
 1
DEVITO

AUTOMATIC GENERATION OF PRODUCTION-
GRADE HYBRID MPI-OPENMP PARALLEL

WAVE PROPAGATORS USING DEVITO

F. Luporini1, R. Nelson1, M. Louboutin2, N. Kukreja1, G. Bisbas1, P.
Witte2, Amik St-Cyr5, C. Yount3, T. Burgess4, F. Herrmann2, G. Gorman1

PASC 2019 — Python Frameworks for HPC

1Imperial College London
2Georgia Institute of Technology

 3Intel Corporation
4DUG - DownUnder Geosolutions

5Shell

 3

• Embedded in Python – easy to learn.  

• Devito is a compiler:
• Generates optimized parallel C code: SIMD, OpenMP, MPI.  

• Support for multiple architectures.
• Xeon and Xeon Phi (KNL) – fully supported.  

ARM64 – experimental.  
GPU’s – in development.  

• Straightforward to integrate with existing codes in other languages.  

• Open source platform – MIT license.  

• Used commercially – easy to play with, but not a toy...  

• Testing (continuous integration), code reviewing, examples, …

Devito: a DSL and compiler for explicit finite differences

Overarching target application: inversion for seismic imaging

http://www.open.edu/openlearn/science--maths--technology/science/environmental--science/earths--
physical--resources--petroleum/content--section--3.2.1

 4

Real-life Full-waveform
inversion

http://www.open.edu/openlearn/science

Raising the level of abstraction

void kernel(…) {
 …
 <impenetrable code with aggressive  
 performance optimizations>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 5

Raising the level of abstraction

void kernel(…) {
 …
 <impenetrable code with aggressive  
 performance optimizations>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 5

Raising the level of abstraction

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 6

eqn = m * u.dt2 + eta * u.dt - u.laplace

Raising the level of abstraction

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 6

eqn = m * u.dt2 + eta * u.dt - u.laplace

Raising the level of abstraction

void kernel(…) { … }

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 6

eqn = m * u.dt2 + eta * u.dt - u.laplace

Raising the level of abstraction

void kernel(…) { … }

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 6

Devito

The code really needs to fly

Realistic full-waveform inversion (FWI) scenario
 
-O(103) FLOPs per loop iteration or high memory pressure 
 
-3D grids with >109 grid points 
 
-Often more than 3000 time steps 
 
-Two operators: forward + adjoint, to be executed ~15 times 
 
-Usually 30000 shots 
 
≈ O(billions) TFLOPs 
 
Which means days, or weeks, or months on supercomputers!

 7

Lots of variations in physics, mathematics, platforms, …

• Many formulations of wave equations (R&D still super active)  

• Many space and time discretizations 

• Many types of boundary conditions in finite differences (too many)

• Unstructured computation (e.g., interpolation for sparse data)  

• Proliferation of computer architectures (functional and performance
portability)  

• …

 8

 9

So, what does it look like?

Equation1

Equation0

Equationn-1

…

Operator

.cpp .so

Runtime

Equation1

Equation0

Equationn-1

…

Operator

.cpp .so

 9

So, what does it look like?

Equation1

Equation0

Equationn-1

…

Operator

Readable, editable, …

.cpp .so

Runtime

Equation1

Equation0

Equationn-1

…

Operator

.cpp .so

 10

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

 10

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

>>> grid = Grid(shape=(…), extent=(…))

Create a grid

 10

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

>>> grid = Grid(shape=(…), extent=(…))

Create a grid

>>> m = Function(name="m", grid=grid, space_order=12)
>>> u = TimeFunction(name=“wavefield”, grid=grid, …)

Define the functions present in the PDE

 10

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

>>> grid = Grid(shape=(…), extent=(…))

Create a grid

>>> m = Function(name="m", grid=grid, space_order=12)
>>> u = TimeFunction(name=“wavefield”, grid=grid, …)

Define the functions present in the PDE

Write out the PDE

>>> pde = m*u.dt2 - u.laplace
>>> eqn = Eq(u.forward, solve(pde, u.forward))

 10

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

>>> grid = Grid(shape=(…), extent=(…))

Create a grid

>>> m = Function(name="m", grid=grid, space_order=12)
>>> u = TimeFunction(name=“wavefield”, grid=grid, …)

Define the functions present in the PDE

Write out the PDE

>>> pde = m*u.dt2 - u.laplace
>>> eqn = Eq(u.forward, solve(pde, u.forward))

Write out the boundary conditions (or use Absorbing layers, or…)

>>> … # “Just” other Eqs or Functions

 11

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

 11

>>> src = SparseTimeFunction(name=“source”, grid=grid, …)
>>> rec = SparseTimeFunction(name=“receivers”, grid=grid, …)

Define the source/receivers to inject/record seismic waves

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

 11

>>> src = SparseTimeFunction(name=“source”, grid=grid, …)
>>> rec = SparseTimeFunction(name=“receivers”, grid=grid, …)

Define the source/receivers to inject/record seismic waves

>>> op = Operator(eqn, bcs, src.inject(…), rec.interpolate(…))

Create an Operator

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

 11

>>> src = SparseTimeFunction(name=“source”, grid=grid, …)
>>> rec = SparseTimeFunction(name=“receivers”, grid=grid, …)

Define the source/receivers to inject/record seismic waves

>>> op = Operator(eqn, bcs, src.inject(…), rec.interpolate(…))

Create an Operator

This will generate OpenMP + MPI code !

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

 11

>>> src = SparseTimeFunction(name=“source”, grid=grid, …)
>>> rec = SparseTimeFunction(name=“receivers”, grid=grid, …)

Define the source/receivers to inject/record seismic waves

>>> op = Operator(eqn, bcs, src.inject(…), rec.interpolate(…))

Create an Operator

This will generate OpenMP + MPI code !

>>> op.apply(…)

If you want (…), run the Operator

Production-Grade Hybrid MPI-OpenMP Parallel Wave
Propagators using Devito — the key steps

Flexibility in space/time discretization

 12

 for (int time = time_m, t0 = (time)%(3), t1 = (time + 1)%(3), t2 = (time + 2)%(3);
time <= time_M; time += 1, t0 = (time)%(3), t1 = (time + 1)%(3), t2 = (time + 2)%(3))
 for (int x = x_m; x <= x_M; x += 1)
 for (int y = y_m; y <= y_M; y += 1)
 for (int z = z_m; z <= z_M; z += 1)
 u[t1][x + 4][y + 4][z + 4] = 2*pow(dt, 3)*(-2.08333333333333e-4F*u[t0][x + 2]
[y + 4][z + 4] + 3.33333333333333e-3F*u[t0][x + 3][y + 4][z + 4] -
2.08333333333333e-4F*u[t0][x + 4][y + 2][z + 4] + 3.33333333333333e-3F*u[t0][x + 4][y +
3][z + 4] - 2.08333333333333e-4F*u[t0][x + 4][y + 4][z + 2] + 3.33333333333333e-3F*u[t0]
[x + 4][y + 4][z + 3] - 1.875e-2F*u[t0][x + 4][y + 4][z + 4] +
3.33333333333333e-3F*u[t0][x + 4][y + 4][z + 5] - 2.08333333333333e-4F*u[t0][x + 4][y +
4][z + 6] + 3.33333333333333e-3F*u[t0][x + 4][y + 5][z + 4] - 2.08333333333333e-4F*u[t0]
[x + 4][y + 6][z + 4] + 3.33333333333333e-3F*u[t0][x + 5][y + 4][z + 4] -
2.08333333333333e-4F*u[t0][x + 6][y + 4][z + 4])/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] +
2*dt*m[x + 4][y + 4][z + 4]) + pow(dt, 2)*damp[x + 1][y + 1][z + 1]*u[t2][x + 4][y + 4]
[z + 4]/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z + 4]) + 4*dt*m[x
+ 4][y + 4][z + 4]*u[t0][x + 4][y + 4][z + 4]/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] +
2*dt*m[x + 4][y + 4][z + 4]) - 2*dt*m[x + 4][y + 4][z + 4]*u[t2][x + 4][y + 4][z + 4]/
(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 4][y + 4][z + 4]);

 for (int time = time_m, t0 = (time)%(3), t1 = (time + 1)%(3), t2 = (time + 2)%(3);
time <= time_M; time += 1, t0 = (time)%(3), t1 = (time + 1)%(3), t2 = (time + 2)%(3))
 for (int x = x_m; x <= x_M; x += 1)
 for (int y = y_m; y <= y_M; y += 1)
 for (int z = z_m; z <= z_M; z += 1)
 u[t1][x + 12][y + 12][z + 12] = 2*pow(dt, 3)*(-1.5031265031265e-7F*u[t0][x +
6][y + 12][z + 12] + 2.5974025974026e-6F*u[t0][x + 7][y + 12][z + 12] -
2.23214285714286e-5F*u[t0][x + 8][y + 12][z + 12] + 1.32275132275132e-4F*u[t0][x + 9][y
+ 12][z + 12] - 6.69642857142857e-4F*u[t0][x + 10][y + 12][z + 12] +
4.28571428571429e-3F*u[t0][x + 11][y + 12][z + 12] - 1.5031265031265e-7F*u[t0][x + 12]
[y + 6][z + 12] + 2.5974025974026e-6F*u[t0][x + 12][y + 7][z + 12] -
2.23214285714286e-5F*u[t0][x + 12][y + 8][z + 12] + 1.32275132275132e-4F*u[t0][x + 12]
[y + 9][z + 12] - 6.69642857142857e-4F*u[t0][x + 12][y + 10][z + 12] +
4.28571428571429e-3F*u[t0][x + 12][y + 11][z + 12] - 1.5031265031265e-7F*u[t0][x + 12]
[y + 12][z + 6] + 2.5974025974026e-6F*u[t0][x + 12][y + 12][z + 7] -
2.23214285714286e-5F*u[t0][x + 12][y + 12][z + 8] + 1.32275132275132e-4F*u[t0][x + 12]
[y + 12][z + 9] - 6.69642857142857e-4F*u[t0][x + 12][y + 12][z + 10] +
4.28571428571429e-3F*u[t0][x + 12][y + 12][z + 11] - 2.23708333333333e-2F*u[t0][x + 12]
[y + 12][z + 12] + 4.28571428571429e-3F*u[t0][x + 12][y + 12][z + 13] -
6.69642857142857e-4F*u[t0][x + 12][y + 12][z + 14] + 1.32275132275132e-4F*u[t0][x + 12]
[y + 12][z + 15] - 2.23214285714286e-5F*u[t0][x + 12][y + 12][z + 16] +
2.5974025974026e-6F*u[t0][x + 12][y + 12][z + 17] - 1.5031265031265e-7F*u[t0][x + 12][y
+ 12][z + 18] + 4.28571428571429e-3F*u[t0][x + 12][y + 13][z + 12] -
6.69642857142857e-4F*u[t0][x + 12][y + 14][z + 12] + 1.32275132275132e-4F*u[t0][x + 12]
[y + 15][z + 12] - 2.23214285714286e-5F*u[t0][x + 12][y + 16][z + 12] +
2.5974025974026e-6F*u[t0][x + 12][y + 17][z + 12] - 1.5031265031265e-7F*u[t0][x + 12][y
+ 18][z + 12] + 4.28571428571429e-3F*u[t0][x + 13][y + 12][z + 12] -
6.69642857142857e-4F*u[t0][x + 14][y + 12][z + 12] + 1.32275132275132e-4F*u[t0][x + 15]
[y + 12][z + 12] - 2.23214285714286e-5F*u[t0][x + 16][y + 12][z + 12] +
2.5974025974026e-6F*u[t0][x + 17][y + 12][z + 12] - 1.5031265031265e-7F*u[t0][x + 18][y
+ 12][z + 12])/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 12][y + 12][z + 12])
+ pow(dt, 2)*damp[x + 1][y + 1][z + 1]*u[t2][x + 12][y + 12][z + 12]/(pow(dt, 2)*damp[x
+ 1][y + 1][z + 1] + 2*dt*m[x + 12][y + 12][z + 12]) + 4*dt*m[x + 12][y + 12][z +
12]*u[t0][x + 12][y + 12][z + 12]/(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x +
12][y + 12][z + 12]) - 2*dt*m[x + 12][y + 12][z + 12]*u[t2][x + 12][y + 12][z + 12]/
(pow(dt, 2)*damp[x + 1][y + 1][z + 1] + 2*dt*m[x + 12][y + 12][z + 12]);

so=4 so=12

>>> m = Function(name="m", grid=grid, space_order=so)
>>> u = TimeFunction(name=“wavefield”, grid=grid, space_order=so)

Define the functions used in the PDE

 13

Data dependence analysis
• Represents data (array) accesses as (labelled) vectors in ℤn 

 

 

  

• Currently uses a simple in-house framework based on Lamport theory

• The Devito compiler relies on data dependence analysis for many tasks
• Inferring the iteration direction (i++ or i-- ?)
• Loop scheduling (convert list of equations into a tree of loops)
• Loop optimizations (e.g., discovery of parallel loops)
• MPI optimizations (e.g., reshuffling/merging communications)  

• Might one day move to an external tool (ISL?) if all of our use cases are
supported

u[t+ 2, x� 3] !

t+ 2
x� 3

�

 14

u[t-1, …] = f(u[t, …], u[t+1, …], …)

versus
u[t+1, …] = f(u[t, …], u[t-1, …], …)

>>> pde = …
>>> eqn = Eq(u.forward, solve(pde, u.forward))

>>> pde = …
>>> eqn = Eq(u.backward, solve(pde, u.backward))

Example: inferring the propagation direction

In the first case, the t loop iterates forward (t++),  
in the latter case it iterates backwards (t--)

Code generation for Higdon BCs is based on this exact framework

 15

Example: topological sorting for maximal “loop fusion”

u[t+1,x] = F0(u[t,x], u[t-1,x], v[t,x], …)

u[t+1,s] = F1(u[t+1,u_coords[s]], …)

v[t+1,x] = F2(v[t,x], v[t-1,x], u[t,x], …)

v[t+1,s] = F3(u[t+1,v_coords[s]], …)

 15

Example: topological sorting for maximal “loop fusion”

u[t+1,x] = F0(u[t,x], u[t-1,x], v[t,x], …)

u[t+1,s] = F1(u[t+1,u_coords[s]], …)

v[t+1,x] = F2(v[t,x], v[t-1,x], u[t,x], …)

v[t+1,s] = F3(u[t+1,v_coords[s]], …)

Only flow-dependences in
the time (t) dimension!

 15

Example: topological sorting for maximal “loop fusion”

u[t+1,x] = F0(u[t,x], u[t-1,x], v[t,x], …)

u[t+1,s] = F1(u[t+1,u_coords[s]], …)

v[t+1,x] = F2(v[t,x], v[t-1,x], u[t,x], …)

v[t+1,s] = F3(u[t+1,v_coords[s]], …)

Only flow-dependences in
the time (t) dimension!

 16

Example: topological sorting for maximal “loop fusion”

u[t+1,x] = F0(u[t,x], u[t-1,x], v[t,x], …)

u[t+1,s] = F1(u[t+1,u_coords[s]], …)

v[t+1,x] = F2(v[t,x], v[t-1,x], u[t,x], …)

v[t+1,s] = F3(u[t+1,v_coords[s]], …)

 17

Example: topological sorting for maximal “loop fusion”

u[t+1,x] = F0(u[t,x], u[t-1,x], v[t,x], …)

u[t+1,s] = F1(u[t+1,u_coords[s]], …)

v[t+1,x] = F2(v[t,x], v[t-1,x], u[t,x], …)

v[t+1,s] = F3(u[t+1,v_coords[s]], …)

for t = t_m to t_M, t++
for x = x_m to x_M, x++

for s = s_m to s_M, s++

Single-socket — Isotropic acoustic on Skylake 8180

best: 60% attainable peak
worst: 44% attainable peak

 18

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Generalized Common Sub-expressions Elimination

a = sin(phi[i,j]) + sin(phi[i-1,j-1]) + sin(phi[i+2,j+2])

Observations:
Same operators (sin), same operands (phi), same indices (i, j)  
Linearly dependent index vectors ([i, j], [i-1, j-1], [i+2, j+2])

 19

Generalized Common Sub-expressions Elimination

a = sin(phi[i,j]) + sin(phi[i-1,j-1]) + sin(phi[i+2,j+2])

Observations:
Same operators (sin), same operands (phi), same indices (i, j)  
Linearly dependent index vectors ([i, j], [i-1, j-1], [i+2, j+2])

 B[i,j] = sin(phi[i,j])

 a = B[i,j] + B[i-1,j-1] + B[i+2,j+2]

Trade-off FLOPs/storage
 19

 20

Single-socket — TTI on Skylake 8180

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Best speedup: ~ 3x

trend: fewer flops (higher OI), better runtime

 20

Single-socket — TTI on Skylake 8180

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

 21

mpirun <mpi args> python app.py

MPI support — for free

And that’s it.

 22

MPI support — for free

Python-level features:

• Domain decomposition based on MPI Cartesian grid abstraction.

• New package numpy4mpi: NumPy arrays automatically split and distributed
according to domain decomposition.

• Parallel data slicing dealt with efficiently under the hood

• Sources/receivers (i.e. “sparse data”) distributed automatically.

C-level features:

• Generated code contains the MPI halo exchanges. Required halo exchanges
identified through data dependence analysis.

• Optimizations (e.g., reshuffling halo updates, computation/communication overlap)
also exploit data dependence analysis.

• Data packing/unpacking is threaded for performance.

 23

Cluster/cloud — TTI strong scaling on AWS and Optimum

These are
best-case scenario

experiments:
one process/thread
per node (i.e., the

whole bandwidth at
full disposal)

Conclusions

• Devito is an open-source high-productivity and high-performance Python framework
for finite-differences.

• Driven by real-world seismic imaging, inspired by projects such as FEniCS/Firedrake.

• Based on actual compiler technology.

• Interdisciplinary, interinstitutional, international research effort.

• Growing community and user base  
• Academic: e.g. used by SLIM team to develop JUDI, […]

• Commercial: Production code by DUG, […]

• Many other R&D teams […]

 24

 25

Website: http://www.devitoproject.org  

GitHub: https://github.com/opesci/devito  

Slack: https://opesci-slackin.now.sh

Useful links and resources

http://www.devitoproject.org
https://github.com/opesci/devito

Appendix

 26

Experimentation details
• Architectures

• Intel® Xeon® Platinum 8180 Processor (“Skylake”, 28 cores)
• Intel® XeonPhi® 7250 (68 cores)

• Quadrant mode (still no support for NUMA)
• Tried 1, 2, 4 threads per core. Shown best.  

• Compiler
• ICC 18 -xHost -O3
• -xMIC-AVX512 on Xeon Phi
• -qopt-zmm-usage=high on Skylake 

• Runs
• Single socket
• Pinning via Numactl
• On the XeonPhi®, data fits in MCDRAM

• Roofline calculations:
• Memory bandwidth: STREAM
• CPU peak: pen & paper
• Operational intensity: source-level analysis (automated through Devito)

 27

Experimentation details

 28

• Experiments on AWS and Optimum

 29

What Devito does NOT (and probably will never) do

• Parallel I/O  

• (Obviously) the overarching application (though we provide examples)  

• Implicit solvers 

• Many other things

 30

Many optimizations BEFORE creating a tree of loops…

• “Loop fusion” => Equation clustering 

• “Loop-invariant code motion” => Cluster lifting 

• Common sub-expressions elimination (both cross- and intra-iteration),
factorization, … they all happen at the cluster level

 30

Many optimizations BEFORE creating a tree of loops…

• “Loop fusion” => Equation clustering 

• “Loop-invariant code motion” => Cluster lifting 

• Common sub-expressions elimination (both cross- and intra-iteration),
factorization, … they all happen at the cluster level

While others are applied on the tree
• OpenMP (with nested parallelism)  

• SIMD-ization  

• Loop blocking 

• …

Beyond 1D vectorization …
Traditional “1D” vectorization requires lots of bandwidth

 31

Vector folding via YASK (a Devito backend)
Data layout transformation + cross-loop vectorization to optimize bandwith usage

 32

Vector folding via YASK (a Devito backend)
Data layout transformation + cross-loop vectorization to optimize bandwith usage

There’s actually much more:
multi-level tiling

software prefetching
temporal wavefront blocking

 32

 33

single-socket, OMP only: 783 s (± 12 s)

Dual-socket — TTI on Skylake 8175

grid = 512 x 512 x 1024

dual-socket, OMP only: 626 s (± 45 s)

dual-socket, OMP+MPI: 319 s (± 8 s)

 34

Loop scheduling

The problem: convert a list of equations into a tree of loops

The key ingredients:
• Data dependence analysis
• Topological sorting

>>> op = Operator(eqn, bcs, src.inject(…), rec.interpolate(…))

Need to support:
• Control flow (e.g., for data sub-sampling)
• Optimizations (e.g., fusion, code motion, …)
• Human-readable (e.g., generate routines to avoid repetitions)

best: 35% attainable peak
worst: 12% attainable peak

 35

Single-socket — Isotropic acoustic on Xeon Phi 7250

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

 between 60% and 62%
 of attainable peak

 36

Acoustic on Skylake 8180 with YASK

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Space orders 4, 8, 12, 16

 best: 47% of attainable peak
worst: 37% of attainable peak

w/o YASK (only “classic” stencil
optimisations), *WAY* worse

(worst was 12% of peak,
3.5x slowdown)

 37

Acoustic on Xeon Phi 7250 with YASK

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Space orders 4, 8, 12, 16

