
AUTOMATED LOOP GENERATION FOR
HIGH-PERFORMANCE FINITE DIFFERENCES

(AND BEYOND)

F. Luporini1, C. Yount4, M. Louboutin3, N. Kukreja1, P. Witte2, 
 T. Burges5, M. Lange6, P. H. J. Kelly1, F. Herrmann3, G. Gorman1

Dagstuhl Seminar, March 2018

1Imperial College London
 2The University of British Columbia

 3Georgia Institute of Technology
 4Intel Corporation

5DUG - DownUnder Geosolutions
6European Centre for Medium-Range Weather Forecasts  

(former Imperial College London)

Driving application: inversion algorithms for seismic imaging

http://www.open.edu/openlearn/science--maths--technology/science/environmental--science/earths--physical--resources--petroleum/content--section--3.2.1

2

http://www.open.edu/openlearn/science

Driving application: inversion algorithms for seismic imaging

http://www.open.edu/openlearn/science--maths--technology/science/environmental--science/earths--physical--resources--petroleum/content--section--3.2.1

2

“automated […] finite differences
(and beyond)”

http://www.open.edu/openlearn/science

Issue 1: Computational cost

Realistic full-waveform inversion (FWI) scenario:

• O(103) FLOPs per loop iteration or high memory pressure  

• Realistic 3D grids with >109 grid points  

• Often more than 3000 time steps 

• Two operators: forward + adjoint, to be executed ~15 times

• Usually 30000 shots

•≈ O(billions) TFLOPs 

•>>> Days, weeks, months on supercomputers

3

Issue 2: Variations in physics and mathematics

• Overarching strategy for inversion

• Formulations of wave equations 

• Space and time discretizations 

• Boundary conditions, data acquisition, sources/receivers …

• Proliferation of computer architectures

• Unmaintainable, impenetrable, non-portable legacy code  

• Skepticism: C/C++/Fortran IS the way

Issue 3: Time flies…

4

Raising the level of abstraction

void kernel(…) {
 …
 <impenetrable code with crazy  
 performance optimizations>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

5

Raising the level of abstraction

void kernel(…) {
 …
 <impenetrable code with crazy  
 performance optimizations>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

5

Raising the level of abstraction

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

6

eqn = m * u.dt2 + eta * u.dt - u.laplace
solve(eqn, u.forward)

Raising the level of abstraction

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

6

eqn = m * u.dt2 + eta * u.dt - u.laplace
solve(eqn, u.forward)

Raising the level of abstraction

void kernel(…) { … }

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

6

eqn = m * u.dt2 + eta * u.dt - u.laplace
solve(eqn, u.forward)

Raising the level of abstraction

void kernel(…) { … }

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

6

Devito

u = TimeFunction(…, space_order=so)
eqn = m * u.dt2 + eta * u.dt - u.laplace

solve(eqn, u.forward)

1) Flexibility in space/time discretization

7

 for (int time = time_m, t0 = (time)%(3), t1 = (time + 1)%(3), t2 = (time +
2)%(3); time <= time_M; time += 1, t0 = (time)%(3), t1 = (time + 1)%(3), t2 =
(time + 2)%(3)) {
 for (int x = x_m; x <= x_M; x += 1) {
 for (int y = y_m; y <= y_M; y += 1) {
 for (int z = z_m; z <= z_M; z += 1) {
 u[t1][x + 4][y + 4][z + 4] = 2*pow(dt,
3)*(-2.08333333333333e-4F*u[t0][x + 2][y + 4][z + 4] +
3.33333333333333e-3F*u[t0][x + 3][y + 4][z + 4] - 2.08333333333333e-4F*u[t0]
[x + 4][y + 2][z + 4] + 3.33333333333333e-3F*u[t0][x + 4][y + 3][z + 4] -
2.08333333333333e-4F*u[t0][x + 4][y + 4][z + 2] + 3.33333333333333e-3F*u[t0]
[x + 4][y + 4][z + 3] - 1.875e-2F*u[t0][x + 4][y + 4][z + 4] +
3.33333333333333e-3F*u[t0][x + 4][y + 4][z + 5] - 2.08333333333333e-4F*u[t0]
[x + 4][y + 4][z + 6] + 3.33333333333333e-3F*u[t0][x + 4][y + 5][z + 4] -
2.08333333333333e-4F*u[t0][x + 4][y + 6][z + 4] + 3.33333333333333e-3F*u[t0]
[x + 5][y + 4][z + 4] - 2.08333333333333e-4F*u[t0][x + 6][y + 4][z + 4])/
(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z + 4]) +
pow(dt, 2)*damp[x + 1][y + 1][z + 1]*u[t2][x + 4][y + 4][z + 4]/(pow(dt,
2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z + 4]) + 4*dt*m[x + 4][y
+ 4][z + 4]*u[t0][x + 4][y + 4][z + 4]/(pow(dt, 2)*damp[x + 1][y + 1][z + 1]
+ 2*dt*m[x + 4][y + 4][z + 4]) - 2*dt*m[x + 4][y + 4][z + 4]*u[t2][x + 4][y +
4][z + 4]/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z +
4]);
 }
 }
 }
 }

 for (int time = time_m, t0 = (time)%(3), t1 = (time + 1)%(3), t2 = (time +
2)%(3); time <= time_M; time += 1, t0 = (time)%(3), t1 = (time + 1)%(3), t2 =
(time + 2)%(3)) {
 for (int x = x_m; x <= x_M; x += 1) {
 for (int y = y_m; y <= y_M; y += 1) {
 for (int z = z_m; z <= z_M; z += 1) {
 u[t1][x + 12][y + 12][z + 12] = 2*pow(dt,
3)*(-1.5031265031265e-7F*u[t0][x + 6][y + 12][z + 12] +
2.5974025974026e-6F*u[t0][x + 7][y + 12][z + 12] - 2.23214285714286e-5F*u[t0][x
+ 8][y + 12][z + 12] + 1.32275132275132e-4F*u[t0][x + 9][y + 12][z + 12] -
6.69642857142857e-4F*u[t0][x + 10][y + 12][z + 12] + 4.28571428571429e-3F*u[t0]
[x + 11][y + 12][z + 12] - 1.5031265031265e-7F*u[t0][x + 12][y + 6][z + 12] +
2.5974025974026e-6F*u[t0][x + 12][y + 7][z + 12] - 2.23214285714286e-5F*u[t0][x
+ 12][y + 8][z + 12] + 1.32275132275132e-4F*u[t0][x + 12][y + 9][z + 12] -
6.69642857142857e-4F*u[t0][x + 12][y + 10][z + 12] + 4.28571428571429e-3F*u[t0]
[x + 12][y + 11][z + 12] - 1.5031265031265e-7F*u[t0][x + 12][y + 12][z + 6] +
2.5974025974026e-6F*u[t0][x + 12][y + 12][z + 7] - 2.23214285714286e-5F*u[t0][x
+ 12][y + 12][z + 8] + 1.32275132275132e-4F*u[t0][x + 12][y + 12][z + 9] -
6.69642857142857e-4F*u[t0][x + 12][y + 12][z + 10] + 4.28571428571429e-3F*u[t0]
[x + 12][y + 12][z + 11] - 2.23708333333333e-2F*u[t0][x + 12][y + 12][z + 12] +
4.28571428571429e-3F*u[t0][x + 12][y + 12][z + 13] - 6.69642857142857e-4F*u[t0]
[x + 12][y + 12][z + 14] + 1.32275132275132e-4F*u[t0][x + 12][y + 12][z + 15] -
2.23214285714286e-5F*u[t0][x + 12][y + 12][z + 16] + 2.5974025974026e-6F*u[t0]
[x + 12][y + 12][z + 17] - 1.5031265031265e-7F*u[t0][x + 12][y + 12][z + 18] +
4.28571428571429e-3F*u[t0][x + 12][y + 13][z + 12] - 6.69642857142857e-4F*u[t0]
[x + 12][y + 14][z + 12] + 1.32275132275132e-4F*u[t0][x + 12][y + 15][z + 12] -
2.23214285714286e-5F*u[t0][x + 12][y + 16][z + 12] + 2.5974025974026e-6F*u[t0]
[x + 12][y + 17][z + 12] - 1.5031265031265e-7F*u[t0][x + 12][y + 18][z + 12] +
4.28571428571429e-3F*u[t0][x + 13][y + 12][z + 12] - 6.69642857142857e-4F*u[t0]
[x + 14][y + 12][z + 12] + 1.32275132275132e-4F*u[t0][x + 15][y + 12][z + 12] -
2.23214285714286e-5F*u[t0][x + 16][y + 12][z + 12] + 2.5974025974026e-6F*u[t0]
[x + 17][y + 12][z + 12] - 1.5031265031265e-7F*u[t0][x + 18][y + 12][z + 12])/
(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 12][y + 12][z + 12]) +
pow(dt, 2)*damp[x + 1][y + 1][z + 1]*u[t2][x + 12][y + 12][z + 12]/(pow(dt,

so=4 so=12

2) Backward propagation

8

u = TimeFunction(…, space_order=so)
eqn = m * u.dt2 - eta * u.dt - u.laplace

solve(eqn, u.backward)

u[t-1, …] = f(u[t, …], u[t+1, …], …)

produces

instead of

u[t+1, …] = f(u[t, …], u[t-1, …], …)

So we must march backwards in time to let the information flow
from an iteration to another (“true” flow dependences)

9

3) beyond finite differences (sparse functions)
u = TimeFunction(…, space_order=so)

src = SparseFunction(…)
rec = SparseFunction(…)

eqns = […, src.inject(…), rec.interpolate(…)]

Example
Hydrophones only
at the top of a 3D

grid, but in general
unaligned with the
computational grid

10

Eventually, the generated loop nest can be quite complex

 for (int time = time_m, t0 = …, t1 = …, …) {
 for (int x = x_m; x <= x_M; x += 1) {
 for (int y = y_m; y <= y_M; y += 1) {
 for (int z = z_m; z <= z_M; z += 1) {
 u[t1][x + 12][y + 12][z + 12] = …
 }
 }
 }
 for (int p_src = p_src_m; p_src <= p_src_M; p_src += 1) {
 u[t1][map[…]][map[…]][map[…]] = …
 }
 for (int p_rec = p_rec_m; p_rec <= p_rec_M; p_rec += 1) {
 rec[time][p_rec] = …
 }

Indirection array

11

4) beyond finite differences (chained BLAS/contractions)

A = Function(…)
B = Function(…)

…
eqns = [Eq(D, A*B + A*C), Eq(F, D*E)]

11

4) beyond finite differences (chained BLAS/contractions)

A = Function(…)
B = Function(…)

…
eqns = [Eq(D, A*B + A*C), Eq(F, D*E)]

 for (int i = i_s; i < i_e; i += 1) {
 for (int k = k_s; k < k_e; k += 1) {
 for (int j = j_s; j < j_e; j += 1) {
 D[i][k] = A[i][j]*B[j][k] + A[i][j]*C[j][k];
 }
 }
 for (int l = l_s; l < l_e; l += 1) {
 for (int k = k_s; k < k_e; k += 1) {
 F[i][l] = D[i][k]*E[k][l];
 }
 }
 }

Inlined sum

Reuse D along i

Devito: program model

12

Equation 1
Equation 0

Equation n-1

…

Operator

Equation 1
Equation 0

Equation n-1

…

Operator

…
Devito program

.cpp .so

.cpp .so

EquationEquationEquation

Devito: compilation passes and IRs overview

13

… User input

EquationEquationEquation

Devito: compilation passes and IRs overview

13

… User input

Iteration space
Data space

…

Iteration space
Data space

…

Local
analysis

Iteration space
Data space

…

EquationEquationEquation

Devito: compilation passes and IRs overview

13

… User input

Iteration direction
…

Iteration direction
…

Iteration direction
…

Global
analysis

Iteration space
Data space

…

Iteration space
Data space

…

Local
analysis

Iteration space
Data space

…

ClusterizationCluster Cluster

EquationEquationEquation

Devito: compilation passes and IRs overview

13

… User input

Iteration direction
…

Iteration direction
…

Iteration direction
…

Global
analysis

Iteration space
Data space

…

Iteration space
Data space

…

Local
analysis

Iteration space
Data space

…

ClusterizationCluster Cluster

EquationEquationEquation

Devito: compilation passes and IRs overview

13

… User input

Iteration direction
…

Iteration direction
…

Iteration direction
…

Global
analysis

Iteration space
Data space

…

Iteration space
Data space

…

Local
analysis

Iteration space
Data space

…

FLOP
reduction

ClusterizationCluster Cluster

EquationEquationEquation

Devito: compilation passes and IRs overview

13

… User input

Iteration direction
…

Iteration direction
…

Iteration direction
…

Global
analysis

Iteration space
Data space

…

Iteration space
Data space

…

Local
analysis

Iteration space
Data space

…

FLOP
reduction

Loop
scheduling

ClusterizationCluster Cluster

EquationEquationEquation

Devito: compilation passes and IRs overview

13

… User input

Iteration direction
…

Iteration direction
…

Iteration direction
…

Global
analysis

Iteration space
Data space

…

Iteration space
Data space

…

Local
analysis

Iteration space
Data space

…

FLOP
reduction

Loop
scheduling

(YASK) Loop
optimization

ClusterizationCluster Cluster

EquationEquationEquation

Devito: compilation passes and IRs overview

13

… User input

Iteration direction
…

Iteration direction
…

Iteration direction
…

Global
analysis

Iteration space
Data space

…

Iteration space
Data space

…

Local
analysis

Iteration space
Data space

…

FLOP
reduction

Loop
scheduling

(YASK) Loop
optimization

Data casts,
decls, …

FLOPs reduction by symbolic transformations

• Common sub-expressions elimination, factorization, …

14

FLOPs reduction by symbolic transformations

• Common sub-expressions elimination, factorization, …

for i, for j, …
 sin(phi[i,j]) + sin(phi[i-1,j-1]) + sin(phi[i+2,j+2])

Observations:
- Same operators (sin), same operands (phi), same indices (i, j)
- Linearly dependent index vectors ([i, j], [i-1, j-1], [i+2, j+2])

for i, for j
 B[i,j] = sin(phi[i,j])

for i, for j, …
 B[i,j] + B[i-1,j-1] + B[i+2,j+2]

Trading FLOPs for
storage?

•Cross-iteration redundancies elimination

14

Vector folding via YASK (a Devito backend)
Data layout transformation + cross-loop vectorization to optimize bandwith usage

15

Vector folding via YASK (a Devito backend)
Data layout transformation + cross-loop vectorization to optimize bandwith usage

There’s actually much more:
multi-level tiling

software prefetching
temporal wavefront blocking
15

 between 60% and 62%
 of attainable peak

16

Acoustic on Skylake 8180 with YASK

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Space orders 4, 8, 12, 16

 best: 47% of attainable peak
worst: 37% of attainable peak

w/o YASK (only “classic” stencil
optimisations), *WAY* worse

(worst was 12% of peak,
3.5x slowdown)

17

Acoustic on Xeon Phi 7250 with YASK

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Space orders 4, 8, 12, 16

18

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure.
Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will
affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit http://www.intel.com/performance.
Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and
configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost
reduction.
This document contains information on products, services and/or processes in development. All information provided here is subject to
change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements
that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in
Intel's SEC filings, including the annual report on Form 10-K.
Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web
site and confirm whether referenced data are accurate.
Intel, Xeon, Xeon Phi, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands
may be claimed as the property of others.
Optimization notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. (Notice revision #20110804)

Legal Disclaimer & Optimization Notice

Conclusions and resources

Useful links
• Website: http://www.devitoproject.org
• GitHub: https://github.com/opesci/devito
• Slack: https://opesci-slackin.now.sh

•Devito: an efficient and sustainable finite difference DSL
system to express and execute “numerical kernels”

•Driven by real-world seismic imaging, inspired by projects
such as FEniCS/Firedrake

•Based on actual compiler technology

•Interdisciplinary, interinstitutional research effort

19

http://www.devitoproject.org
https://github.com/opesci/devito

POLYHEDRAL??

Appendix

21

Experimentation details

• Architectures

• Intel® Xeon® Platinum 8180 Processor (“Skylake”, 28 cores)

• Intel® XeonPhi® 7250 (68 cores)

• Quadrant mode (still no support for NUMA)

• Tried 1, 2, 4 threads per core. Shown best.  

• Compiler

• ICC 18 -xHost -O3

• -xMIC-AVX512 on Xeon Phi

• -qopt-zmm-usage=high on Skylake 

• Runs

• Single socket

• Pinning via Numactl

• On the XeonPhi®, data fits in MCDRAM

• Roofline calculations:

• Memory bandwidth: STREAM

• CPU peak: pen & paper

• Operational intensity: source-level analysis (automated through Devito)

22

Philosophy: optimizations at the RIGHT level of abstraction

Example: optimizations for FLOPs reduction  
  
 Operator([eqn1, eqn2, …, eqn3])  

• Runtime constant propagation 

• Equation clustering, NOT loop fusion

• Symbolic transformations to minimize the
operation count of the equations 

all based on Python and SymPy; no trace of
loops yet!

23

24

More aggressive FLOP reduction strategies

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

 trend: CPU-bound >> Memory-bound
Still no YASK support (in progress)

Best speedup: ~ 3x

Operational intensity w/ increasing flop opts

24

More aggressive FLOP reduction strategies

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Beyond 1D vectorization …
Traditional “1D” vectorization requires lots of bandwidth

25

