
Analysis

Clustering

Group equations into “Clusters”, based on data dependencies
Derive iteration and data spaces

Detect computational properties (e.g., parallelism)

Operator([eqn0, eqn1, eqn2, …])

Equations lowering
Lower symbolic derivatives to stencil expressions

Constant folding
Index shifting (to account for halo and padding)

Lower SubDimensions and SubDomains

Tree-fication
Turn an ordered list of Clusters into an Abstract Syntax Tree (AST)

GPU0CPU0CPU1CPU1
GPU0GPU0GPUnCPUn

Clusters Optimization
Symbolic (flop-reducing) transformations:

Common sub-expressions elimination
Aliases detection and precomputation

Factorization
Code motion

…

Optimizations for data locality and parallelism:
Fusion
Fission

Blocking

GPU0CPU0CPU1CPU1
GPU0GPU0GPUnCPUn

AST specialization
Optimized distributed-memory parallelism via MPI
Optimized shared-memory parallelism via OpenMP

SIMD vectorization via OpenMP
Misc optimizations (e.g., denormals_

GPU0CPU0CPU1CPU1
GPU0GPU0GPUnCPUn

AST finalization
Loop nest optimization, such as

Symbol declarations and definitions
Data movement (host-device)
Instrumentation for profiling

Header files, globals, macros, …

JIT-compilation
Synthesis (AST -> file on disk)

Invocation of backend compiler to create a library (“.so”)

	Canvas 1

