
1



Inversion with Devito: Trading off memory
and compute with PyRevolve

Navjot Kukreja1 (With contributions from a lot of people!)

STMI Workshop
Research Centre for Gas Innovation
Universidade de São Paulo
October 3, 2019

1Department of Earth Science and Engineering, Imperial College London, UK

1



Introduction

Checkpointing

Compression

1



Inverse Problems

The Forward Problem

(Estimated)
Parameters

Mathematical
Model/Phys-
ical Theory

(Predicted)
Observations

Observations
∇ Mathematical

Model/Phys-
ical Theory

(Predicted)
Parameters

The Inverse Problem

2



Applications

3



The Forward Problem

(Estimated)
Parameters

Mathematical
Model/Phys-
ical Theory

(Predicted)
Observations

Devito1

1Navjot Kukreja et al. “Devito: Automated fast finite difference computation”. In: 2016 Sixth International Workshop on Domain-Specific
Languages and High-Level Frameworks for High Performance Computing (WOLFHPC). IEEE. 2016, pp. 11–19.

4



Data flow

Data flow for forward problem:

F (0) F (1) F (2) F (3) F (4) F (5) · · · F (n)

5



Raising the abstraction with Devito


m d2u(x,t)

dt2 −∇2u(x , t) = qs

u(.,0) = 0
du(x,t)

dt |t=0 = 0

pde = m * u.dt2 - u.laplace

stencil = Eq(u.forward, solve(pde, u.forward)[0])

fwd_op = Operator([stencil], ...)

void finite_difference_solver(...) {

//...impenetrable "performance optimised" code

}

6



Figure 1: Illustration of the forward problem - simulating the received signal for a given structure

7



Inverse Problems

The Forward Problem

(Estimated)
Parameters

Mathematical
Model/Phys-
ical Theory

(Predicted)
Observations

Observations
∇ Mathematical

Model/Phys-
ical Theory

(Predicted)
Parameters

The Inverse Problem

8



Full Waveform Inversion

Figure 2: Illustration of full waveform inversion - initial guess

9



Full Waveform Inversion

Figure 3: Illustration of full waveform inversion - in progress

10



Full Waveform Inversion

Figure 4: Illustration of full waveform inversion - convergence

11



Data flow

Data flow for gradient calculation:

F (0) F (1) F (2) F (3) F (4) F (5) · · · F (n)

R(n)· · ·R(5)R(4)R(3)R(2)R(1)R(0)

12



Adjoint mode - store all timesteps

Figure 5: Progression of the adjoint computation with wall-clock time on the x-axis and simulation
time on the y-axis. Each vertical cross-section represents the status at that time. The dots represent
checkpoints stored in memory - here a checkpoint is stored at each time step. Image Source:2

2Qiqi Wang, Parviz Moin, and Gianluca Iaccarino. “Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation”. In:
SIAM Journal on Scientific Computing 31.4 (2009), pp. 2549–2567.

13



Dealing with high memory requirements

• For a typical 3D problem 3 the grid has 287 × 881 × 881 points in single
precision, meaning each timestep is 900 MB.

• Such a problem would be run for 2500 timesteps, meaning the total
memory required for a naive adjoint run would be 2.3 TB.

• One strategy to fit this into existing computer architectures would be
domain decomposition

• Might end up wasting computational power in order to use more memory
• Communication overhead might start dominating soon, especially in a cloud

environment

• Another technique, that is domain-specific, is saving the wavefields only
on the boundaries of the domain and recomputing from there

• Only works for a very small number of cases, i.e. where the equation is
time-reversible

• Compression

• Checkpointing
3e.g. Overthrust model

14



Introduction

Checkpointing

Compression

15



Adjoint mode - checkpointed

5

10

15

20

25

Ti
m

e
 s

te
p
 i
n

d
e
x

Wall clock time evolution

Figure 6: Progression of the adjoint computation with wall-clock time on the x-axis and the
simulation time on the y-axis. In this case the number of checkpoints is less than the timesteps,
hence there is some recomputation involved.

16



Checkpointing - Revolve

For the problem where:

1. Number of steps is known in advance

2. Only one level of memory available

3. Checkpoint sizes are uniform

4. Saving/retrieving a checkpoint takes no time

5. Computational cost of the steps is uniform

6. Cost of restarting operators is zero

the optimal algorithm, Revolve, was given by4. Given a certain
number of steps and a given amount of memory, Revolve provides
the start-stop-restart schedule that minimises the amount of
recomputation.

4Andreas Griewank and Andrea Walther. “Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of
computational differentiation”. In: ACM Transactions on Mathematical Software (TOMS) 26.1 (2000), pp. 19–45.

17



Checkpointing - Separation of concerns

Given the different kinds of checkpointing algorithms that apply to
different kinds of problems and in different scenarios, it makes sense
to have a library/tool manage checkpointing for Separation of
Concerns.

PyRevolve5

5Navjot Kukreja et al. “High-level python abstractions for optimal checkpointing in inversion problems”. In: arXiv preprint arXiv:1802.02474
(2018).

18



PyRevolve

Storage

Checkpointer

Forward Operator

Adjoint OperatorScheduler

19



Modelling the performance of Revolve

For a simple forward-adjoint computation with no recomputation, time
to solution would be:

TN(N) = 2 · C · N (1)

where C is the time taken to compute a single timestep of either the
forward or the adjoint mode (assume they’re the same for now) and N
is the number of timesteps. Revolve introduces overheads:

• OR the overhead due to the recomputation involved

• OS the overhead due to repeatedly storing/loading checkpoints

Time to solution under Revolve is hence:

TR(N,M) = 2 · C · N + OR(N,M) + OS(N,M) (2)

20



Modelling the performance of Revolve

The storage overhead IS ZERO! (according to6)

Figure 7: Time spent in different actions during a Revolve-based forward-adjoint computation

6Griewank and Walther, “Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational
differentiation”.

21



Keeping the storage overhead in mind

Figure 8: Updated Revolve timings after a modification to remove (some) redundant copies

22



Modelling the performance of Revolve

We can already use this simple performance model to answer some
questions: If we have slow but infinite memory, how many
checkpoints should we store?

10
4

10
5

10
6

10
7

Memory(MB)

45000

50000

55000

60000

65000

70000

75000

80000
Ti

m
e 

to
 so

lu
tio

n 
(s

)

Time taken for Revolve under non-negligible storage

Timesteps: 2526, 
Size of checkpoint (MB): 1782.065656, 
Time for compute step (s): 1.11, 
Bandwidth (MB/s): 200, 
Platform: Hypothetical

Figure 9: Time to solution when using different amounts of memory in Revolve, but when dealing
with slow memory

23



Introduction

Checkpointing

Compression

24



Memory-compute tradeoffs

• Revolve/Checkpointing is a way to trade off memory and compute. So is
compression.

• Compression has been used to compress the entire forward trajectory in
past work.

• With domain-specific compression algorithms (we live inside a DSL so
do not want to make too many assumptions about our problem)

• But which one is a better choice?

• Checkpointing + Compression can allow you to store more checkpoints,
hence do less recomputation. i.e. can we combine the two?

• Is any of this even worth the trouble?

25



Trying Compression

Is F (compression ratio) constant? I tried ZFP7 to find out.

0

50
0

10
00

15
00

20
00

25
00

Simulation time (n)

100

101

102

103

Co
m

pr
es

sio
n 

ra
tio

 (x
)

Variation of achievable compression ratio as the simulation progresses

Figure 10: Compression ratios achieved when I tried to compress every timestep of a seismic problem setup.

7Peter Lindstrom. “Fixed-rate compressed floating-point arrays”. In: IEEE transactions on visualization and computer graphics 20.12
(2014), pp. 2674–2683.

26



Reference wavefield

0 5 10 15 20
X (km)

0

2

4De
pt

h 
(k

m
)

0.0100
0.0075
0.0050
0.0025

0.0000
0.0025
0.0050
0.0075
0.0100

Pr
es

su
re

Figure 11: Cross-section of the wavefield used as a reference sample for compression and
decompression. This field was formed after a Ricker wavelet source was placed at the surface of
the model and the wave propagated for 2500 timesteps. This is a vertical (x-z) cross-section of a
3D field, taken at the y source location

27



Lossless Compression

Compressor Chunk size(bytes) Shuffle Mode Setting Compression time(ms) Decompression time(ms) Compression Ratio
BloscLZ 1048576 SHUFFLE 6 4249.44 1288.86 1.188

LZ4 2965280 SHUFFLE 4 1371.26 920.98 1.199
LZ4HC 2097152 SHUFFLE 8 31245.16 926.69 1.265

ZLib 524288 SHUFFLE 7 30218.81 2470.04 1.291
ZStd 524288 SHUFFLE 9 117238.76 1477.34 1.312

Table 1: Some results from trying out all possible compressors and settings in blosc. We selected
the best compression ratio seen for each compressor. ”Setting” here is the choice between speed
and compression, where 0 is fastest and 9 is highest compression.

28



Tolerance settings within ZFP

10
14

10
12

10
10

10
8

10
6

10
4

10
2

10
0

 Tolerance

100

101

102

103

 C
om

pr
es

sio
n 

Fa
ct

or

Compression ratios for varying tolerance

Figure 12: Compression ratios achieved on compressing the wavefield. We define compression
ratio as the ratio between the size of the uncompressed data and the compressed data. The
dashed line represents no compression. The highlighted point corresponds to the setting used for
the other results here unless otherwise specified. 29



Errors introduced during compression-decompression

0 5 10 15 20
X (km)

0

2

4

6D
ep

th
 (k

m
)

0.00020
0.00015
0.00010
0.00005

0.00000
0.00005
0.00010
0.00015
0.00020

Ab
so

lu
te

 e
rro

r

Figure 13: Cross-section of the field that shows errors introduced during compression and
decompression using the fixed-tolerance mode. It is interesting to note that the errors are more or
less evenly distributed across the domain with only slight variations corresponding to the wave
amplitude. A small block-like structure characteristic of ZFP can be seen.

30



Checkpoint error impact

Figure 14: L2 norm of gradient error for different settings of lossy compression

31



Compression-Revolve performance model

The performance model can now be extended to include
compression. With compression, the storage overhead goes up:

OSC(N,M) = W(N,M · F ) ·
(

2 · S
F · B

+ tc

)
+ N ·

(
2 · S
F · B

+ td

)
(3)

where F is the compression ratio (i.e. the ratio between the
uncompressed and compressed checkpoint), and tc and td are
compression and decompression times, respectively. At the same
time, the recomputation overhead decreases because F times more
checkpoints are now available.

32



Understanding the model

10
4

10
5

10
6

Memory (MB)

1

2

3

4

5

6

Sp
ee

du
p 

(x
)

22
50

74
8.

92

54
89

6.
32

Speedup for varying peak memory
Orig
0.25
0.83
2.0
8.0

Timesteps: 2526, 
Size of checkpoint (MB): 891.032828, 
Time for compute step (s): 1.11, 
Bandwidth (MB/s): 8139.2, 
Compression Factor: 41, 
Compression Time (s): 0.36, 
Decompression time (s): 1.6, 
Theoretical decompression time (s): 0.396, 
Platform: Skylake

Figure 15: The speedups predicted by the performance model for varying memory. The baseline
(1.0) is the performance of a Revolve-only implementation under the same conditions. The different
curves represent kernels with differing compute times (represented here as a factor of the sum of
compression and decompression times). 33



Future work

• Compression

• Optimal scheduling under compression
• Also include SZ in the study
• Study acceptable error tolerances (application dependent)
• Extend to multi-level checkpointing

• Complex data dependencies (e.g. higher order in time, subsampling)

• Cost of restarting operators

34



Thank you

Thank you 8

Questions?

8This work was funded by the Intel Parallel Computing Centre at Imperial College London and EPSRC EP/R029423/1

35



Problem setup

• Grid size: 881 × 881 × 287

• SEG Overthrust model

• Ricker source placed in the x-y centre of the domain, just below the
surface

• 2500 timesteps

36



Scheduling strategy

One of the assumptions of Revolve is that all checkpoints are the
same size. This is clearly not true under (lossy) compression. Hence
this breaks the optimality of Revolve. One possible suggestion to
improve this schedule is:

• Use a(n) (underestimating) heuristic for compression ratio (F) for a
checkpoint at a given timestep

• Report this pessimistic M to Revolve, one checkpoint at a time, to get
the location of the next checkpoint.

• When storing checkpoint, track how much memory left after actual
compression to calculate a new M for Revolve.

37



Understanding the model

10
3

10
2

10
1

10
0

10
1

10
2

Compute time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p 

(x
)

Speedup for varying compute time per timestep
Peak memory: 4000
Peak memory: 8000
Peak memory: 16000
Peak memory: 24000

Timesteps: 2526, 
Size of checkpoint (MB): 891.032828, 
Peak memory (MB): 4000, 
Bandwidth (MB/s): 8139.2, 
Compression Factor: 41, 
Compression Time (s): 0.36, 
Decompression time (s): 1.6, 
Platform: Skylake

Figure 16: The speedups predicted by the performance model for varying compute cost. The baseline (1.0) is the performance of a
Revolve-only implementation under the same conditions. The benefits of compression drop rapidly if the computational cost of the kernel
that generated the data is much lower than the cost of compressing the data. For increasing computational costs, the benefits are bounded.

38



Understanding the model

28 29

210 211 212 213 214

Timesteps

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p 

(x
)

Speedup for varying number of timesteps

Size of checkpoint (MB): 891.032828, 
Time for compute step (s): 1.11, 
Bandwidth (MB/s): 8139.2, 
Peak memory (MB): 4000, 
Compression Factor: 41, 
Compression Time (s): 0.36, 
Decompression time (s): 1.6, 
Platform: Skylake

Figure 17: The speedups predicted by the performance model for varying number of timesteps to
be reversed. The baseline (1.0) is the performance of a Revolve-only implementation under the
same conditions. It can be seen that compression becomes more beneficial as the number of
timesteps is increased.

39



Checkpointing - Multistage

For the problem where:

1. Number of steps is known in advance

2. Only one level of memory available

3. Checkpoint sizes are uniform

4. Saving/retrieving a checkpoint (to first level memory) takes no time
(zero-cost checkpointing)

5. Computational cost of the steps is uniform

6. Cost of restarting operators is zero

the optimal algorithm was given by9.

9Guillaume Aupy et al. “Optimal multistage algorithm for adjoint computation”. In: SIAM Journal on Scientific Computing 38.3 (2016),
pp. C232–C255.

40



Checkpointing - Online Multistage

For the problem where:

1. Number of steps is known in advance

2. Only one level of memory available

3. Checkpoint sizes are uniform

4. Saving/retrieving a checkpoint (to first level memory) takes no time
(zero-cost checkpointing)

5. Computational cost of the steps is uniform

6. Cost of restarting operators is zero

the optimal algorithm was given by10 and11.

10Michel Schanen et al. “Asynchronous two-level checkpointing scheme for large-scale adjoints in the spectral-element solver Nek5000”. In:
Procedia Computer Science 80 (2016), pp. 1147–1158.
11Guillaume Aupy and Julien Herrmann. “Periodicity in optimal hierarchical checkpointing schemes for adjoint computations”. In:
Optimization Methods and Software 32.3 (2017), pp. 594–624.

41



Understanding the model

• The first vertical line at 55GB marks the spot where the compressed
wavefield can completely fit in memory and Revolve is unnecessary if
using compression.

• The second vertical line at 2.2 TB marks the spot where the entire
uncompressed wavefield can fit in memory and neither Revolve nor
compression is necessary.

• The region to the right is where these optimisations are not necessary
or relevant.

• The middle region has been the subject of past studies using
compression in adjoint problems.

• The region to the left is the novelty here.

42


	Introduction
	Checkpointing
	Compression

