Scheme
	The Devito Implementation
	Handling the Nonlinear Diffusion Coefficient
	Complete Nonlinear Diffusion Solver
	Reaction-Diffusion with Operator Splitting
	Reaction Terms
	Reaction-Diffusion Solver
	Burgers' Equation
	Stability for Burgers' Equation
	The Effect of Viscosity
	Picard Iteration for Implicit Schemes
	Summary

	Finite difference discretization
	Picard iteration

	Continuation methods
	Operator splitting methods
	Ordinary operator splitting for ODEs
	Strange splitting for ODEs
	Example: Logistic growth
	Splitting techniques
	Verbose implementation
	Compact implementation
	Results

	Reaction-diffusion equation
	Example: Reaction-Diffusion with linear reaction term
	Analysis of the splitting method
	Problem: Determine if equations are nonlinear or not
	Exercise: Derive a relaxation formula
	Problem: Derive and investigate a generalized logistic model
	Problem: Experience the behavior of Newton's method
	Exercise: Compute the Jacobian of a 2\times 2 system
	Problem: Solve nonlinear equations arising from a vibration ODE
	Exercise: Find the truncation error of arithmetic mean of products
	Problem: Newton's method for linear problems
	Problem: Discretize a 1D problem with a nonlinear coefficient
	Problem: Linearize a 1D problem with a nonlinear coefficient
	Problem: Finite differences for the 1D Bratu problem
	Good: http://faculty.oxy.edu/ron/research/bratu/bratu.pdf
	It has a collocation method too
	Problem: Discretize a nonlinear 1D heat conduction PDE by finite differences
	Problem: Differentiate a highly nonlinear term
	Exercise: Crank-Nicolson for a nonlinear 3D diffusion equation
	Problem: Find the sparsity of the Jacobian
	Problem: Investigate a 1D problem with a continuation method
	Exercises: Nonlinear PDEs with Devito
	Exercise 1: Nonlinear Diffusion Stability
	Exercise 2: Porous Medium Equation
	Exercise 3: Fisher-KPP Equation
	Exercise 4: Strang vs Lie Splitting
	Exercise 5: Burgers Shock Formation
	Exercise 6: Allen-Cahn Equation
	Exercise 7: Energy Decay in Nonlinear Diffusion
	Exercise 8: Convergence of Burgers Solver
	Exercise 9: Picard Iteration Convergence
	Exercise 10: Traveling Wave in Burgers



	Appendices
	Formulas
	Finite difference operator notation
	Truncation errors of finite difference approximations
	Complex exponentials
	Real exponentials

	Finite difference formulas for powers of t
	Software

	Truncation Error Analysis
	Abstract problem setting
	Error measures
	Truncation errors in finite difference formulas
	Example: The backward difference for u'(t)
	Example: The forward difference for u'(t)
	Example: The central difference for u'(t)
	Overview of leading-order error terms in finite difference formulas
	Software for computing truncation errors
	Truncation errors in exponential decay ODE
	Forward Euler scheme
	Crank-Nicolson scheme
	The \theta-rule
	Using symbolic software
	Empirical verification of the truncation error
	Increasing the accuracy by adding correction terms
	Extension to variable coefficients
	Exact solutions of the finite difference equations
	Computing truncation errors in nonlinear problems
	Linear model without damping
	The truncation error of a centered finite difference scheme
	Truncation error of the equation for the first step

	Model with damping and nonlinearity
	Extension to quadratic damping
	The general model formulated as first-order ODEs
	The Euler-Cromer scheme
	A centered scheme on a staggered mesh

	Linear wave equation in 1D
	Finding correction terms
	Extension to variable coefficients
	Linear wave equation in 2D/3D
	Linear diffusion equation in 1D
	The Forward Euler scheme in time

	Nonlinear diffusion equation in 1D
	Devito and Truncation Errors
	The space_order Parameter
	Viewing Generated Stencils
	Trading Accuracy for Performance
	Matching Temporal and Spatial Accuracy
	Verifying Convergence Rates

	Exercise: Truncation error of a weighted mean
	Exercise: Simulate the error of a weighted mean
	Exercise: Verify a truncation error formula
	Problem: Truncation error of the Backward Euler scheme
	Exercise: Empirical estimation of truncation errors
	Exercise: Correction term for a Backward Euler scheme
	Problem: Verify the effect of correction terms
	Problem: Truncation error of the Crank-Nicolson scheme
	Problem: Truncation error of u'=f(u,t)
	Exercise: Truncation error of [D_t D_tu]^n
	Exercise: Investigate the impact of approximating u'(0)
	Problem: Investigate the accuracy of a simplified scheme

	Software Engineering
	Mathematical model
	Numerical discretization
	A solver function
	Storing simulation data in files
	Using savez to store arrays in files
	Storing individual arrays
	Merging zip archives
	Reading arrays from zip archives

	Using joblib to store arrays in files
	Using a hash to create a file or directory name
	Making hash strings from input data
	Avoiding rerunning previously run cases
	Verification
	Vanishing approximation error
	Convergence rates

	Class Parameters
	Class Problem
	Class Mesh
	Class Function
	Class Solver
	Speeding up Cython code
	Declaring variables and annotating the code
	Visual inspection of the C translation
	Building the extension module
	Calling the Cython function from Python
	Efficiency

	The Fortran subroutine
	Building the Fortran module with f2py
	How to avoid array copying
	Efficiency

	Translating index pairs to single indices
	The complete C code
	The Cython interface file
	Building the extension module
	Efficiency

	Migrating loops to C++ via f2py
	Software Engineering with Devito
	The Devito Approach
	Project Structure for Devito Applications
	Pytest Fixtures for Devito Testing
	Convergence Testing Pattern
	Performance Profiling with Devito
	Caching and Compilation
	Result Classes for Solver Output
	Comparison with Manual Optimization

	Exercise: Explore computational efficiency of numpy.sum versus built-in sum
	Exercise: Make an improved numpy.savez function
	Exercise: Visualize the impact of the Courant number
	Exercise: Visualize the impact of the resolution



