
DEVITO V4.3: PRODUCTION-GRADE
MULTI-GPU SUPPORT

Fabio Luporini1, Rhodri Nelson2, George Bisbas2,
Italo Assis4, Ken Hester3, Gerard Gorman1,2

Rice 2021 O&G HPC Conference

1. Devito Codes
2. Imperial College London
3. NVidia
4. Federal University of Rio Grande do Norte

Traditional approach to solving PDEs

void kernel(…) {
 …
 <impenetrable code with aggressive
performance optimizations>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

2

Traditional approach to solving PDEs

CODE

3

Space = physics × discretization × architecture × language × developers

MATH

Huge space ⇒ Huge cost

Raising the level of abstraction

void kernel(…) {
 …
 <impenetrable code with aggressive
performance optimizations>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

4

Raising the level of abstraction

void kernel(…) {
 …
 <impenetrable code with aggressive
performance optimizations>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

4

Raising the level of abstraction

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

5

eqn = m * u.dt2 + eta * u.dt - u.laplace

Raising the level of abstraction

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

5

eqn = m * u.dt2 + eta * u.dt - u.laplace

Raising the level of abstraction

void kernel(…) { … }

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

5

eqn = m * u.dt2 + eta * u.dt - u.laplace

Raising the level of abstraction

void kernel(…) { … }

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

5

Devito

6

• Open source platform – MIT license.  

• Python package — easy to learn 

• Devito is a compiler that generates optimized parallel code.
• Supported languages:

• {C, SIMD, OpenMP, OpenACC} + MPI
• Supported architectures:

• CPUs: Intel, AMD, ARM
• GPUs: NVidia, AMD  

• Composability: integrate with existing codes and AI/ML
• Works out-of-the-box with other popular packages from the Python

ecosystem (e.g. PyTorch, NumPy, Dask, TensorFlow)  

• Best practises software engineering (testing, CI/CD, …)  

• Cloud ready

Devito: a DSL and compiler for explicit finite differences

Target applications

7

• Seismic imaging
• FWI, RTM, LS-RTM (TTI, elastic, visco-elastic propagators, etc.)

• Now maturating strong interest in medical imaging 

• Generation of high performance neural networks 

• CFD problems in renewable energy  

• Black-Scholes in finance  

• Virtually any partial differential equations on structured grids; more generally,
any sort of stencil code

Devito on GPUs

8

• Implementation needs to take into account:
• Support for multiple target languages

• OpenMP, OpenACC
• potentially: CUDA, HIP, SYCL, …

• Unreliability of the target languages’ software stack
• Multi-GPU support:

• Make it possible to run different shots on different GPUs
• Single-node multi-GPU via domain decomposition
• Multi-node multi-GPU via domain decomposition

• Data movement
• Data streaming
• Kernel performance (e.g., register optimization)

This is already quite hard…

9

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

eqn = m * u.dt2 + eta * u.dt - u.laplace

… But much harder is the automation!

The user expresses the mathematical
operators; the same exact DSL code needs to

run efficiently on different architectures

The key is decomposition

10

• Compilation is a hard problem 

• The key to success is decomposition: a hard problem is decomposed into
many — more manageable and simpler — subproblems 

• Here the hard problem is the generation of efficient GPU code  

• The subproblems are a series of compilation passes  

• Each compilation pass in isolation doesn’t do much. But altogether they
solve the problem while ensuring maintainability and extendibility.

Example: forward propagation with CPU-GPU data streaming

11

m * u.dt2 + eta * u.dt - u.laplace = 0

…

…

…

usave = u

…

Example: forward propagation with CPU-GPU data streaming

12

Too large for the GPU memory;
it will reside on the host

Compiler pass 1: buffering to decouple CPU-GPU execution

m * u.dt2 + eta * u.dt - u.laplace = 0

…

ubuffer = u

…

usave = ubuffer

…

Example: forward propagation with CPU-GPU data streaming

13

GPU
(thread0)

CPU
(thread1)

m * u.dt2 + eta * u.dt - u.laplace = 0

…

ubuffer = u

…

usave = ubuffer

…

Compiler pass 1: buffering to decouple CPU-GPU execution

Example: forward propagation with CPU-GPU data streaming

14

Compiler pass 2: analysis and placement of synchronizations

GPU
(thread0)

CPU
(thread1)

m * u.dt2 + eta * u.dt - u.laplace = 0

<wait(lock)>

ubuffer = u

<on signal>

usave = ubuffer

<unset(lock)>

Example: forward propagation with CPU-GPU data streaming

15

Compiler pass 3: lowering into Abstract Syntax Trees

GPU
(thread0)

CPU
(thread1)

<loop nest>

while(lock == 0);

<loop nest>

while(flag != 0)

 <loop nest>

 lock = 2;

Example: forward propagation with CPU-GPU data streaming

16

Compiler pass 4: specialization for the target language

GPU
(thread0)

CPU
(thread1)

<loop nest>

while(lock == 0);

<loop nest>

while(flag != 0)

 #pragma acc update self(… ubuffer …)

 lock = 2;

Performance of iso-acoustic benchmark

17

• Benchmark details:
• Benchmark: O(2, 8), 5123 grid points, 150 timesteps, single precision, NO data streaming
• System: NVidia V100, nvc 20.9 compiler, NSight Compute for the roofline
• Optimization: OpenACC, tuned thread block size, all divisions lifted, all arithmetic redundancies

eliminated (factorization, time-invariants, etc), constant folding (where reasonable)

• Achieved performance
• 27 GPoints/s
• This corresponds to slightly less than 1 Teraflops/s
• The measured arithmetic intensity is 1.5. This means ~53% of the attainable peak

• Bottleneck
• Register pressure => affects occupancy
• This is an aggressively optimized implementation with OpenACC; we’ll probably need to use a 

lower level language to push it even higher on the roofline

18

Sponsors who supported this work

• DUG
• BP
• Shell
• Microsoft
• NVidia
• Intel  

• Thanks to our many collaborators and contributors. For a full list of
contributors for each release please see 
https://github.com/devitocodes/devito/releases

https://github.com/devitocodes/devito/releases
https://github.com/devitocodes/devito/releases

GPU support roadmap

19

• Support for multiple target languages
• OpenMP, OpenACC
• potentially: CUDA, HIP, SYCL, …

• Unreliability of the target languages’ software stack
• Multi-GPU support:

• Make it possible to run different shots on different GPUs
• Single-node multi-GPU via domain decomposition
• Multi-node multi-GPU via domain decomposition

• Data movement (optimized)
• Data streaming (optimized)
• Kernel performance (best so far: 27 GPOINTS on iso-acoustic O(2, 8))

Legend:
Done
Nearly done
In progress
Potentially later this year

